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Abstract—This survey aims to analyze resource prediction 

models in cloud environments to improve resource allocation 

strategies. It can be difficult for cloud service providers to 

maintain the required Quality of Service (QoS) requirements 

without going against a service level agreement (SLA). 

Improving cloud performance requires accurate workload 

prediction. To enhance customer service quality (QoS), cloud 

computing provides virtualisation, scalability, and on-demand 

services.  Resource provisioning is a major challenge in the cloud 

environment due to its dynamic nature and the rapid increase in 

resource demand. Over-provisioning of resources leads to energy 

waste and increased expenses while under-provisioning can 

result in SLA breaches and reduced QoS. It is crucial to allocate 

resources as closely as possible to current demands. Cloud 

elasticity plays a key role in adapting to workload changes and 

maintaining performance levels. Predicting future resource 

demand is essential for effective resource allocation, which is the 

focus of this survey. Our survey uniquely focuses on comparing 

univariate and multivariate input cases for cloud resource 

prediction, a perspective that has not been deeply explored in 

similar surveys. Unlike existing works that primarily categorize 

models by methodologies or application characteristics, our study 

offers a novel analysis of how different input scenarios impact 

prediction accuracy, resource efficiency, and scalability. By 

addressing this overlooked aspect, our survey provides unique 

insights and practical guidance for researchers and practitioners 

aiming to optimize resource utilization in cloud environments. A 

thorough analysis of resource prediction models in cloud systems 

is presented in this research, including a comparison of predicted 

resources, prediction algorithms, datasets, performance metrics, 

a prediction summary, and a taxonomy of prediction methods. 

This survey not only synthesizes current knowledge but also 

identifies key gaps and future directions for the development of 

more robust and efficient resource prediction models. 

Keywords—Cloud computing; resource utilization; prediction; 

cloud datacenter; machine learning models; resource allocation 

I. INTRODUCTION 

Cloud computing is a computer paradigm that provides 
pay-as-you-go services, such as platforms, apps, and 
infrastructure [1, 2]. Elasticity is one of the main features of 
cloud computing [3]. It is the extent to which resources may be 
autonomously allocated and relocated to satisfy demands at 
any given time in response to variations in workload [4]. As a 
result, resources are distributed or released based on the 
required needs. The cloud must distribute a reasonable number 
of resources to fulfill its duties [41-44]. Under-provisioning 
results in SLA violations, declining Quality of Service (QoS), 
and aggravation for the client. This can result in a decline in 

revenue and a loss of clients. In contrast, over-provisioning 
wastes resources and money while raising network, cooling, 
and maintenance costs. Therefore, managing resources in the 
cloud is difficult and calls for effective resource management 
techniques [5]. 

An effective resource management strategy impacts three 
distinct cloud-related characteristics. It satisfies cloud 
customers and meets SLA requirements. It guarantees the 
cloud's responsibilities to its users. As a result, users will keep 
using the cloud. As a result, both energy consumption and 
operating costs drop. Less energy use can result in reducing 
carbon emissions, which could facilitate green cloud 
computing. Cloud providers' profitability is improved by cost 
reduction and revenue growth [6, 45-48]. As a result, efficient 
resource management only allocates the minimal resources 
needed to meet SLAs [7] and frees up the extra resources to 
deploy new virtual machines (VMs) [8]. For this reason, the 
resources allotted in the cloud should be near the required 
demands so that the SLA is met and resource waste is kept to a 
minimum [36-40]. 

A crucial problem for elasticity is the quickness of 
responsiveness to workload changes to achieve the appropriate 
performance level [1]. Although matching the amount of 
resources allocated to the amount already needed is the key 
benefit of elasticity, the time it takes for resources to be 
available for use could be an issue [9]. Virtualization 
approaches provide the foundation for cloud elasticity and 
dynamic resource allocation [10]. The VM provisioning 
technologies require a lengthy period [11]. This delay is 
unbearable for activities that require resource scaling during 
computing. It could result in SLA violations, a decline in QoS, 
and, ultimately, a loss of the cloud's reputation. There are three 
methods to shorten the delay. The first strategy, VM 
provisioning technology, helps to prepare fresh VMs for 
requests [11] quickly. Modern VM provisioning technologies 
like streaming VM technology [12] and VM cloning [13] are 
unable to reduce the time used when creating VMs [11].  The 
second strategy is to request a plan of future resource needs 
from each customer. Due to cloud commitments and 
customers' lack of awareness, it is not practicable [11]. Due to 
VM technologies and gaps in client understanding, the only 
practical and effective way to quickly provision resources is to 
estimate future demand. In order to provide the resource 
manager enough time to assign the right resources before a 
workload spikes, a proactive prediction method projects future 
demand fluctuations. The resource management prepares the 
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virtual machines ahead of time and scales up the infrastructure 
if a sharp increase in demand is anticipated in the future. 

In the same way, the assigned resources are also released 
under reduced demand. The freed-up resources can be 
allocated to VMs that require more resources or used to build 
new VMs. Indeed, Rapid elasticity [14] is attained when the 
demand and the resources allotted are immediately matched. 
Thus, SLAs are met for systems developed using cloud 
services, energy waste is prevented, and on-demand 
provisioning is met. However, offering cloud services that 
guarantee customers' changing QoS needs and avoid SLA 
violations is a major challenge. Currently, services are planned 
and provided based on resources' availability without any 
assurance of their predicted performance [15]. Therefore, 
forecasting future demand in the dynamic cloud environment is 
a crucial step for quick elasticity adoption and efficient 
resource allocation. 

Although a lot of academic work covers various facets of 
cloud computing, there hasn't been thorough research on 
complete resource prediction in the cloud. A thorough analysis 
of resource prediction models in cloud systems is presented in 
this work. A comparison between the main resources predicted, 
prediction algorithms, datasets used for prediction, 
performance metrics for prediction evaluation, a prediction 
summary, and a general taxonomy of prediction methods have 
been presented. This paper presents a survey on the prediction 
of resource utilization. It comprehensively reviews the newest 
and most prominent cloud resource utilization prediction 
models. A general taxonomy for proposed models, techniques, 
and frameworks for resource utilization prediction is presented. 

Despite the existence of several surveys on cloud 
computing, including [1], [7], [9], [16], [17], [18], [19], [20], 
and [21], there is a notable gap in the literature concerning 
resource utilization prediction models. No comprehensive 
survey focuses on the latest models proposed for predicting 
cloud resources. Moreover, existing surveys do not categorize 
prediction models based on the type of input cases—univariate 
or multivariate—which is crucial for understanding the 
correlation between predicted resources. The lack of such a 
structured analysis limits the ability to compare methodologies 
effectively and assess their effectiveness in real-world cloud 
environments. 

To address this gap, this paper presents a structured and 
detailed survey of resource utilization prediction models in 
cloud computing environments. 

The key contributions of this survey include: 

1) First-of-its-kind comparison: This study is the first to 

classify cloud resource prediction models based on univariate 

and multivariate input cases rather than just the employed 

algorithms. 

2) Comprehensive analysis: The paper reviews and 

evaluates recent and well-known prediction models, 

highlighting their strengths and limitations. 

3) Categorization of models: A classification framework 

is introduced to organize existing works based on their 

prediction approach, algorithmic techniques, and primary 

objectives. 

4) Insights on dataset usage and performance metrics: 

The survey examines the datasets used in prior research and 

the evaluation metrics applied to measure model performance. 

5) Identification of research gaps and future directions: 

The paper highlights key open challenges and provides 

recommendations for improving cloud resource prediction 

models. 

The following is how this work is organized: The research 
methodology is presented in Section II. The various prediction 
models are explained in Section III, and a comparison of these 
models is shown in Section IV. In Section V, the analysis and 
discussion of the proposed models are shown. The paper is 
finally concluded in Section VI. 

II. RESEARCH METHODOLOGY 

This survey uses the following methodology to guarantee a 
thorough and organized analysis of cloud resources prediction 
models: This study is a literature-based survey that 
methodically examines the body of research on cloud resource 
prediction, in contrast to questionnaire-based surveys. No 
primary data was gathered via questionnaires or surveys. 
Rather, this study categorizes and assesses prediction models 
according to their performance metrics, input instances, 
datasets, and methodology. 

A. Study Selection 

Studies were chosen on the basis of their contributions to 
cloud computing research, their recentness (published within 
the last five years), and their applicability to predicting cloud 
usage of resources. 

B. Novel Classification Approach 

 Unlike existing surveys which mainly classify prediction 
models based on methodology or application features, this 
survey presents a fresh classification approach by 
differentiating between univariate and multivariate input cases. 
This distinction is necessary in order to understand the 
interaction between predicted resources, offering additional 
information on model performance. 

To ensure a structured comparison, the classification 
framework in this survey categorizes prediction models based 
on the datasets used to assess the prediction models, the 
prediction algorithms, the types of resources that are predicted, 
the types of input cases for the predictions, and the 
performance metrics that are used to assess the prediction 
algorithms' output. 

C. Reasons for Choosing the Proposed Models 

For a number of reasons, this study is suitable for tackling 
the issue of resource usage prediction in cloud datacenters. For 
a number of reasons, this strategy is suitable for handling the 
issue of resource usage prediction in cloud datacenters: 

1) Cloud environments are dynamic: Workloads in the 

cloud are very dynamic, and resource requirements change 

over time. The intricate relationships between several resource 

metrics, such as CPU, memory, disk I/O, and network traffic, 
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are frequently missed by univariate models, which forecast 

based on a single input variable (such as CPU usage). 

Conversely, multivariate models take into account several 

variables at once, producing predictions that are more reliable 

and accurate. 

2) Enhanced resource efficiency: The suggested model 

sheds light on how various input scenarios affect scalability, 

resource efficiency, and prediction accuracy by contrasting 

univariate and multivariate input cases. This lessens over-

provisioning and under-provisioning by assisting cloud 

providers in more efficient resource allocation. 

3) Improved SLA compliance: Proactive resource 

allocation made possible by accurate resource utilization 

prediction ensures that SLAs are fulfilled while reducing 

resource waste. For cloud providers looking to maintain high 

QoS and customer satisfaction, this is especially crucial. 

4) Filling in the gaps in the current literature: Current 

surveys mostly classify prediction models according to 

methods or application features [50], ignoring the kind of 

input cases. This survey closes a significant gap in the 

literature and offers a more thorough understanding of 

resource prediction models by concentrating on univariate and 

multivariate input cases. 

D. Comparison Criteria Between the Proposed Prediction 

Models  

Fig. 1 is designed to depict the main elements of the models 
for resource prediction in cloud environments, along with the 
datasets used to assess the prediction models, the prediction 
algorithms, the types of resources that are predicted, the types 
of input cases for the predictions, and the performance metrics 
that are used to assess the prediction algorithms' output. The 
key components are 

1) Datasets: To train and evaluate a prediction model's 

performance, publicly accessible datasets like Google Cluster 

Trace and PlanetLab Workload Trace are utilized. 

2) Algorithms: From basic regression models to cutting-

edge ensemble learning and neural network architectures, a 

variety of machine learning, deep learning, and optimization 

techniques are applied. 

3) Predicted resources: In order to optimize cloud 

operations, models typically forecast resource utilization 

metrics like CPU, memory, disk usage, and network traffic. 

4) Performance metrics: The efficacy of the prediction 

models can be assessed using standard evaluation metrics such 

as RMSE, MAE, MAPE, and R2 Score. 

5) Prediction input cases: Predictability and adaptability 

are impacted by the univariate, multivariate, or hybrid input 

cases that models are built on. 

III. OVERVIEW OF CLOUD RESOURCE PREDICTION TECHNIQUES 

Techniques for predicting cloud resource utilization are 
well–documented [18]. This section provides a detailed 
description of the related methods. This survey classifies the 
research papers according to the key strategies and approaches 
used to anticipate and manage resources in cloud computing 

systems. This classification aids in distinguishing between 
various techniques and their respective application areas. The 
prediction approaches are divided into the following 
categories: 

 Machine Learning and Ensemble-based Approaches. 

 Recurrent Neural Networks (RNN), LSTM, and Hybrid 
Deep Learning Models. 

 Workload Pattern and Adaptive Prediction-based 
Approaches. 

A. Machine Learning and Ensemble-Based Approaches 

This category includes studies that use hybrid models or 
ensemble methods, which combine various prediction 
algorithms or strategies to increase resource forecasting 
accuracy. This category includes approaches such as 
regression, learning automata, and evolutionary algorithms, 
which focus on maximizing resource utilization by combining 
predictive techniques. 

DP-CUPA, a CPU consumption prediction technique based 
on DBN and Particle Swarm Optimization (PSO), was 
presented by the authors of [23]. The three main processes in 
this technique are pre-processing training data samples, 
training DBN, and using autoregressive and grey models as 
basis prediction models. The PSO is used to estimate the DBN 
parameters throughout the learning phase. 

A Functional Link Neural Network (FLNN) with a hybrid 
genetic algorithm (GA) and particle swarm optimisation (PSO) 
was used by the authors of study [19] to develop a multi-
resource utilisation prediction model. Five-minute intervals 
were projected for the use of CPU and memory resources. 
Google Cluster Data was used to evaluate the proposed model. 
The lowest MAE errors obtained were 0.25 for CPU resources 
and 0.018 for memory resources. Despite the number of 
solutions in the literature, there is still a need for advanced 
methods with higher accuracy and faster execution times for 
predicting resource utilization in both univariate and 
multivariate input cases. Throughput, as its R2 score is close to 
1 and hence can produce more accurate results. 

The study of [30] predicted workload in a cloud 
environment by using a hybrid machine learning method that 
combines random forest for regression and decision trees for 
classification. The authors collected data at various time 
periods from Google cluster workload traces to predict network 
traffic, memory usage, CPU, and I/O operations. Their results 
showed that the average MAE and MSE error rates decreased 
by 0.34 and 0.48, respectively. The forecasting average values 
for recall, accuracy, and precision have increased by 0.89, 0.92, 
and 92.52%, respectively. 

The study of [31] predicted the incoming workloads by 
using an advanced recurrent neural network (RNN) known as 
LSTM, and their combined Multiplicative LSTM (mLSTM) 
based models. They simulated their work in MATLAB to 
predict disk, memory, and CPU resources.  With lower RMSE, 
MAPE, and MAE values across multiple users, mLSTM 
routinely outperforms LSTM and BiLSTM in predicting CPU 
and RAM resource requirements. 
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Fig. 1. Essential aspects of workload prediction. 

In study [32], the authors employed a workload prediction 
model by using five classified machine learning-based 
techniques, including Evolutionary Neural Network (ENN), 
Evolutionary Quantum Neural Network [49] (EQNN), Hybrid 
Learning, Ensemble Learning (EL), and Deep Learning (DL). 
They applied the techniques within a standard environment for 
methodical research and comparison by employing three 
different cloud workload traces. They have assessed and 
contrasted the various learning-based models for time elapsed 
in training (TT), MAE, Absolute Error Frequency (AEF), and 
MSE with confidence metrics. The EQNN model achieves the 
lowest Mean Squared Error (MSE) of 1.79E-06. 

B. LSTM and Hybrid Deep Learning Models 

This section focuses on the research that uses neural 
network and LSTM-based approaches to predict cloud 
resources. The time series forecasting and sequential data 
processing capabilities of these models make them well-suited 
for resource utilization prediction in cloud systems. Hybrid 
models, which combine LSTM with other methods (e.g., CNN, 
fuzzy time series), seek to improve prediction performance by 
exploiting the capabilities of several algorithms. 

The authors of study [16] proposed an automatic straggler 
(slow processing tasks) prediction and mitigation method for 
cloud environments that addressed heterogeneous host 
characteristics and volatile task characteristics using an 

encoder LSTM network. The encoder transmits the data to the 
LSTM following analysis of the load and resource utilization 
statistics.  
An exponential moving average of the input matrices is also 
taken into consideration to prevent the LSTM model from 
diverging. CrystalLP, a storage workload prediction technique 
based on LSTM neural networks, is introduced in study [17]. 
This method creates a storage workload time-series model that 
gathers the desired workload patterns to support load balancing 
and accurate, adaptive scheduling. After that, an LSTM-based 
workload predictor is put into use, which is trained or 
optimized using an algorithm made up of the Adam optimizer 
and stochastic gradient descent (SGD). 

The authors of study [20] introduced a multi-layer task 
failure prediction system based on Bi-directional Long Short 
Term Memory (Bi-LSTM). One input layer, two Bi-LSTM 
layers, one output layer, and the Logistic Regression (LR) layer 
are used to forecast whether the tasks will be finished or failed. 
Unlike classic LSTM, which only employs forward states, Bi-
LSTM may work on both forward and backward states, 
allowing for more accurate estimation of the weights of both 
closer and distant input features. 

The study of [21] created a turning point prediction model 
for cloud server workload forecasting that considers cloud 
workload factors. Next, a rule-filtering-based Piecewise Linear 
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Representation (PLR) approach is used to build a cloud 
feature-enhanced deep learning model for workload turning 
point prediction. The model's performance evaluation showed 
how effective its prediction accuracy was in terms of an 
increase in F1 score when compared to the state-of-the-art 
methods currently in use. 

In study [24], an online learning approach for multivariate 
resource usage prediction models is proposed using the 
Levenberg-Marquardt and gradient descent methods. The 
predicted resources are CPU usage for seven and twenty days. 
The framework is evaluated using the PlanetLab workload 
trace and the Google cluster trace. A comparison between the 
learning abilities of the ARIMA and BLSTM models 
demonstrates that the BLSTM model performs significantly 
better. Sparse BLSTM is presented to address the challenge of 
adapting many parameters in BLSTM. A concept tree is 
created to help identify the parameters needing removal. 
Adapted sparse models and adapted dense models both 
produce similar predictions. Sparse real-time adaptations are 
50–60% faster in the trimmed model when comparing the 
adaption times for dense and sparse models. 

In study [25], a hybrid Convolutional Neural Network and 
Long Short-Term Memory) CNN-LSTM (model for analyzing 
multivariate workloads is presented. The main goal of this 
model is to efficiently model temporal fluctuations in the 
irregular trends of time series data while capturing complex 
patterns in VM consumption components. Bitbrains data is 
used to evaluate the presented model. The suggested and 
alternative prediction models are compared, including 
ARIMA-LSTM, VAR-GRU, and VAR-MLP. The findings 
indicate that the accuracy of the proposed model (improved 
from 3.8% to 10.9%) and error rate (which decreased to 7% 
from 8.5%) are better than other models. 

The study by [26] offers a fresh viewpoint on forecasting 
seasonal and non-seasonal workloads. If the workload pattern 
exhibits seasonality, the Seasonal Auto-Regressive Integrated 
Moving Average (SARIMA) model is employed for 
forecasting purposes. The Long Short-Term Memory Networks 
(LSTM) or the Auto-Regressive Integrated Moving Average 
(ARIMA) model is used for non-seasonal workloads, 
depending on the normality test results. This study presents a 
prediction model that estimates the resources needed for 
various daily, hourly, and minute usage intervals. The 
experimental findings verify that the LSTM model's prediction 
accuracy beats ARIMA's for irregular workload patterns. The 
resource utilization is precisely predicted using the SARIMA 
model. The lowest MAE errors are achieved by using LSTM 
for predicting CPU and memory resources for one hour, which 
are 5.082 and 6.3835, respectively. The lowest MAE errors are 
achieved by using LSTM for predicting CPU and memory 
resources for minutes, which are 8.529 and 9.071, respectively. 

The authors of study [27] predict a cloud server's CPU 
utilization using an LSTM. Their work reveals how Long 
Short-Term Memory (LSTM) networks, a kind of recurrent 
neural network perfectly suited for time series forecasting, may 
be used to model and predict the dynamic CPU consumption 
patterns of cloud-based apps. Their approach leverages 
historical data to enhance resource management and 

performance, offering valuable insights into how to boost cloud 
infrastructure efficiency. The engineering consulting company 
Afry (Afry is their brand name) acquired the data to train and 
test the models. Their findings show that in the case of single-
step predictions, the moving average had the highest MSE, 
MAE, and LSTM had the lowest. The LSTM model 
demonstrates the lowest error rates, with an MSE of 0.8755 
and MAE of 0.6643. 

The authors of study [34] offer a novel hybrid approach by 
using Generative Adversarial Networks (GANs) with Long 
Short-Term Memory (LSTM) or Gated Recurrent Units (GRU) 
as generators and Convolutional Neural Networks (CNNs) as 
discriminators. The VTGAN model helps with proactive 
resource management by predicting future workloads as well 
as workload trends. According to their study, VTGAN 
achieves improvement in prediction accuracy spanning from 
95.4% to 96.6%, outperforming conventional deep learning 
models in workload prediction and trend classification. 

The study of [35] presents a multi-resource utilization 
prediction model that uses multiple approaches, namely 
support vector regression, RF, MLP regression, neural 
networks (NN) using Adam and SGD optimizers, and decision 
tree regression. The prediction model is based on univariate 
and multivariate time series. Google cluster trace data is used 
to evaluate the work. Four experiments are executed on the 
dataset, seeking to predict the resources for different time 
series interval periods. The outcomes of their experiments have 
shown that the prediction model yields higher accuracy 
compared to previous research. 

C. Workload Pattern and Adaptive Prediction-Based 

Approaches 

This section focuses on the research. This category focuses 
on research dedicated to monitoring systems and characterizing 
workloads, which are critical for real-time resource prediction 
and management in cloud computing environments. It focuses 
on the methods that modify forecasts in response to workload 
patterns or dynamically changing resource requirements. These 
techniques generally include adaptive algorithms that modify 
their prediction models in real-time to account for different 
workload patterns. This allows cloud data centres [22] to 
operate more efficiently and allocate resources more optimally. 
In this category, strategies like adaptive load balancing and 
workload discrimination are key points. A high-level summary 
of the methods utilized in cloud resource usage prediction is 
given in this section. 

An efficient supervised learning-based Deep Neural 
Network (esDNN) technique has been suggested by the authors 
of study [28] to extract and learn the properties of past data and 
accurately anticipate future workloads. Once the multivariate 
data is converted into supervised learning time series, a 
modified GRU is used, which can adapt to changes in 
workload and address the drawbacks of gradient disappearance 
and explosion. Accurate prediction is made possible by this. A 
DNN-based workload prediction method, known as DNN-
MVM, is described in study [51]. It handled data straight from 
these virtual machines using a feature selection engine and pre-
processing. In order to give the cloud service provider greater 
information or expertise for resource management and 
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optimization, the model categorizes data according to prior 
loads. It is useful to predict future peak demands for resources. 
The validation of this model is done using the Grid Workload 
Archive (GWA) dataset. 

In study [29], the authors suggested a multi-objective load-
balancing approach integrated with a prediction model called 
the OP-MLB strategy for management of resources. They used 
neural networks customized with an adaptive evolutionary 
algorithm to predict cloud resources. The presented framework 
is evaluated on three real benchmark datasets: the traces of 
Google Cluster, PlanetLab virtual machines, with the Bitsbrain 
dataset. Over the course of five minutes and the three 
workloads, the approach achieved a minimal RMSE of 0.0005 
for CPU resources. 

The authors of this work [33] took inspiration from a 
collection of manipulative attack generation techniques to 
create adversarial cloud workload examples for four cutting-
edge deep learning regression models—1D Convolutional 
Neural Network (1D-CNN), Recurrent Neural Network 
(RNN), Gated Recurrent Unit (GRU), Long Short-Term 
Memory (LSTM), and attention-based models. Three well-

known cloud benchmark datasets—Google trace, Alibaba 
trace, and Bitbrain trace—were used to assess their research. 
Their analysis's findings demonstrate how vulnerable DL-
based cloud workload forecasting models are to hostile attacks. 
In light of the existing literature, they were conducting 
systematic research for the first time to look at the 
susceptibility of DL-based methods within workload 
forecasting by highlighting inherent risks to the security and 
cost-effectiveness in those situations. Their final result 
indicates that the RMSE loss increases by 338.46% (RNN), 
315.38% (LSTM), 325% (GRU), 83.33% (1D-CNN), and 
300% (Attention-LSTM). 

IV. COMPARISON BETWEEN THE PROPOSED PREDICTION 

MODELS 

Table I provides a comprehensive comparison between the 
proposed models for predicting cloud resources, highlighting 
important elements such as the models' algorithm, resources 
predicted, data input case, performance metrics, and 
summary/findings of the prediction. It addresses the benefits of 
each technique, such as accuracy and interpretability. 

TABLE I.  COMPARISON BETWEEN THE PROPOSED  MODELS 

Ref Algorithm 
Resources 

Predicted 
Dataset 

Data Input 

Case 

Performance 

Metrics 
summary/findings 

Tuli et al. [16] 

(2021) 
LSTM 

CPU, 

Memory, 

Bandwidth 
PlanetLab traces Univariate  MSE, MAPE 

decreased SLA violations, 

execution time, resource 

contention, and energy by 13%, 
11%, 16%, and 19%, respectively. 

Ruan et al. [17] 

(2021) 
CrystalLP Request size 

Web search archive 

SPC traces 
Univariate 

MAPE, RMSE, 

MAE 

improved MAPE by 1.10% and 

outperformed current methods in 
MAE. 

Malik et al. [19] 

(2022) 

FLNN + Hybrid 

GA-PSO 

CPU, 

Memory 

Google Cluster Trace 

Dataset 

Univariate/ 

Multivariate 
MAE 

Lowest MAE: 0.25 (CPU), 0.018 

(Memory), improving prediction 

for both resources. 

 

Gao et al. [20] 

(2020) 
Bi-LSTM 

55,55,55 

tasks traces 
task failure rate Univariate F1-Score 

87% of task failures were correctly 

predicted with 93% accuracy.. 

Ruan et al. [21] 

(2022) 
FEMTLSTM CPU 

Google Cluster, Alibaba, 

HPC Grid workloads 
Univariate 

Binary 

crossentropy, F1, 
precision, Recall 

Compared to current methods, the 

F1 score is increased by 6.6%. 

Wen et al. [40] 

(2020) 
DP-CUPA CPU 

Google Cluster Trace 

Dataset 
Multivariate 

MSE, MAPE, 

MAE 

outperformed the Grey, DBN, and 

autoregressive models. 

Gupta et al. [24] 

(2020) 

Gradient 

Descent (GD) + 

LM Adaptation 
CPU 

Google Cluster Trace 

Dataset and PlanetLab 

Workload 
Univariate 

RMSE 

MAPE 

Achieved RMSE of 0.0095 and 

MAPE of 0.0239; adaptations are 

faster by 50-60%. 

Ouhame et al. 

[25] (2021) 

Neural Network 

+ LSTM 

CPU, 

Memory, 

Network 

Bitbrains VM Trace 

Dataset 
Multivariate 

RMSE 

MSE 

MAE 

Improved accuracy (3.8%-10.9%) 

and achieved RMSE: 0.1839, 
MAE: 0.7334 for multivariate 

predictions. 

Anupama et al. 

[26] (2021) 
LSTM 

CPU, 

Memory 

Bitbrains Cloud 

Workload Traces 
Univariate 

MAE 

MAPE 

LSTM shows good accuracy: 

MAE (CPU, hourly): 5.082; 

(Memory, hourly): 6.3835 

Starberg et al. 

[27] (2021) 
LSTM CPU 

Afry Business Cloud 

Dataset 
Univariate 

MAE 

MSE 

LSTM demonstrates low error 

rates: single-step MAE: 0.6643, 

multi-step MAE: 0.6848. 

Xu et al. [28] 

(2022) 
es-DNN 

CPU usage 

per time-unit 

interval 

Alibaba and Google 

Cluster traces 
Univariate 

MAPE, MSE, 

RMSE 

efficiently decreased the number 

of active hosts and optimized 

expenses 

Saxena et al. [29] 

(2022) 

OP-MLB 

Framework 
CPU Memory 

Google Cluster Trace 

Dataset, PlanetLab, and 

Bitbrains VM Traces  
Univariate RMSE 

Improved power savings by 

85.3%; lowest RMSE: 0.0005 

(CPU), 0.0035 (Memory). 
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Rao et al. [30] 

(2024) 

Decision Tree + 

Random Forest 

Regression 

CPU  

Memory 

Network 

traffic  I/O 

operations 

Cluster workload traces 

from Google 
Univariate 

MSE, MAE 

Prediction 

Accuracy, 

Precision, and 
Recall 

MSE, and MAE significantly 

reduced (by 0.48 and 0.34); 

Precision and Recall improved to 

92.52% and 0.89, respectively. 

Nehra et al. [31] 

(2024) 

Recurrent 

Neural 

Networks + 

LSTM 

CPU, RAM, 

and local disk 
space 

Cluster workload traces 

from Google 
Univariate 

RMSE, MAPE, 

and MAE 

mLSTM achieves lower errors 

than LSTM and BiLSTM in CPU 
and RAM prediction. 

Saxena et al. [32] 

(2023) 

EQNN, EL, 

Hybrid 

Learning, DL, 
and ENN 

CPU, 

memory 

Google Cluster, 

PlanetLab  
Univariate MSE 

The lowest MSE of 1.79E-06 is 

achieved by the EQNN model 

Mahbub et al. 

[33] (2024) 

RNN, LSTM, 

GRU, 1D-CNN 

, attention-based 

models 

CPU Usage 
Google trace, Alibaba 

trace, and Bitbrain 
Univariate RMSE 

RMSE loss increases by 338.46% 

(RNN), 315.38% (LSTM), 325% 

(GRU), 83.33% (1D-CNN), and 

300% (Attention-LSTM). 

Maiyza et al. [34] 

(2023) 

GANs with 

LSTM/GRU 
generators + 

CNNs as 

discriminators 

CPU Planet Lab traces Univariate 

RMSE, MAPE, 

Teil’s coefcient, 

ARV, POCID, and 

R2 coefcient 

High  accuracy (95.4%–96.6%) 

Bliedy et al. [35] 

(2025) 

NN (Adam, 

SGD), SVR, 

RF, MLP, DTR 

CPU Memory 

Disk usage 

Disk I/O time 
Google cluster data 

Univariate/ 

Multivariate 

MAE, RMSE R-

squared and 

MAPE 

the prediction model yields better 

accuracy than previous research 

 

V. ANALYSIS AND DISCUSSION 

This section provides a detailed analysis of the key findings 
from the resource utilization prediction models that were 
surveyed. It highlights patterns in model selection, contrasts the 
benefits and drawbacks of different approaches, and points out 
areas that require more research. 

A. Important Discoveries and Patterns 

The comparative analysis makes it evident that machine 
learning and deep learning models are being used more and 
more in cloud resource prediction. Conventional regression-
based methods such as Decision Tree Regression (DTR) and 
Support Vector Regression (SVR) have shown good 
performance in univariate prediction scenarios. However, more 
advanced deep learning models, such as Long Short-Term 
Memory (LSTM) networks and hybrid neural network 
architectures, have shown greater accuracy in multivariate 
scenarios. 

Multivariate models are able to capture the 
interdependencies between different types of resources (CPU, 
memory. 

B. The Advantages and Disadvantages of Current Models 

1) Univariate vs. Multivariate Models: 

a) Univariate models often fail to capture the 

relationships between different cloud resources, even though 

they are computationally efficient. 

b) Multivariate models, which produce more accurate 

predictions, require larger training datasets and more 

processing power. 

2) Deep learning vs. Machine learning methods models: 

a) Despite their interpretability and speed, machine 

learning models such as Random Forest (RF) and Decision 

Trees (DT) might not be able to manage long-term 

dependencies in time-series data. 

b) Deep learning models, particularly LSTM and hybrid 

architectures, can effectively learn sequential data, but they 

usually require a great deal of training and fine-tuning. 

3) Adaptability and scalability: 

a) In large-scale cloud environments, certain models do 

not generalize well, but they do well in small-scale datasets. 

b) Research on adaptive models that can dynamically 

adapt to changes in workload is still in its infancy. 

4) Practical uses and consequences: Both researchers and 
service providers gain from accurate cloud resource prediction 
because it makes it possible to: 

a) Optimizing resource provisioning to lower expenses 

and improve performance is known as efficient resource 

allocation. 

b) Energy efficiency: Using accurate demand 

forecasting to reduce energy use and operating costs. 

c) SLA compliance: Improving overall service quality 

and preventing violations by guaranteeing optimal resource 

allocation 

C. Research Deficits and Prospects 

1) Hybrid methods: Prediction accuracy can be increased 

by combining deep learning and machine learning. 

2) Real-time adaptation: A lot of models don't adapt to 

shifting workloads in real time. 

3) Thorough benchmarking: To properly compare models, 

standardized evaluation metrics are required.  

4) Security and robustness: Accurate workload forecasting 

depends on resistance to adversarial attacks. 

D. Limitations of the Proposed Models 

1) Most research on cloud resource prediction focuses on 

predicting cloud resources based on univariate input cases 

where the prediction is based on a single input and single 
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output. There is relatively little work exploring multivariate 

input cases, where multiple input variables are used 

simultaneously to enhance prediction accuracy. Addressing 

this gap could lead to more robust and comprehensive 

resource prediction models that better reflect the dynamic 

nature of cloud environments. 

2) They focused on forecasting CPU and memory 

resources using just one or two techniques without taking disk 

utilization and disk I/O time into account. This strategy 

reduces the efficacy of their models since it ignores important 

elements that affect system performance as a whole. There is a 

need for incorporating disk-related metrics with CPU and 

RAM, employing advanced or hybrid modelling 

methodologies for a more holistic approach to resource 

management in cloud environments, in order to build more 

thorough and accurate resource predictions. 

3) They executed one or two experiments at most to 

evaluate their work, seeking to predict the resources for only 

one or two-time series intervals. This narrow approach 

restricts the generalizability of their models, as it does not 

adequately reflect the diverse and dynamic nature of cloud 

resource demands over different timeframes. 

4) Only one or two performance metrics are reported in 

their experiments, which offers an insufficient assessment of 

the model's efficacy. This constrained evaluation ignores a 

thorough comprehension of the models' behavior under 

diverse circumstances, potentially hiding important features 

like accuracy, scalability, and robustness. Future studies 

should include a wider range of performance criteria for a 

more comprehensive assessment that better captures the 

advantages and disadvantages of the models in various 

circumstances. 

These constraints must be addressed to create more 
thorough, flexible, and precise cloud resource prediction 
models. 

VI. CONCLUSION 

This survey provides a thorough discussion of resource 
usage prediction models in cloud computing, bridging a 
significant body of literature. Unlike other surveys, which 
consider only prediction algorithms, this work introduces a 
novel perspective by separating models into univariate and 
multivariate input cases. This distinction is necessary in order 
to understand the interaction between predicted resources, 
offering additional information on model performance. By 
systematic comparison of recent models, we uncover 
significant trends, performance measures, and evaluation sets. 
Further, our work identifies significant research gaps, such as 
the need for more generalizable models, improved feature 
selection algorithms, and adaptive learning methods able to 
enhance prediction effectiveness in evolving cloud 
environments. Lastly, this survey provides the foundation for 
future research and development of cloud resource prediction 
with a comparative analysis of existing methods and areas for 
innovation. Future studies must explore hybrid models, deep 
learning approaches, and real-time adaptive methods to further 
improve resource usage forecasting in cloud computing. 
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