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Abstract—With the application and popularization of artificial 

intelligence and intelligent robots in daily life, the autonomous 

navigation and flexible operation capabilities of mobile robots 

have become particularly critical. Mobile robots perform well in 

regular environments, but face problems such as low accuracy in 

dynamic obstacle avoidance and weak adaptability to complex 

terrains. This study proposes to enhance the adaptability of the 

Rapidly-exploring Random Tree Star algorithm and integrate it 

with the A-Star algorithm, the Dynamic Window Approach, and 

visual sensor to construct an obstacle avoidance model. The 

objective is to enable the improved model to recognize various 

terrain features and enhance the accuracy of the path planning 

algorithm. The proposed model performed well in obstacle 

avoidance, with a success rate of 95.78% after ten training epochs 

and no more than four collisions within 4 minutes. In the 

experiment, as the obstacle increased every minute, the response 

speed of the proposed model remained below 25 seconds. The 

above results indicate that the quality of the planned path is higher 

than that of the other three models. The path optimization 

improvement combined with the A* algorithm is effective and has 

high real-time and accuracy, which can make mobile robots widely 

used in industries such as services, navigation, and logistics. 
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I. INTRODUCTION 

Driven by intelligent robot technology, Mobile Robot (MR) 
is widely used in industries such as autonomous driving, 
intelligent warehousing, and services. MR can replace humans 
in heavy and tedious labor and high-risk operations, among 
which dynamic obstacle avoidance and path planning are key 
technologies for MR to work safely and efficiently [1-2]. 
However, obstacle avoidance and path planning in complex 
dynamic environments still face numerous challenges, 
particularly in handling unstructured terrains such as forests, 
urban streets, and high-density dynamic obstacles. Existing 
methods exhibit limitations in real-time performance and 
adaptability. The latest research methods for obstacle avoidance 
in MR usually combine global path planning algorithms with 
local obstacle avoidance algorithms, and integrate multi-sensor 

data with dynamic environment prediction techniques to 
improve real-time performance, robustness, and obstacle 
avoidance accuracy in complex environments [3]. However, 
challenges such as low computational efficiency and suboptimal 
path optimization still exist, particularly in highly dynamic 
environments where robots may struggle to timely avoid fast-
moving obstacles. In addition, they rely on simplified motion 
models and local obstacle information, so that they are not 
suitable for complex terrains such as urban streets or forests [4]. 
The current mainstream obstacle avoidance methods include 
Dynamic Window Approach (DWA), A-Star (A*), and Rapidly-
Exploring Random Tree (RRT). RRT can generate 
progressively optimal global paths through random sampling. 
The heuristic search of A* can reduce redundant paths in 
random sampling by guiding the path to converge quickly 
towards the target point. Slight improvements to DWA can 
enhance the adaptability of obstacle avoidance models to 
dynamic environments with complex terrain [5]. Therefore, to 
deal with the low accuracy in path planning for MRs and poor 
adaptability to complex terrains, this study proposes a dynamic 
obstacle avoidance and path planning model for MR integrated 
RRT and A* with improved Dynamic Window Approach 
(IRA*-DWA). The proposed approach consists of two main 
components. First, by integrating the improved RRT and A * 
algorithm, the global path planning was optimized. RRT 
provides efficient exploration capabilities in unknown 
environments, while the heuristic search of A* further refines 
the initial path generated by RRT, ensuring both optimality and 
smoothness. Second, this global path planning is deeply 
integrated with DWA, forming a "global-local" dual-layer 
planning structure, where the global path generated by RRT-A* 
provides directional guidance for DWA. The improved DWA 
incorporates a dynamic obstacle trajectory prediction model and 
multi-source visual sensor data fusion to update and evaluate 
obstacle states in real -time. This integration allows the robot to 
maintain the optimality of the global path while dynamically 
adjusting local obstacle avoidance strategies, effectively 
coordinating responses to both static and dynamic obstacles. As 
a result, the system significantly enhances obstacle avoidance 
stability and efficiency in complex environments. The proposed 
model aims to achieve efficient and real-time autonomous 

*Corresponding Author. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

804 | P a g e  

www.ijacsa.thesai.org 

navigation in highly dynamic environments, providing valuable 
insights for future research on global path optimization and real-
time obstacle avoidance strategies in complex and unstructured 
terrains. 

The study is divided into five sections. Section II 
summarizes and discusses the research on dynamic obstacle 
avoidance and path planning. Section III constructs the obstacle 
avoidance model by integrating RRT and DWA, while 
incorporating the A* algorithm and visual sensors to enhance 
the model's ability to recognize terrain features. Section IV 
validates the improved algorithm and evaluates the overall 
performance of the obstacle avoidance model. Section V 
discusses the experimental results, explains how different 
algorithms are integrated, and how they improve the 
performance of the model in various environments. Section VI 
presents the conclusion, summarizing the findings of the study. 

II. RELATED WORK 

Dynamic obstacle avoidance and path planning are crucial 
research directions in the field of MRs [6]. The main path 
planning includes global planning, local planning, and hybrid 
path planning [7-8]. There are abundant research results on 
improving path planning. For example, Huber et al. built a real-
time perception-based fast obstacle avoidance strategy for MRs 
in dynamic and complex environments. The controller 
processed over 30,000 data points per second, with an evaluation 
time of 1ms, successfully avoiding collisions in complex indoor 
and outdoor environments [9]. Guo et al. built a dynamic 
obstacle avoidance risk zone strategy using Kalman filter and 
nonlinear model for robot obstacle avoidance. The robot could 
smoothly avoid moving obstacles with a high success rate. This 
method could effectively control the motion of robots [10]. Chen 
et al. proposed a risk aware sampling style local trajectory 
planning design based on a dual structure particle dynamic 
occupancy graph for the safe flight of quadcopter drones in 
dynamic environments. In field testing, the drone achieved 6m/s 
under the motion capture system and 2.5m/s when running on a 
low-cost single board computer [11]. Qi et al. built a distributed 
collaborative control algorithm on the basis of Hooke's law and 
damping repulsion function for collision and obstacle avoidance 
in multi-rotor formation tracking. In addition, a separation 
merging strategy was designed based on pigeon obstacle 
avoidance behavior to calculate the optimal speed for keeping 
the multi-rotor away from obstacles [12]. Li Z et al. proposed a 
collision avoidance framework that integrated B-splines and 
nonlinear model predictive control for the dynamic constraint 
problem of autonomous multi-axis distributed vehicles in path 
planning. The proposed framework was validated in different 
driving scenarios on the environmental testing platform, 
demonstrating the ability to effectively improve the accuracy of 
path planning and path tracking [13]. 

In terms of dynamic obstacle avoidance, mainstream 
research in academia has transitioned from discussing geometric 
model-based obstacle avoidance methods such as Artificial 
Potential Field (APF) and Vector Field Histogram (VFH) to 
developing and improving DWA algorithms. For example, 
Muñoz-Bañón et al. proposed a new Naive Valley Path method 
based on LiDAR to address the insufficient information 
accuracy. In practical applications, the system underwent 

autonomous driving for over 20 kilometers on BLUE, a research 
platform at the University of Alicante Science Park, with an 
average road center deviation of 0.24 meters and an average 
sampling time of 19.8ms [14]. Wang et al. built an anti-
interference APF method JA-APF to address GPS signals being 
easily interfered with in unmanned surface ship path planning. 
The JA-APF could effectively solve the impact of GPS 
interference on path planning results and restore normal path 
planning as soon as possible [15]. Li Y et al. proposed an 
optimized A* algorithm that integrated cubic Bezier curves and 
DWA to address excessive path turns and long running time in 
practical applications. Compared with traditional algorithms, the 
algorithm reduced the turns on the path by 50% and the path 
length by 3.62% [16]. Kobayashi and Motoi combined DWA 
and virtual manipulator technology for local path planning of 
MRs. The simulation results verified the effectiveness of this 
method, especially in dynamic and narrow spaces, which could 
effectively avoid collisions and generate smooth paths [17]. 

From the above research, current research on MR dynamic 
obstacle avoidance and path planning obstacle avoidance mainly 
faces problems such as low obstacle avoidance accuracy, high 
computational resource consumption, inability to quickly obtain 
optimal solutions in complex environments, and susceptibility 
to getting stuck in local optima. Therefore, this study proposes 
the IRA*-DWA model, which introduces several key 
innovations. It integrates the improved RRT and A* algorithms 
to enhance the accuracy and computational efficiency of global 
path planning, while also incorporating an optimized DWA 
obstacle avoidance strategy, enabling the robot to make faster 
avoidance decisions in dynamic environments. Furthermore, 
this model combines dynamic obstacle trajectory prediction and 
multi-source sensor data fusion to achieve more accurate 
environmental perception, improve adaptability to complex and 
unstructured terrain, and effectively alleviate local optimization 
problems. The IRA*-DWA model aims to reduce the 
computational burden of path planning while ensuring rapid 
adaptation to complex environments in dynamic obstacle 
avoidance scenarios. 

III. IMPROVED PATH PLANNING ALGORITHM AND 

IMPROVED IRA*- DWA MODEL CONSTRUCTION 

A. Algorithm Strategy Combining RRT* and A* 

Path planning can ensure safe and efficient navigation of MR 
in complex environments. RRT can quickly explore high-
dimensional spaces through random sampling and incremental 
tree construction, making it extremely suitable for global path 
planning [18-19]. RRT* adds a path optimization mechanism 
depending on RRT, gradually approaching the optimal path by 
continuously reconnecting nodes, which improves the quality of 
path planning [20]. The schematic diagram of path exploration 
for RRT and RRT* is shown in Fig. 1. 

In Fig. 1, RRT quickly generates a feasible path tree from 
the starting point to the target point through random sampling, 
but the path is often long and not smooth. RRT* adds a path 
optimization step on this basis, gradually improving the path by 
reconnecting nodes, resulting in a shorter final generated path. 
Although RRT* can generate asymptotic optimal paths in path 
planning, it is prone to insufficiently smooth paths. The heuristic 
search of A* can effectively optimize the smoothness and 
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feasibility of paths, which compensates for the shortcomings of 
RRT*. The operation of the A* algorithm is shown in Fig. 2. 

RRT RRT*  
Fig. 1. Operation principal diagram of RRT*. 
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Fig. 2. Operation principal diagram of A*. 

In Fig. 2, the A* algorithm calculates the total generation 
value of each node from the starting point, where F=G+H. G is 
the current path cost and H is a heuristic estimate. The node with 
the smallest F-value is used as the extension node of the current 
path, and updates adjacent nodes while avoiding red obstacles. 
The algorithm continuously repeats this process, ultimately 
obtaining the optimal path. The heuristic search of the A* is used 
to optimize the direction of the RRT* extension tree, making the 
search process more goal oriented. Based on this, an improved 

RRT* is obtained. Firstly, a tree T  with the starting point 

startq
 as the root node is initialized. A cost value priority queue 

Q
 for storing each expansion node is initialized and the 

starting point is added to the queue. During each expansion 

process, a node nearq
 is selected from the current tree and 

guided the random sampling point randq
 through the A* 

algorithm. The heuristic function of A* algorithm is shown in 
Eq. (1). 

( )rand rand goalh q q q              (1) 

In Eq. (1), goalq
 is the target point. 

( )randh q
 is the 

heuristic distance from the current random point randq
 to the 

target point. The heuristic value is combined with the cost value 
of the current node. The node with the lowest cost is selected for 
expansion, as shown in Eq. (2). 

( ) ( ) ( , ) ( )rand near near rand randf q g q C q q h q     (2) 

In Eq. (2), 
( )randf q

 signifies the total cost of the node. 

( )nearg q
 signifies the cost of the path from the starting point 

to nearq
. 

( , )near randC q q
 is the actual cost from nearq

 to 

randq
, representing distance, time, etc. The extension method of 

RRT* is used to add the newly sampled node randq
 to the 

current tree and expand the tree by connecting nearq
 and 

randq
. Path optimization is carried out, checking the connection 

between the new node randq
 and the existing node and 

optimizing the path to reduce the total cost of the path. Eq. (3) 
displays the cost function. 

1 2 1 2( , )C q q q q              (3) 

In Eq. (3), 1q
 and 2q

 are two points in the path applied 

to obtain the distance or cost between them. 1 2q q
 

signifies the Euclidean distance between 1q
 and 2q

. In the 

process of path backtracking, the cost function 
f

 of the path 
is used to guide optimization. The expression is shown in Eq. 
(4). 

min( , )optimized current optimizedf f f         (4) 

In Eq. (4), 
f

 can check if there is a shorter path. By 
continuously optimizing and updating the paths in the tree, the 
total cost can be reduced. The optimal path is selected for 
connection, as expressed in Eq. (5). 

( )
ˆ arg ( ( , ) ( , ))

newnew q Near q new masterq C q q C q q    (5) 

In Eq. (5), Near  represents the set of nodes in the tree that 

are closer to newq
. The optimal path is chosen to connect newq

 

and its main node masterq
. Thus, the method integrated A* 

algorithm and RTF* algorithms (IRA*) is obtained, as shown in 
Fig. 3. 
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Fig. 3. Optimized algorithm strategy. 
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As shown in Fig. 3, RRT* first generates a feasible path tree 
covering complex environments through random sampling. The 
A* algorithm further optimizes the path based on heuristic 
functions, selecting the path with the lowest cost and higher 
smoothness as the final planning result. Through the IRA* 
algorithm, A* algorithm provides guidance for global 
optimization, making tree expansion more targeted and 
directional, and reducing unnecessary path exploration. RRT* 
ensures fast sampling and path optimization capabilities, 
ensuring asymptotic optimality of the final path. 

B. Obstacle Avoidance Model Based on Improved RRT* and 

Improved DWA 

After generating the optimal path through global path 
planning, MR needs to further construct a dynamic obstacle 
avoidance model to adapt to changes in dynamic obstacles and 
ensure the safety and flexibility of the robot during actual 
operation. This requires MR to be able to perceive dynamic 
obstacles around it within a limited time in complex 
environments before making path planning [21]. To achieve this 
goal, robots need to have the ability to recognize and avoid 
collisions, as well as perform path planning to find the optimal 
or feasible route. Table I displays the specific differences 
between dynamic obstacle avoidance and path planning obstacle 
avoidance. 

TABLE I.  COMPARISON BETWEEN DYNAMIC OBSTACLE AVOIDANCE 

AND PATH PLANNING OBSTACLE AVOIDANCE 

Aspect 
Dynamic Obstacle 

Avoidance 

Path Planning Obstacle 

Avoidance 

Environmental 

Type 

Primarily dynamic 
environments, with 

obstacles changing 

overtime 

Mostly static or slowly 
changing environments, 

with relatively stationary 

obstacle 

Algorithm Goal 

Real-time avoidance of 

moving obstacles to 

prevent collisions 

Finding an optimal path 

from the start point to the 

destination 

Real-Time 

Requirement 

High real-time 

responsiveness required 

Lower real-time 
requirements; path are 

generated and then 

executed 

Path Adjustment 
Dynamic path adjustment 
for real-time obstacle 

avoidance 

Preplaned global paths, 
with potential updates or 

adjustments 

Algorithm 
Complexity 

Higher Relatively lower 

Use Cases 

Dynamic traffic, 

pedestrian avoidance, 

robot navigation in 
complex environments 

Indoor robots, automated 

warehouses, drones, etc. 

According to Table I, the biggest difference between 
dynamic obstacle avoidance and path planning obstacle 
avoidance lies in their dynamism and real-time performance. In 
a dynamic environment, robots not only need to plan paths, but 
also need dynamic prediction and real-time obstacle avoidance. 
Therefore, higher computing power and more accurate 
perception are crucial. The IRA* can improve the global path 
planning ability of obstacle avoidance models. To further 
enhance the dynamic obstacle avoidance ability, the DWA, 
which is more suitable for dynamic obstacle avoidance, is 
integrated based on the IRA*. The operation process of DWA is 
shown in Fig. 4. 

Target

w

v

 

Fig. 4. Operational principal diagram of DWA. 

Fig. 4 shows the running process of the DWA algorithm, 
which obtains information on the current position, speed, and 
obstacles of the robot through sensors. A set of feasible motion 
trajectories is generated based on the current speed, acceleration, 
etc. in the velocity space. Each trajectory is scored based on 
indicators, and the trajectory with the highest score is selected 
as the next motion path for the robot. The corresponding speed 
and direction commands are sent to the robot for actual motion, 
allowing DWA to achieve real-time obstacle avoidance and path 
following. In complex and irregular terrain, the shape and 
position of obstacles may change rapidly. Therefore, the 
prediction accuracy of traditional distance sensors relied on by 
the DWA algorithm will decrease. By introducing visual 
sensors, the perception ability of irregular terrain can be 
improved and richer environmental information can be 

provided. Given the current state 
 , ,

T
x x y 

 of the robot, 

x  and 
y

 are position coordinates and   is orientation. The 
maximum speed and acceleration of the robot are defined. A 

time window t  is defined for predicting future trajectories. 

Multiple candidate trajectories are generated within t  based 
on the speed limit and dynamic model of the robot, and each 
trajectory is evaluated to calculate its cost function. The cost 
function of DWA usually consists of three parts: obstacle 
avoidance cost, velocity cost, and acceleration cost. The total 
cost function is shown in Eq. (6). 

2

( )

arg

1
min( )

obs obs vel vel acc acc

obs
i

traj i obs

vel t et

acc

J J J J

J
x x

J v v

J a

       

 
 



 

 

   (6) 

In Eq. (6), obsJ
 is the obstacle avoidance cost, reflecting 

the distance between the trajectory and the obstacle. Close 

distance indicates higher costs. velJ
 is the speed cost, which 

measures the difference between the current speed and the 
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expected speed. accJ
 is the acceleration cost, which measures 

the smoothness of the control input. The trajectory with the 
minimum cost function value is used as the final control input, 

and the velocity v  and angular velocity   are controlled to 
calculate the collision risk between the predicted path and 

obstacles. For the obstacle position 
( )obsq t

 at a certain 

moment, by predicting its motion velocity 
( )obsv t

 and 

acceleration 
( )obsa t

, the future position can be estimated, as 
displayed in Eq. (7). 

21
( ) ( ) ( ) ( )

2
obs obs obs obsq t t q t v t t a t t         (7) 

In Eq. (7), t  signifies the predicted time step. 
( )obsq t

 
signifies the current position of the obstacle. Based on the 
Kalman filter, DWA can achieve multi-step prediction to 
improve its adaptability to dynamic obstacles, estimate the 
possible positions in future time periods, and dynamically 

update the future trajectory of obstacles. Assuming 
ˆ ( )futureq t

 
is the predicted trajectory of the future position of the robot and 

ˆ ( )obsq t
 is the predicted trajectory of obstacles, the cost 

function expression for avoiding collisions is shown in Eq. (8). 

1

cos ( , ) ( ( ), ( ))
n

collision robot obs

i

t v safe q t i q t i


    (8) 

In Eq. (8), 
( , )robot obssafe q q

 is a function that represents 
the safe distance between the current robot position and the 
predicted obstacle position. If the safe distance is below the set 
threshold, the value is considered high cost. The final cost 
function is rewritten, as shown in Eq. (9). 

cos

cos ( )

cos ( )

cos ( , )

collision

speed

heading

t

t v

t

t v





 



  

  

  
  

           (9) 

In Eq. (9),  , 


, and 


 are weight coefficients, 
representing the weights for controlling obstacle avoidance, 
speed, and heading, respectively. After combining visual 
information, for each time step, the position and shape of 
obstacles can be updated based on data from visual sensors and 
distance sensors. The cost function expression after introducing 
visual sensors is shown in Eq. (10). 

1

cos ( , ) ( ( ), ( ), ( ), ( ))
n

collision robot obs depth RBG

i

t v safe q t i q t i I t i I t i


      

(10) 

In Eq. (10), depthI
 and RBGI

 represent image data from 
the depth sensor and the red, green, and blue cameras, 

respectively. The improved function can consider the visual 
sensor to provide more accurate obstacle shapes and positions. 
Finally, the DWA cost function after combining visual and 
dynamic obstacle prediction is shown in Eq. (11). 

cos

cos ( )

cos ( )

cos ( , )

cos ( , )

collision

speed

heading

visual depth RGB

t

t v

t

t I I

t v





 





  

  

  

  
   

      (11) 

In Eq. (11), 


 is the weight coefficient related to the visual 
sensor, used to control the impact of visual information on the 
total cost function. By predicting the trajectory of dynamic 
obstacles and combining visual sensors, the adaptability of 
DWA algorithm in dynamic and complex environments is 
effectively enhanced. These two improvements enable DWA to 
more accurately respond to dynamic obstacles and complex 
terrain, while still ensuring the quality of path planning even in 
high real-time requirements. The final obstacle avoidance model 
IRA*-DWA is shown in Fig. 5. 

Set up and execute

Generate simulation planning

Evaluate trajectory

Encounter an obstacle?

Select the optimal trajectory

Traverse the entire spatial trajectory?

Optimal trajectory

Y

N

N

Y

(a)Expected Obstacle Avoidance Effectiveness (b)Model Execution Process  

Fig. 5. Operational diagram of IRA*-DWA model. 

Fig. 5 (a) shows the expected obstacle avoidance effect of 
IRA*-DWA in a real scene. A real scene is selected and 
formatted to design a terrain map filled with static and dynamic 
obstacles. MR should avoid five erroneous intersections through 
visual sensors, generate the optimal path based on algorithms, 
and execute it. Fig. 5 (b) displays the operational process of 
IRA*-DWA. The obstacle avoidance model first generates an 
initial path plan based on IRA* and evaluates the path to select 
the optimal trajectory. During the execution process, the visual 
sensor is used to perceive the environment and predict the 
trajectory of dynamic obstacles. The model cyclically traverses 
the entire spatial path until the final global optimal path is 
generated, achieving efficient obstacle avoidance and path 
optimization for dynamic environments and complex terrains. 

IV. EXPERIMENTAL PERFORMANCE EVALUATION OF IRA* 

AND IRA*-DWA 

A. Performance Verification of IRA* Algorithm 

To verify the performance, an experimental platform is set 
up consisting of two parts: software and hardware. The software 
part uses MATLAB and ROS as simulation environments, 
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combined with Gazebo for dynamic environment modeling and 
algorithm verification. Meanwhile, Python is used to write 
algorithm implementations, including improved RRT and DWA 
algorithm modules. The hardware part uses a MR platform 
equipped with RPLIDAR lidar, RGB vision sensors, and 
NVIDIA Jetson embedded controller. Static and dynamic 
obstacles are arranged on the experimental site to simulate real 
complex environments. The performance is verified through 
hardware operation. The IRA* algorithm is compared with 
Dijkstra and PRM. Furthermore, to further evaluate the 

adaptability of the proposed algorithm, experiments are 
conducted in both indoor structured environments and outdoor 
unstructured terrains. The indoor experiments include scenarios 
with narrow passages and randomly distributed obstacles, while 
the outdoor experiments cover complex terrains such as slopes 
and gravel paths. These experiments aim to evaluate the 
robustness and obstacle avoidance ability of the model in 
different environmental conditions. The indoor and outdoor 
training results are shown in Fig. 6. 
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Fig. 6. Comparison of path smoothness and stability. 

From Fig. 6, both indoors and outdoors, IRA* consistently 
outperformed the other two algorithms on path stability and 
smoothness. In Fig. 6 (a), when the path smoothness reached 0.6, 
IRA* already reached a path stability of 0.9, while Dijkstra and 
PRM had path stability of around 0.76 and 0.6, respectively. The 
performance curve of IRA* rose faster, proving its ability to 
optimize paths earlier in complex indoor environments. In Fig. 
6 (b), the path stability of IRA* approached 1 when the path 
smoothness was 0.8, while Dijkstra and PRM reached relatively 

high path stability when the path smoothness was close to 1. 
Even in dynamic outdoor environments, IRA* still maintained 
its excellent performance. In summary, IRA* not only 
significantly improves path smoothness, but also achieves 
optimal path stability in various environments, demonstrating 
strong comprehensive performance. Subsequently, the accuracy 
and obstacle avoidance success rate of the algorithm are 
validated, as shown in Fig. 7. 
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Fig. 7. Comparison of global and local path planning capabilities. 

In Fig. 7 (a), IRA* showed a rapid increase in accuracy at 
the beginning of training, reaching approximately 70% planning 
accuracy within 2 hours, and ultimately stabilizing at 95.45% in 
the third hour. Dijkstra grew slowly, reaching only 45.12% 
within 1 hour and stabilizing at 80.68% after five hours. PRM 
grew the slowest, only increasing from an initial 20% to a final 
65.31%. In Fig. 7 (b), the obstacle avoidance success rate of 
IRA* rapidly increased in the first two hours, reaching 87%, and 
approached 90% afterwards, demonstrating extremely high 
local obstacle avoidance ability. Dijkstra showed a slight lag in 
improving obstacle avoidance ability, with a relatively steady 
growth rate, ultimately reaching 81.28% within five hours. PRM 
had the worst performance, with a slow increase in obstacle 

avoidance success rate throughout the entire training process, 
only at 60.36%. 

B. Performance Analysis of IRA*-DWA Model 

After verifying the performance of the IRA* algorithm, to 
further validate its practicality and scalability in dynamic 
obstacle avoidance scenarios, the study also analyzes the 
application effect of the IRA*-DWA obstacle avoidance model. 
The experimental setup for the IRA*-DWA model is the same 
as above. Three datasets, KITTI, OpenLORIS-Scene, and 
ApolloScope, are selected and compared with D*, Probabilistic 
Roadmap combined with A* (APRM), and APF model. The 
path quality performance is shown in Fig. 8. 
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Fig. 8. Path quality of models. 

In Fig. 8 (a), the path feasibility of IRA*-DWA remained at 
the highest level, reaching its peak at a path length of 20 and 
maintaining 86.48% even at a path length of 30. In contrast, the 
feasibility of D* and APRM was slightly lower, around at 
77.64% and 71.4% respectively when the path length exceeded 
40. The feasibility of APF was the lowest. To avoid distortion of 
individual test data, the IRA*-DWA in path quality is presented 
separately. Fig. 8 (b) shows the three-dimensional visualization 
effect of path length, number of turns, and path smoothness. 

IRA*-DWA maintained high smoothness in the path length 
from 0 to 30. Especially when the path length was 20 and the 
number of turns was small, the path smoothness was 89.76%. 
Overall, path length is positively correlated with the number of 
turns. Longer paths are usually smoother. However, when there 
are many turns, especially sharp turns, the smoothness is low. 
Subsequently, the obstacle avoidance success rate, number of 
collisions, response time, and other specific obstacle avoidance 
performance are verified, as shown in Fig. 9. 
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Fig. 9. Obstacle avoidance performance. 

In Fig. 9 (a), the obstacle avoidance success rate of IRA*-
DWA was 73.56% after 2 epochs. As the training epochs 
increased, its success rate rapidly increased, reaching 
approximately 95.78% in the 10th round. The obstacle 
avoidance success rate of D* increased from 68.97% to 83.28%, 
but it was lower than that of IRA*-DWA. In Fig. 9 (b), within 
240 seconds, the number of collisions of IRA*-DWA remained 
the lowest, basically below 4 times, while the number of 
collisions of D* was 4 times, APRM was 7 times, and APF was 
the worst, up to 10 times. As time increased, the number of 
collisions of IRA*-DWA increased the slowest, showing 
stability advantages. In Fig. 9 (c), as the number of obstacles 

increased, the average response time of IRA*-DWA was always 
controlled within 25 seconds. Even with 25 obstacles, the 
response time was only 18 seconds. The response time of other 
models significantly increased with the increase of obstacles. D* 
had a response time of approximately 30 seconds when 
encountering 25 obstacles. APRM exceeded 40 seconds. APF 
had the worst response time, approaching 45 seconds. The 
results indicated that even as the number of obstacles increased, 
the IRA*-DWA model consistently maintained a high obstacle 
avoidance success rate. Furthermore, this study validated the 
response time of the model in six different environments, and 
the response time results are shown in Fig. 10. 
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Fig. 10. Simulating response time in different environments. 

In Fig. 10 (a), when there was no dynamic obstacle 
interference, the response time of IRA*-DWA remained below 
1.5s across all speed conditions. The response time of D*, 
APRM, and APF increased significantly with the increase of 
obstacle speed, reaching 1.4s, 1.6s, and 2.8s, respectively, at 
4.0m/s. In Fig. 10 (b), in a low-density dynamic environment, 
the response time of IRA*- DWA was only 0.9s at 1.0m/s. 
Although the response time increased with the obstacle speed, it 
consistently remains below 2.7s, demonstrating significantly 
higher obstacle avoidance efficiency than the other models. As 
depicted in Fig. 10 (c), in a high-density dynamic environment, 
when the obstacle speed was 4.0m/s, the response time of IRA*-
DWA increased to 1.7s. However, compared with other models, 
IRA*-DWA still maintained the lowest response time, 
effectively avoiding the significant delays observed by 
traditional algorithms under high computational loads. In Fig. 
10(d), in spatially constrained environments, such as narrow 
passages, the response time of IRA*-DWA increased to 2.2s at 
an obstacle speed of 4.0m/s, while D* and APRM increased to 
2.4s and 3.7s, respectively, with APF reaching a peak of 4.0s. 
Fig. 10 (e) simulates rough and unstructured terrain, including 
slopes and gravel surfaces. The response time of IRA*-DWA 
ultimately increased to 3.6s. Because the IRA*-DWA model 
integrates visual sensors and trajectory prediction, it can better 
adapt to complex terrain. Fig. 10(f) evaluates the robot's 
response capability in an unknown environment. The response 
time of IRA*-DWA increased to 3.8s at an obstacle speed of 
4.0m/s, while D*, APRM, and APF reached 5.2s, 4.8s, and 5.9s, 
respectively. These results indicate that even with an increase in 
the number of obstacles, IRA*-DWA can maintain the fastest 
response time and remain relatively stable. Subsequently, the 
study evaluates the environmental adaptability of the four 
models across three datasets, as presented in Fig. 11. 

In Fig. 11 (a), when the terrain adaptability was around 1, the 
sensor adaptability of IRA*-DWA rapidly increased to 92.34% 

and stabilized at over 93% in the subsequent stage. D* came 
second, with a final sensor adaptability of around 89.75%. After 
the terrain adaptability of APRM exceeded 1, the adaptability 
growth slowed down and stabilized at 85.67%. APF performed 
the worst, with a final sensor adaptability of 82.3%. In Fig. 11 
(b), the terrain adaptability of IRA*-DWA was stable at 94.38%, 
which was higher than that of other models. The final sensor 
adaptability of APRM was 83.25%. The sensor adaptability of 
APF was less than 82%, and its performance was poor. In Fig. 
10 (c), the sensor adaptability of IRA*-DWA rapidly increased 
to 93.5% and eventually stabilized at 94.63%. Overall, the 
environmental adaptability of the IRA*-DWA model is 
consistently higher than that of the D*, APRM, and APF. After 
comparing the environmental adaptability of four models on 
three datasets, the user experience score is verified in actual 
scenarios, as shown in Fig. 12. 

In Fig. 12 (a), the user experience score of IRA*-DWA was 
significantly higher than that of other models, distributed in the 
range of 7.5-9.5. It could maintain a high score even at high 
feature complexity. The score of D* was slightly lower than that 
of IRA*-DWA, mainly distributed in 6.5-8.0, and decreased 
slightly at high feature complexity. The scores of APRM and 
APF were significantly lower than those of IRA*-DWA, and 
showed a clear downward trend with increasing feature 
complexity. In Fig. 12 (b), the adaptability of IRA*-DWA 
rapidly increased from 52.37% to 57.1% in the first two training 
rounds, and reached 90% in the seventh round, ultimately 
stabilizing at 93.64%. D* followed closely, with adaptability 
increasing from 32.45% to 85.46%, but consistently lower than 
that of IRA*-DWA. APRM and APF had poor performance and 
slow growth rates. APF was the worst, only reaching 64.74%. 
IRA*-DWA shows a clear leading advantage in real-time 
adaptability, being able to quickly adapt to complex scenarios in 
a short period of time. 
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Fig. 11. Environmental adaptability. 
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Fig. 12. Comparison between usability and implementation complexity. 

V. DISCUSSION 

The IRA*-DWA obstacle avoidance model integrates the 
path adaptability of RRT and A*, an improved DWA-based 
dynamic obstacle avoidance mechanism, multi-source sensor 
data fusion technology, and real-time computational 
optimization strategy to form a comprehensive adaptive 
navigation system. When navigating in complex spatial 
structures such as unknown terrains and narrow passages, the 
system can re-plan the optimal path in real-time. In high-density 
pedestrian environments or multi-robot scenarios, it can predict 
obstacle trajectories and rapidly select the best avoidance 
strategy. By integrating data from LiDAR, RGB cameras, and 
depth cameras, the system extends its adaptability to extreme 
conditions such as low-light environments, adverse weather, and 
irregular terrains. Furthermore, this model utilizes intelligent 
computing resource management and parallel computing 
technology to maintain low latency response even under high 
computing loads. This multidimensional adaptability allows the 

model to overcome the limitations of laboratory testing 
environments and maintain stable and efficient navigation and 
obstacle avoidance performance in real-world dynamic 
scenarios, providing a reliable solution for autonomous mobility 
in complex environments. 

The experimental results demonstrate that IRA*-DWA 
outperforms D*, APRM, and APF obstacle avoidance models in 
terms of path planning accuracy, obstacle avoidance success 
rate, response time, and environmental adaptability. It has 
particularly superior real-time obstacle avoidance capability in 
high dynamic environments. This model can quickly adapt to 
various complex scenarios, and its robustness and adaptability 
exceed those of existing mainstream obstacle avoidance models, 
which has been confirmed by multiple dataset evaluations. 
Moreover, IRA*-DWA consistently has lower response time 
than D*, APRM, and APF across all complex dynamic 
environments, with outstanding computational efficiency and 
real-time performance, especially in high-density dynamic 
obstacles, narrow passages, complex terrains, and unknown 
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environments. The experimental results validate the advantages 
of integrating path planning with dynamic obstacle avoidance, 
demonstrating that IRA*-DWA provides an optimized solution 
for autonomous navigation in high-dynamic environments. 
Consequently, IRA*-DWA exhibits significant application 
potential, providing a reliable solution for MR path planning and 
obstacle avoidance in complex dynamic environments. 

VI. CONCLUSION 

In the modern society that pursues high efficiency, the 
application of MR requires excellent dynamic obstacle 
avoidance and path planning algorithms. Aiming at the problem 
that current methods cannot make optimal responses in complex 
scenes and perform poorly in complex and irregular 
environments, a MR obstacle avoidance model IRA*-DWA was 
proposed by integrating improved RRT* and improved DWA. 
Combining RRT* and A* with the improved DWA, the goal of 
improving obstacle avoidance accuracy and getting rid of 
simplified motion models is achieved. The optimized IRA*-
DWA model was validated. The IRA*-DWA showed higher 
path quality and obstacle avoidance ability than other models, 
with an obstacle avoidance success rate of 95.78%. The 
adaptability of sensors in the three datasets was 93.45%, 
94.38%, and 94.63%, respectively. More importantly, IRA*-
DWA performed well on user experience rating, with a score of 
7.5-9.5. The IRA*-DWA model had strong real-time adjustment 
ability, reaching 93.64% after training. The proposed IRA*-
DWA performs better than mainstream D*, PRM, and APF 
models. The above results indicate that the IRA*-DWA model 
has strong practicality and can be applied in practical scenarios. 
The proposed IRA*-DWA model is most effective in structured 
and semi-structured environments with sufficient sensor 
coverage but may face limitations in highly unpredictable or 
extremely unstructured terrains where real-time perception and 
computational constraints significantly impact performance. 
The improved model may result in a higher computational 
burden when dealing with path planning in environments with 
many obstacles. In the future, more flexible and efficient path 
planning and obstacle avoidance can be achieved by 
parallelizing the algorithm and strengthening the multimodal 
planning and decision-making framework. 
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