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Abstract—The close connection between music and human 

emotions has always been an important topic of research in 

psychology and musicology. Scientists have proven that music 

can affect a person's emotional state, thereby possessing the 

potential for therapy and stress relief. With the development of 

information technology, automatic music emotion recognition 

has become an important research direction. The MultiSpec-

DNN model proposed in this article is a multi-spectral deep 

neural network that integrates multiple features and modalities 

of music, including but not limited to melody, rhythm, harmony, 

and lyrical content, thus achieving efficient and accurate 

recognition of music emotions. The core of the MultiSpec-DNN 

model lies in its ability to process and analyze various types of 

data inputs. By combining audio signal processing and natural 

language processing technologies, the MultiSpec-DNN model can 

extract and analyze the comprehensive emotional characteristics 

in music files, thereby achieving more accurate emotion 

classification. In the experimental section, the MultiSpec-DNN 

model was tested on two standard emotional speech databases: 

EmoDB and IEMOCAP. The experimental results show that the 

MultiSpec-DNN model has a significant improvement in 

accuracy compared to traditional single-modal recognition 

methods, which proves the effectiveness of integrated features in 

emotion recognition. 
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I. INTRODUCTION 

Music is a powerful form of art that is closely linked to 
human emotions, capable of eliciting a range of emotional 
states from joy to sadness, and even neutral feelings. Scientific 
research since the 1950s has confirmed the ability of music to 
regulate emotions. When listening to music, people 
instinctively associate it with emotional labels, and this 
emotional effect is due to music containing key elements such 
as melody, rhythm, and timbre, which stimulate human 
emotions. Psychologists have extensively explored the impact 
of music on emotions and confirmed the connection between 
music and five basic emotions. Research reveals that different 
listeners have consistent emotional responses to the same piece 
of music, and most people have remarkably similar choices for 
the emotional type of music, thus the analysis of music 
emotions can be used to infer the psychological state of the 
listener. Accordingly, people also tend to seek out musical 

works that resonate with their own emotions when 
experiencing different emotional states. 

In the Web 2.0 era, online listening to digital music has 
become extremely convenient, and most popular music works 
contain not only audio but also textual information such as 
lyrics. Studies show that lyrics can effectively influence 
emotional changes, sometimes even more effectively than 
audio. Therefore, sentiment analysis technology has shown its 
importance in many fields such as social networks, e-
commerce feedback, and film reviews. Researchers in the field 
of music use various music features, including audio and text, 
to perform emotion classification and carry out automated 
music emotion recognition. A major challenge hindering music 
recognition at present is the lack of easily accessible basic 
ground truth data. To perform emotion recognition, it usually 
requires a large number of participants to listen to music and 
record their feelings, but this method is costly and inefficient. 
With the continuous advancement of sentiment analysis 
technology, we can now more accurately identify user 
emotions and provide more personalized services based on this. 
Having the ability to grasp user emotions is not only crucial for 
personal services but also has practical value on a broader scale. 

The development of multimodal fusion technology has also 
brought new opportunities for music information retrieval [1], 
[2]. Studies have shown that combining audio and lyrical 
information can improve the accuracy of emotion classification. 
For example, methods such as combining Language Model 
Difference (LMD) and Bag of Words (BOW) model, and the 
transformation of psychological categories have enhanced 
classification efficiency [3][4]. The development of deep 
learning has further promoted research on neural network-
based information fusion and emotion classification. 

Project Number: JJKH20250841SK, this paper proposes a 
multimodal information fusion method for music emotion 
recognition, providing a new direction for research in 
automated music emotion recognition, aiming to cope with the 
ever-growing digital music library and new songs, to minimize 
manual annotation work, and to lay the foundation for practical 
application scenarios. The key to the method proposed in this 
study is that by combining the analysis results of audio features 
and lyrical content, a more comprehensive understanding of the 
emotional expression of music can be achieved. Multimodal 
fusion helps to improve the accuracy and robustness of 
emotion classification. Ultimately, this method provides the 
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possibility of developing efficient music emotion analysis tools 
that can be embedded into various applications, thereby 
enhancing user experience, such as providing more 
personalized music recommendations by identifying the types 
of music emotions favored by users, or selecting appropriate 
music based on the emotional state of patients in 
psychotherapy. With the continuous development of music 
digitalization and intelligent technology, the potential of 
automated music emotion recognition will be explored and 
applied more broadly. 

II. LITERATURE REVIEW 

Music emotion recognition techniques utilize computers to 
extract and analyze musical features, forming mappings 
between music features and the emotional space, thereby 
achieving recognition of the process of emotional expression in 
music. Specifically, music emotion recognition techniques 
typically use audio signals as input, and then employ various 
algorithms and techniques to extract and analyze musical 
features, such as frequency, time domain, spectrum, and more. 
These features can be represented in the form of vectors or 
matrices, and compared with each point in the emotional space 
to determine their similarity. By calculating these similarities, 
an emotional score can be obtained to describe the emotions 
conveyed by the music. Below is related work on music 
emotion recognition. 

A. Techniques Based on Acoustic Features 

Techniques based on acoustic features analyze music using 
the acoustic characteristics of emotional speech. By simulating 
continuous audio signals that become discretized through 
sampling for computer processing, these sampling points are 
extracted for rhythm, spectrum, timbre, duration, speech rate, 
fundamental frequency, intensity, Mel-frequency cepstral 
coefficients (MFCC), Linear Predictive Coding (LPC), 
Chromagram, and other physical features related to music, 
using these features to represent the emotions in music. 

Due to the complexity of emotional features, it is difficult 
to accurately describe a person's emotional state. Currently, 
there is no unified understanding in the academic world about 
the representation of emotions, nor is there a qualitative and 
quantitative measurement and evaluation standard. Therefore, 
how to extract effective feature parameters and use appropriate 
models to express the correlation between these feature 
parameters and emotions is a key issue that needs to be 
addressed [5]. Sordo et al. extracted multiple acoustic features 
from music, such as frequency domain features, time domain 
features, and higher-level genres and styles, mapping them to 
semantic features, and using the K-Nearest Neighbors 
algorithm (KNN) to complete the music emotion classification 
problem [6]. Yang et al. compared models for emotional 
classification of English and Chinese songs to explore the 
cultural characteristics of different countries [7]. Markov et al. 
researched the effects of different features (MFCC, LPC, 
timbre features, Chroma, etc.) and their combinations on 
emotion recognition using Gaussian Processes (GP) and 
Support Vector Machines (SVM). To solve the "semantic" gap 
between low-level audio signal features and high-level musical 
concepts, [8] Weninger et al. proposed an emotion recognition 
method based on Recurrent Neural Networks (RNN), first 

extracting low-level features from frame spectra, then 
calculating general features such as kurtosis, percentiles, and 
regression coefficients on their contours for multivariate 
regression to compute levels of pleasure and arousal. [9] Chin 
et al. built emotion recognition models for different genres, 
based on sparse representation of music to calculate genre 
indicators. Renato [10] Panda et al. advanced the latest music 
emotion recognition techniques by proposing novel emotion-
related audio features, such as musical texture features, 
expressiveness features, etc. The ability of neural networks to 
extract excellent feature parameters is increasingly drawing 
attention, with more research directly feeding unstructured data 
into Recurrent Neural Networks (RNN), Convolutional Neural 
Networks (CNN), and other deep learning models. The input 
data passes through layers of networks to abstract the extracted 
low-level features for the final classifier layer to predict 
classification results. Research on emotional features is not just 
for improving the effectiveness of music emotion recognition; 
there is already application of music's acoustic fingerprint 
features in semantic-based cross-media music retrieval, 
modeling the potential semantic associations between text and 
music to explore their correlation. 

B. Techniques Based on Temporal Variations 

Emotions are behaviors that change over time; their 
evolution goes through a certain duration, thus the dependency 
of emotional information before and after is to be considered. 
Traditional dynamic models, such as Hidden Markov Models 
(HMMs) and Conditional Random Fields (CRFs), have shown 
better recognition performance than static models due to their 
inherent properties for modeling temporal contextual 
information. However, these models consider only a short span 
of temporal information, which limits their effectiveness. Yang 
et al. [11] extracted emotional features based on a continuous 
psychological model of emotions in three dimensions: 
valence/pleasantness, arousal/intensity, and dominance/control. 
They used linear regression models to map the emotional state 
of music to a continuous emotional space and employed two 
fuzzy classifiers to measure emotional intensity for recognizing 
emotions in music. Schmidt et al. [12] established a connection 
between human emotional space and the acoustic signals of 
music, developing regression models to study emotional 
changes as they occur over time in music. Since different 
individuals may annotate the same piece of music with 
different emotions, Wang et al. [13] proposed that musical 
emotions should be represented as a probability distribution. 
They introduced the Audio Emotion Gaussian (AEG) model 
for the annotation of VA (Valence-Arousal) musical emotions, 
learning a VA Gaussian distribution for the latent feature class 
of each sound, and representing musical emotions through a 
weighted mixture of these VA Gaussian distributions. However, 
the assumption of a probability distribution for VA values does 
not necessarily hold in practice, so Wang et al. [14] proposed 
an HDM model to predict continuous features of music, 
dividing the VA space into a G×G grid of a two-dimensional 
histogram to predict musical emotions. To identify dynamic 
musical emotions, Li et al. [15] proposed a music dynamic 
emotion prediction method based on Deep Bidirectional Long 
Short-Term Memory (DBLSTM) networks, training multiple 
DBLSTMs on time series of various scales, and integrating 
multiscale DBLSTM results using an Extreme Learning 
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Machine (ELM) method to determine the emotions in music. 
Currently, emotion recognition models based on deep learning 
have stronger non-linear modeling capabilities and have been 
widely applied in the field of emotion recognition. For instance, 
the Long Short-Term Memory (LSTM) model by Wang et al. 
[16] and the classic CNN-based models by Luz et al. [17] have 
achieved good results in the modeling process. However, these 
models assume the same contribution to emotion prediction for 
each frame, which is an unreasonable assumption; to address 
this issue, Chen et al. [18] introduced an attention mechanism 
that automatically learns the importance of different frames for 
emotion recognition through global contextual information to 
obtain matching weight coefficients, enabling more targeted 
emotion modeling. 

C. Research Gaps 

Over the past few decades, researchers have been exploring 
how to quantify and classify emotional states in music. Early 
studies mainly relied on the perception of sound timbre and 
manual annotations based on patterns to achieve emotion 
classification. However, as the emotional state in music differs 
from emotions in other contexts and media, this recognition 
remains a challenge. Specific issues include: 

When discrete emotional space models are used, the 
recognition of musical emotions is treated as a classification 
task, which is more straightforward and simple compared to 
continuous emotional space. The goal is to tag unfamiliar 
music with emotional labels through classification models. 
Currently, there is a wide variety of extracted musical emotion 
features, but individual features have poor generalization 
capabilities and cannot adapt flexibly to different datasets. 
Secondly, deep learning networks are simple in construction, 
adept at extracting deep information, but musical emotions are 
more subjective, and overall feature analysis is also important. 
Therefore, how to better select musical emotion features and 
build deep learning networks, and how to extract both breadth 
and depth features are urgent problems to be solved. 

Moreover, it is understood from the current research status 
that despite the abundance of various feature types, traditional 
manual acoustic features remain the richest set of features in 
terms of emotional content. Appropriate feature optimization 
and selection schemes are essential for achieving good 
emotional recognition performance when dealing with high-
dimensional manual acoustic features. 

On the other hand, spectrograms, as an important carrier of 
information in speech signals, represent an important avenue 
for improving music emotion recognition performance by 
analyzing and mining emotional features from them using 
image processing methods with the development of deep 
learning technology. 

In summary, future research needs to develop new models 
and techniques to address these challenges in music emotion 
recognition, to truly deliver the most suitable music to listeners. 

III. THE DISCRETE EMOTIONAL SPACE OF MUSIC 

This section first extracts GTF and MFCC as features for 
musical emotion, with MFCCs being weighted with the 
residual phase (RP) for compensation. Building upon the 

Word2Vec method, the Chord2Vec approach is proposed to 
extract chord information and train it into chord vectors as one 
of the input features, providing a clear representation of the 
musical content. These features are then fused together as input 
for the MultiSpec-DNN model to determine the contextual 
relationship of the music. The results from MultiSpec-DNN are 
fed into the enhanced nodes of the BLS (Broad Learning 
System), where they undergo mapping processing to form the 
output of the enhanced nodes. 

A. Principle of Chord2Vec 

The classification of musical emotions is different from 
other classification tasks. In the case of speech emotion 
classification, not only can commonly used signal features such 
as audio energy be chosen as emotional features, but textual 
information can also be processed through textual expression 
for feature calculation, making the feature selection multimodal. 
However, for most music without lyrics, due to the absence of 
universal textual or visual features, most people have to rely on 
listening to recognize and appreciate the music. Therefore, only 
auditory-related features can be selected, which results in 
suboptimal music emotion classification. Inspired by the 
principle of Word2Vec, this chapter proposes the Chord2Vec 
method, which converts chord information in music into 
musical chord vectors through the Skip-gram model, thus 
providing multimodal emotional features for the task of music 
emotion classification. 

B. Extraction of Note Information 

The expression of musical emotions can be achieved 
through the combination of different chords, rhythms, 
dynamics, and tempos. A chord refers to the vertical 
combination of three or more musical notes of different pitches. 
By setting reasonable rules, chords can form the "textual 
information" of music more than elements such as rhythm, 
dynamics, and tempo. Therefore, the order of notes within a 
chord and the intervals between each note are crucial for chord 
information. MIDI, as an audio format, can record information 
about notes, dynamics, positions, and durations. By using the 
read function in the musicpy library, it is possible to extract all 
note information for each piece of music. Due to the large 
amount of information, Table I only shows the note 
information for pure music of four different emotions from 1 
minute 10 seconds to 1 minute 13 seconds (with note intervals 
preserved to two decimal places). 

TABLE I.  MUSIC NOTE INFORMATION 

Music 

Name 
Emotion Note Combination Note Intervals 

Kiss The 
Rain 

Joyful 

D4,G4,E4,D4,C4,D

4,E4, 
F4,E4,D4,C4,D4 

0.13,0.12,0.12,0.13,0.13,

0.24,0.14, 
0.13,0.13,0.12,0.52,0.05 

Canon Sad 

D5, D5, F5, F#5, 

E5, D5, B4, 

G4, G4, A4, B4 

0.22,0.02,0.09,0.13,0.04,

0.33,0.03, 

0.14,0.63,0.09,0.08 

Victory Excited 
A4,E4,E4,G4, A4, 

B4, A4,A4, F4,E4 

0.13,0.26,0.06,0.13,0.63,

0.13,0.13, 0.13,0.13,0.06 

Dust Tense 
D4, A4, G4, G4, D4, F4
, G4, G4, G4,A4 

0.12,0.79,0.12,0.11,0.03,

0.22,0.11,0.25, 0.12, 0.25 
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In the note combination, the suffix number after the same 
pitch level indicates the pitch height, increasing by one for 
every octave higher. The sharp sign "#" as a suffix denotes 
raising the basic pitch level by a semitone. Note intervals are 
expressed as the play interval between two consecutive notes, 
with the measure as the unit. A value of 0 indicates that the two 
notes are played together; a value of 1 means there is a one 
measure interval between the play of two notes; a value of 0.25 
means there is a 1/4 measure interval between the play of two 
notes, and so on. 

C. Chord Segmentation 

Beats are the most basic elements in the composition of 
music, and measures, as units of beats, directly affect the 
overall melody of the music and the emotions the composer 
wishes to convey. Assume that after playing the primary 
melody note, the next note requires a time duration of 1 beat 
before being played; even if the composer intended to treat the 
current note as part of the primary melody, the audience may 
have difficulty perceiving a coherent melody. This is because, 
in essence, a melody is a series of notes with relatively similar 
pitch, contrasting with chords that have a greater pitch 
difference and are recognized as melody. The duration of a 
measure (in seconds) is related to the beats per minute (BPM), 
as shown in Eq. (1), where B represents BPM, and X 
represents the number of beats per measure. 

𝑌 =
60

𝐵
⋅ 𝑋   (1) 

Table II presents the results of chord segmentation for a 3-
second note combination in Pachelbel's Canon, segmented 
according to different musical beats. 

TABLE II.  CHORD SEGMENTATION RESULTS (CANON) 

Musical Beat Chord Segmentation Results 

4/4 Beat D5 D5 F5 F#4 E5 D5/B4 G4 G4/A4 B4 

3/4 Beat D5 D5 F5 F#5 E5 D5 B4 G4 G4/A4 B4 

2/4 Beat  D5 D5 F5 F#5 E5 D5 B4 G4 G4/A4 B4 

6/8 Beat D5/ D5 F5 F#5 E5 D5 /B4 G4 G4/A4 B4 

Music can be composed of different musical beats, and for 
the sake of data uniformity in experiments, a 4/4 musical beat 
is adopted, which means each measure has 4 beats, and the 
duration of a measure is 240/B seconds. If the interval between 
successive notes is greater than or equal to 1 beat, or 0.25 
measures, then the previous note is judged to be the last note of 
the preceding chord combination, and the following note is the 
first note of the subsequent chord combination. 

D. Chord Vector 

Let us assume that the chord information matrix G after 
chord segmentation consists of N pieces of music 
{𝛼1, 𝛼2, … , 𝛼𝑁}, with each piece having t chord combinations 
{𝛽1, 𝛽2, … , 𝛽t}. Thus, the music chord information set can be 
represented as in Eq. (2): 

𝐆 =  

𝛼1

𝛼2

⋮
𝛼𝑁

[

𝛽11 𝛽12 ⋯ 𝛽𝑡1

𝛽12 𝛽22 ⋯ 𝛽𝑡2

⋯ ⋯ ⋯ ⋯
𝛽1𝑁 𝛽2𝑁 ⋯ 𝛽𝑡𝑁

]  (2) 

Here, 𝛽ij  represents the i-th chord combination of the j-th 

song, and N is the number of pieces of music. 

Suppose after the Skip-gram model the number of chord 
features is V, and each piece of music contains M chord 
combinations, then the information matrix S of that piece of 
music can be represented as in Eq. (3): 

𝐒 =

1
2
⋮
V

[

F11  F21 ⋯ F𝑀1

 F12  F22 ⋯ F𝑀2

⋯ ⋯ ⋯ ⋯
F1𝑉  F2𝑉 ⋯ F𝑀𝑉

]  (3) 

By weighting the V features of the M chord combinations, 
we obtain [Z1, Z2, ⋯ , ZV] . Here, 𝑍1 = 𝐹11 + 𝐹21 + ⋯ +
𝐹𝑀1; 𝑍2 = 𝐹11 + 𝐹12 + ⋯ + 𝐹𝑀2; 𝑍𝑉 = 𝐹1𝑉 + 𝐹2𝑉 + ⋯ +  FMV . 
Applying this operation to all the music  {𝛼1, 𝛼2, … , 𝛼N} in the 
chord information matrix G, the final chord vector matrix C 
can be represented as in Eq. (4), where Z𝑖𝑗 corresponds to the i-

th weight for the j-th piece of music, and N represents the 
number of pieces of music. 

𝐂 =

𝛼1

𝛼2

⋮
𝛼𝑁

[

Z11 Z21 ⋯ Z𝑉1

Z12 Z22 ⋯ Z𝑉2

⋯ ⋯ ⋯ ⋯
Z1𝑁 Z2𝑁 ⋯ Z𝑉𝑁

]  (4) 

Fig. 1 displays the overall process of extracting chord 
vectors using Chord2Vec. 

Start
Original music 

samples

Note 

information 

extraction

Chord participle
Skip-gram

model training

Obtain chord 

vector
End

 

Fig. 1. Chord2Vec process diagram. 

IV. MULTIDIMENSIONAL EMOTION FEATURE EXTRACTION 

BASED ON SPECTROGRAMS 

To acquire a more comprehensive set of emotional 
information, this section introduces a deep fusion model based 
on neural networks called MultiSpec-DNN. Initially, the model 
inputs two types of spectrograms: narrowband and wideband 
spectrograms, corresponding to better frequency resolution and 
time resolution, respectively. These are extracted from each 
speech signal by setting frame windows. Given the excellent 
performance of convolutional neural networks (CNNs) in 
image processing in recent years, our MultiSpec-DNN model 
incorporates modules such as CNN, LSTM, and attention 
mechanisms to fully learn the emotional information within the 
spectrograms. The MultiSpec-DNN model thoroughly mines 
the temporal and frequency domain information contained in 
both types of spectrograms, ultimately obtaining spectrogram 
features that enhance the performance of speech emotion 
recognition. 

A. MultiSpec-DNN Feature Extraction Model 

In this section, we propose a speech emotion feature 
learning model, MultiSpec-DNN, which takes 
multidimensional spectrograms as input and integrates modules 
such as CNN, LSTM, and attention mechanisms. Our model's 
network structure design draws upon some content from study, 
and the overall network structure of the MultiSpec-DNN model 
is shown in Fig. 2. 
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Fig. 2. MultiSpec-DNN network structure. 

The MultiSpec-DNN model is based on deep feature 
learning from two different bandwidth spectrograms. Firstly, 
the speech signal undergoes preprocessing, which includes pre-
emphasis, framing, and windowing, with specific 
preprocessing steps referenced in the corresponding sections of 
subsequent experimental chapters. Fourier analysis is 
performed on the preprocessed speech to obtain two types of 
spectrograms through different window lengths, namely, the 
wideband spectrogram (Narrow Band Spectrum) with better 
time resolution and the narrowband spectrogram (Wide Band 
Spectrum) with better frequency resolution, which serve as the 
raw input data for the overall network. The two types of 
spectrograms are fed into two convolutional layers for 
convolution operations. The resulting feature maps are 
concatenated in the channel dimension and then trained in a 
four-layer convolutional neural network to learn deeper 
temporal and frequency domain spatial features of the 
spectrograms. Attention mechanisms are integrated into each 
convolutional layer to enhance the learning of emotion-related 
features. To further explore the temporal information within 
the convolutional feature maps, the output of the last 
convolutional layer is fed into a bidirectional LSTM network 
(BLSTM) for learning temporal features. Finally, the output of 
the BLSTM passes through two fully connected layers before 
entering the Softmax layer to obtain the emotional 
classification output. 

B. Key Design of the MultiSpec-DNN Model 

In this section, we will detail the key step designs within 
the MultiSpec-DNN model, as well as the specific parameter 
settings used in subsequent experiments. 

1) Wideband and narrowband spectrograms: 

Spectrograms provide an intuitive representation of how the 

vocal frequency spectrum changes over time, containing rich 

speech information. Digging deep into these features to extract 

them can help improve the performance of speech emotion 

recognition. The foundation of the MultiSpec-DNN model is 

based on two types of spectrograms: the wideband 

spectrogram (Narrow_band Spectrum) and the narrowband 

spectrogram (Wide_band Spectrum). Although these 

spectrogram types only differ due to the size of the Fourier 

transform window set, they present their own characteristic 

feature expressions. Previous research indicates that 

combining wideband and narrowband spectrograms can better 

reflect the entirety of the speech signal. Therefore, the model 

innovatively proposes the analysis and extraction of speech 

features based on these two types of spectrograms for emotion 

classification training, which helps achieve a more 

comprehensive and holistic expression of emotions within 

speech. Specifically, the wideband spectrogram, due to its 

corresponding short frame window settings, is formed by 

stacking a large number of short frames, thus providing better 

time resolution. The narrowband spectrogram corresponds to 

longer frame window settings, with longer frames stacked, 

reflecting the distribution of different frequencies over a 

period of time, and therefore, has a higher frequency 

resolution. Extracting features based on both types of 

spectrograms is equivalent to analyzing speech features from 

both the time and frequency domain perspectives. 

Wideband and narrowband spectrograms are typically 
generated by framing and windowing the speech signal with 
window widths of approximately 3 ms/25 ms, followed by 
Fourier transform and stacking the frames to produce the 
spectrogram. When viewed horizontally, the same types of 
spectrograms correspond to four different emotional speeches; 
vertically, they are narrowband and wideband spectrograms 
extracted from the same speech. Vertical comparison of the 
same speech reveals that the general trend of both 
spectrograms is consistent, both reflecting the variation of 
frequency over time, but a detailed observation reveals clear 
differences between the two: 

The narrowband spectrogram is characterized by its narrow 
horizontal bands, which appear as narrow, bright yellow lines 
parallel to the horizontal axis, creating a ripple-like pattern, as 
shown in the black box. These narrow bands represent the 
fundamental frequency of vowels and harmonics in the 
sentence, with their vertical position on the frequency axis 
corresponding to the pitch frequency value, showing the 
inflections of pitch over time. The dark blank areas from top to 
bottom correspond to pauses in speech. 

The wideband spectrogram shows wider horizontal bands, 
also parallel to the time direction, as indicated by the black box 
in the figure. These wider bands represent the position of the 
vowel formants in the sentence. Different vowels have 
different formant frequencies, and different people pronounce 
the same vowel differently, all of which are reflected in the 
distribution differences of the wide bands on the frequency axis, 
so the vowel can be distinguished based on the position of the 
wide bands. The wideband spectrogram also has evident 
narrow blank stripes parallel to the frequency axis, representing 
the plosive sounds in the speech. Larger blank areas, similar to 
the narrowband, indicate pauses in the sentence. 

Based on the analysis of the two types of spectrograms, it is 
evident that they contain different speech information. Emotion 
classification is based on refining the emotional expression 
within speech features, which is also associated with the 
expression of speech information. Therefore, by delving into 
the features of the two types of spectrograms for emotional 
speech, richer emotional information can be obtained from 
both the time domain and frequency domain perspectives, 
enhancing the performance of the emotion recognition system. 
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2) CNN Module design: The spectrogram presents the 

information contained in the speech signal in the form of an 

image. Using image analysis methods to extract features from 

spectrograms can effectively obtain emotional characteristics. 

Therefore, in the MultiSpec-DNN model, the CNN network 

commonly used for image feature extraction is adopted for 

feature extraction of the spectrogram. From the structural 

diagram of the MultiSpec-DNN model, it can be seen that the 

entire model can be divided into two CNN structures. The first 

part conducts preliminary feature extraction on two types of 

spectrograms, and the second part is the four-layer CNN 

network designed after concatenating the convolutional 

features of the two types of spectrograms in the channel 

dimension, which is used for in-depth mining of emotional 

information. 

a) Preliminary feature extraction of spectrograms: The 

first part of the CNN network uses two convolutional layers to 

convolve the wide and narrow spectrograms, respectively. This 

part is based on the network in the study, but due to the 

difference in input spectrograms, the specific network 

parameter settings also vary. 

First, unlike the two types of spectrograms proposed in this 
paper, the spectrogram used as input in the study has only one 
type. Specifically, in the preprocessing, the window width of 
each frame is set to 40 ms, and referring to previous work, a 
high Fourier transform frequency point is set at 1600 
(corresponding to 10kHz), which distinguishes the wide and 
narrow spectrograms by extracting an ultra-narrowband 
spectrogram with a very high time resolution. Based on the 
subsequent truncation of the input frequency, the actual 
corresponding Fourier transform frequency points are 
equivalent to 640 (truncating 0-4 kHz from 10kHz). For the 
purpose of fully extracting time and frequency domain features, 
the paper designs two different rectangular convolutional 
kernels for the spectrogram. One is a horizontal convolutional 
kernel that is consistent with the time direction, covering a 
larger frequency range at the same time point; the other is a 
vertical convolutional kernel parallel to the frequency direction, 
which can present the changes in the current frequency range 
over time. Finally, the feature maps obtained by the two 
different convolutional kernels are concatenated and used as 
the input for the subsequent convolutional layers. Unlike the 
study ^([63]), the MultiSpec-DNN model proposed in this 
paper obtains two types of spectrograms at the input stage, 
corresponding to wideband spectrograms with high temporal 
resolution and narrowband spectrograms with high frequency 
resolution, naturally expressing more detailed time domain and 
frequency domain information. Therefore, when conducting 
preliminary feature extraction on the two types of spectrograms, 
the CNN convolutional layers did not choose rectangular long 
convolutional kernel sizes but performed convolution 
operations with the same convolutional kernel settings on the 
two types of spectrograms. The convolutional kernel size is set 
to a regular 3×3, to extract preliminary feature maps from both 
the time and frequency domain perspectives for the two types 
of spectrograms, and then concatenated in the channel 
dimension as the input for subsequent convolutional layers. 

b) In-depth mining of emotional features in 

spectrograms: The second part of the CNN network further 

mines the concatenated feature maps of the two types of 

spectrograms to obtain deeper spatial information of both 

spectrograms. For the purpose of comparing emotional 

recognition performance, MultiSpec-DNN adopts the four-

layer design of the CNN network in the latter part of the study, 

with the convolutional kernel size also set at 3×3 and the 

number of convolutional kernels set sequentially at 32, 48, 64, 

and 80. The specific parameters of the network layers are listed 

in table form in the subsequent content. Different from the 

convolutional layers in the study, the MultiSpec-DNN model 

proposed in this paper also explored the role of convolutional 

attention mechanisms in in-depth mining of emotion-related 

features. 

The attention mechanism is a signal processing mechanism 
discovered by scientists in the 1990s. Its design is based on 
strategies used by humans and other organisms when 
processing external data. Specifically, when a vast amount of 
information floods into the visual range, the human brain will 
select this information based on its goals, actively ignoring 
some irrelevant information and focusing on important 
information, allowing the brain to process more information 
and quickly find targets. In the field of artificial intelligence, 
the attention mechanism usually determines the importance of 
certain features to the target task or strengthens the extracted 
features with attention, as shown in Fig. 3 for a simple model 
incorporating an attention mechanism. 

Input 

features

Feature 

weight 

vector

Output 

features

Combin

e

Attention weight 

calculation

 

Fig. 3. An example of a simple attention mechanism. 

As shown in Fig. 3, the introduction of the attention 
mechanism into the network starts with calculating the 
attention weight for each feature value. The weight represents 
the importance of each feature value relative to the overall 
feature. Then, the obtained feature weight vector is multiplied 
by the corresponding position of the original input feature to 
obtain the output feature enhanced by attention. If the original 
featureIt seems that your message was cut off before 
completing your thoughts on CNN module design and attention 
mechanisms in deep learning. The information you provided 
indicates an approach to emotion recognition using 
spectrograms and a CNN architecture tailored to capture both 
time and frequency domain features. 

The above briefly introduced the basic theory of the 
attention mechanism. For the MultiSpec-DNN model proposed 
in this paper, after the convolution operation on the 
spectrogram, a series of feature maps will be obtained. In order 
to make the network pay more attention to the emotion-related 
information in the feature maps, the MultiSpec-DNN model 
introduced a lightweight convolutional attention module, 
CBAM (Convolutional Block Attention Module), after the 
convolution operation. The CBAM module enhances the 
features from the output feature maps of the convolutional 
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layer in both the channel and spatial dimensions, and its 
network structure is shown in Fig. 4. 
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Fig. 4. CBAM network structure diagram. 

As shown in the figure, for an output feature map from a 
certain convolutional layer, the attention mechanism 
introduced by CBAM is mainly divided into two steps: First, 
the convolutional feature map F goes through the Channel 
Attention Module (CAM) to obtain the channel attention 
weight matrix M_c, which is then element-wise multiplied by 
the original convolutional feature map to obtain an 
intermediate feature map F'; Then, F' goes through the Spatial 
Attention Module (SAM) to obtain the spatial attention weight 
matrix M_s, which is then element-wise multiplied by F' to 
obtain the output feature F''. 

Fig. 5 shows the internal structure of the channel attention 
module. The channel attention module aims to spatially 
compress the convolutional feature map along the channel 
dimension, that is, to find the spatial weight for each feature 
map of the corresponding channel. Specifically, assuming the 
input convolutional feature map has C channels, there are C 
feature maps. First, each of these feature maps is subjected to 
Max Pooling (MaxPool) and Average Pooling (AvgPool) 
operations, focusing on the maximum pixel value and the 
average state of all pixels, to spatially aggregate and map key 
and average information of the feature maps, respectively 
obtaining two pooled feature vectors of size 1×1×C; Then, 
these two pooled vectors are fed into a shared fully connected 
layer for channel attention mining, which consists of a double-
layer Multilayer Perceptron (MLP) network. 

Input feature 

F

 

 

 

 

Mc

Vector2

Vector1

AvgPool

MaxPool

Shared fully 

connected 

layer  

Fig. 5. CBAM's channel attention module. 

In this network, two length-C pooled feature vectors are 
first compressed according to a certain ratio and then restored 
to C to obtain two intermediate vectors, as shown in Fig. 5's 
Vector1 and Vector2. These two intermediate vectors are 
element-wise added and then normalized through the Sigmoid 
function to obtain the channel weight vector 𝑀𝑐 for the original 
convolutional feature map. This process can be represented by 
Eq. (5). 

𝑀𝐶(𝐹) = 𝜎(MLP (MaxPool (𝐹)) + MLP (AvgPool (𝐹)))

= 𝜎 (𝑾1(𝑾0(𝐹max
𝐶 )) + 𝑾1 (𝑾0 (𝐹

avg 

𝐶 )))

(5) 

In the formula, σ represents the Sigmoid function, 𝑊1 and 
𝑊0 represent the weight matrices in the shared fully connected 

layer, and 𝐹max
𝐶  and 𝐹𝑎𝑣𝑔

𝐶  represent the pooled feature vectors 

obtained after Max Pooling and Average Pooling. After 
multiplying the final channel weight vector 𝑀𝐶(𝐹)  with the 
original convolutional feature map F element-wise, the channel 
attention feature map F' is obtained, which serves as the input 
for the spatial channel attention module. 

Another attention module in CBAM is the spatial attention 
module, whose network structure is shown in Fig. 6. After 
obtaining the channel attention feature map F', the spatial 
attention module aims to compress the channel dimension of F' 
along the spatial plane of the feature map to obtain the spatial 
attention parameter matrix M_s for the overall feature map. 
Specifically, first, Max Pooling and Average Pooling are used 
to compress the channel dimension of the channel attention 
feature map F', and assuming the original feature map size is 
H×W×C, two pooled feature matrices of size H×W×1 are 
obtained after the two types of spatial pooling. Then, these two 
matrices are concatenated along the channel dimension to form 
a feature tensor with 2 channels as shown in Fig. 6; To mine 
spatial attention, the 2-channel feature tensor is fed into a 
convolutional layer for training, with the kernel size set to 7×7 
according to the settings in the literature, and after convolution, 
it is mapped to an intermediate matrix of size H×W×1, which 
is then normalized through the Sigmoid function to obtain the 
spatial attention matrix for the original convolutional feature 
map F, as shown in Eq. (6). 

𝑀𝑆(𝐹)  = 𝜎(𝑓7×7([MaxPool (𝐹); AvgPool (𝐹)]))

 = 𝜎 (𝑓7×7 ([𝐹max
𝑆 ; 𝐹

avg 

𝑆 ]))

(6) 

In the formula, σ represents the Sigmoid function; 7×7 
indicates the size of the convolution kernel in the module. It 
has been verified in the original CBAM literature that a 
convolution kernel of size 7×7 yields better performance than 

one of 3×3; 𝐹
max 

𝑆  and 𝐹
avg 

𝑆  respectively represent the pooled 

feature matrices obtained after Max Pooling and Average 
Pooling. Finally, by performing an element-wise multiplication 
of the channel attention feature map F^' with the spatial 
attention weight matrix 𝑀𝑆(𝐹), the attention-weighted feature 
map with respect to the original convolutional feature map F is 
obtained. 

 

Fig. 6. CBAM's spatial attention module. 

3) BLSTM module design: From the introduction of the 

spectrogram generation and extraction process in the previous 

text, it can be understood that the spectrogram is actually 

obtained by performing operations such as Fourier transform 

on the frame-by-frame speech signal and then stacking them 

in time order. Therefore, both broadband and narrowband 
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spectrograms naturally contain temporal information of the 

speech signal. After the spectrogram goes through the learning 

of multiple layers of Convolutional Neural Networks (CNNs), 

a group of spatial feature maps in both the time and frequency 

domains is obtained. Although these represent higher-

dimensional features compared to the original spectrogram, 

the convolution operation does not change the temporal order 

of the features, and the output of the convolution layer still 

retains the temporal sequence of the original spectrogram. On 

the other hand, from the perspective of emotional expression, 

the emotional category contained in a sentence is presented 

through the entire sentence. Learning features both forward 

and backward in time can obtain richer global emotional 

information. Based on the above analysis, in order to extract 

more comprehensive emotional information, the MultiSpec-

DNN model inputs the output of the last convolutional layer 

into the BLSTM in the temporal direction to further enhance 

the mining of temporal features in the spectrogram. In the 

experiment, the hidden layer output of the BLSTM is used as 

the input for the subsequent fully connected layers. 

The Bidirectional Long Short-Term Memory network 
(BLSTM) is built on the foundation of the Bidirectional 
Recurrent Neural Network (BRNN) and the LSTM], proposed 
by Graves et al. in 2005. According to the background 
knowledge, it is understood that RNNs can model sequential 
data by combining information from the previous moments, 
and LSTM was designed on this basis to solve the problem of 
gradient vanishing due to overly long temporal information. 
However, LSTM can only receive sequence information from 
before the current moment during training, and the value at a 
certain moment in the temporal data is often influenced by 
information from both before and after this moment. Ignoring 
the sequence information from later moments could lead to 
prediction errors. Therefore, by training the LSTM with 
sequences in both forward and backward orders and combining 
the results from both directions, the BLSTM integrates the 
information from the entire sequence data, effectively 
improving the model's performance. The BLSTM network 
structure is shown in Fig. 7. 

 

Fig. 7.  BLSTM network structure. 

The BLSTM consists of forward and backward LSTM 
networks, corresponding to the lower and upper LSTM 
networks in Fig. 7, respectively. The lower forward LSTM 
network processes the sequential data in order during training, 
saving information from before the current moment. The upper 
backward LSTM processes the sequential data in reverse order, 

saving information from after the current moment. This means 
that the output at any moment in the sequence is related to the 
entire sequence data. 

The input data to the BLSTM network is usually a set of 
vectors corresponding to sequential data. In the MultiSpec-
DNN model proposed in this paper, the feature map output 
from the convolutional layer is used as the input to the BLSTM 
to learn temporal features. The treatment of input data here 
refers to the mapping relationship between the convolutional 
feature map and the BLSTM network in the research of the 
Connectionist Text Proposal Network (CTPN). CTPN uses the 
VGG16 network for convolutional training of text images and 
uses the spatial feature tensor obtained by densely sliding a 
3×3 convolution kernel on the last layer of convolutional 
output as input to the BLSTM. In this model, the convolutional 
layer has already integrated the CBAM module to strengthen 
attention in both channel and spatial dimensions. Therefore, 
when referring to the CTPN network, only the method of 
converting the three-dimensional feature tensor to BLSTM 
input is considered. Specifically, assume that the feature map 
output size from the convolution layer is H×W×C, and the 
hidden layer output size of LSTM in each direction within the 
BLSTM is 128, then the hidden layer output dimension of the 
BLSTM is 256. Since the convolution operation does not affect 
the original temporal relationship between the frames of the 
spectrogram, the W dimension from left to right corresponds to 
the temporal order of the frames. Therefore, with H as the 
batch size of data for a single time point and W as the 
maximum time length, such a data stream is input to the 
BLSTM, learning the sequence temporal features of each row 
of data in the W dimension, as shown in Fig. 8. 

Fig. 8 shows in an intuitive way how to input the 
convolutional feature map in temporal order into the BLSTM 
network. After rotating the feature map, the vertical direction 
corresponds to the temporal sequence, and the batch data 
stream along the W dimension is transmitted to the BLSTM, 
resulting in the final output temporal feature map of H×W×256. 
Finally, the output of the BLSTM network is unfolded into a 
one-dimensional vector and input into two fully connected 
layers, and it seems that you are discussing the design and 
implementation of a Bidirectional Long Short-Term Memory 
(BLSTM) module for emotion recognition from speech, using 
a spectrogram as input. This process includes several steps, 
such as generating the spectrogram, applying convolutional 
layers to extract spatial features, and then using a BLSTM to 
capture temporal dependencies in both forward and backward 
directions to enhance feature learning. 

 

Fig. 8. Convolutional feature map to BLSTM network input method. 

V. CASE STUDY 

This section will validate the effectiveness of the proposed 
method using a homemade experimental dataset. The author of 
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this article confirms that all experiments were conducted in 
accordance with relevant guidelines and regulations. 

A. Experimental Setup 

The EMA (Emotion Music Analysis) dataset was collected 
and produced by referring to the literature, with all categories 
of emotional music sourced from the internet and uniformly 
converted to WAV format. 

The EMA dataset consists of 4,412 pieces of instrumental 
music, encompassing four emotional categories: 1,251 pieces 
of cheerful music, 1,072 pieces of exciting music, 948 pieces 
of tense music, and 1,141 pieces of joyful music. 

The Emotion dataset is composed of 2,978 pieces of MP3 
format music, with musical emotions divided into 4 categories: 
661 pieces of angry, 739 pieces of happy, 768 pieces of relaxed, 
and 810 pieces of sad music. The duration of the music ranges 
from 25 seconds to 55 seconds. For the convenience of the 
experiment, only the first 25 seconds of each piece of music is 
used, with zero-padding for those less than 25 seconds. 

The 4Q-emotion dataset consists of 1,472 pieces of MP3 
format music, where musical emotions are not categorized by 
emotional words but are classified into four labels: Q1, Q2, Q3, 
and Q4. There are 442 pieces in Q1, 296 in Q2, 438 in Q3, and 
296 in Q4. Only the first 30 seconds of each piece of music are 
used, with zero-padding for those less than 30 seconds. 

For the convenience of processing in the research process, 
the first 50 seconds of each song were chosen, and zero-
padding was performed for those with a duration of less than 
50 seconds. 

The loss function used in this section's experiment is the 
Cross Entropy Loss, as shown in Eq. (5), which mainly 
describes the distance between the actual output (probability) 
and the expected output (probability); the smaller the value, the 
closer the two probability distributions are, and the better the 
model performance, used for multi-label classification tasks. 
Here, N represents the number of samples i, M represents the 
number of categories, 𝑦𝑖𝑐is 1 when the category corresponds to 
the category of sample i, and 0 otherwise, 𝑝𝑖𝑐  represents the 
predicted probability that sample i belongs to category C. 

𝐿 =
1

𝑁
∑  𝑖  𝐿𝑖 =

1

𝑁
∑  𝑖   − ∑  𝑀

𝑐=1  𝑦𝑖𝑐log (𝑝𝑖𝑐) (7) 

For the simplest binary classification problem, the 
commonly used evaluation metrics are Accuracy, Precision, 
Recall, and F-measure. The EMA dataset, Emotion dataset, and 
4Q-emotion dataset are randomly allocated into training and 
test sets in a 9:1 ratio. For the EMA dataset, chord vectors are 
trained using Chord2Vec and extracted using the Skip_gram 
model from the Gensim library, with a min_count of 5 and a 
set chord vector dimension of 500. The vectors of chord 
combinations that appear in each piece of music are summed 
up, resulting in a 1×256 dimensional chord vector feature 
matrix, which serves as the shared chord feature for all three 
datasets. 

The extraction of RP features first uses a 16th-order LP to 
derive the LP residuals, with overlapping of 10 ms between 
adjacent frames. Then pre-emphasis is applied to the original 
information to extract LP residuals and identify the maximum 

value of the Hilbert envelope in each frame, thereby obtaining 
the required RP features. Next, RP and MFCC are weighted 
and fused to determine the final MF_RP features. The final 
feature size is as shown in Table III: 

TABLE III.  FEATURE EXTRACTION SIZE 

Data Name Size 

Music Pre-processing 3895×44100×60 

GTF Features 3895×24×44 

MF_RP Features 3895×192×44 

Fig. 9 shows the time sequence diagram of the 3-frame 
MF_RP features extracted from the music of 4 emotional types 
in the EMA dataset. 

 

 

Fig. 9. Music emotion time-series feature graph. 

It can be seen that the time-series curves of the MF_RP 
features for tense and exciting music emotions are significantly 
different from those of other emotional frames. Cheerful and 
joyful music have similar features in the mid-high frequency 
range, but show greater differences in the mid-low frequency 
range. Therefore, MF_RP features can enhance the extraction 
capability for emotional information in music signals, 
effectively capturing the differences even in subjectively 
similar emotions. 

Subsequently, comparative experiments were conducted for 
the dual-feature filtering channel CNN, as shown in Tables Ⅳ, 
Ⅴ, and Ⅵ. The first two columns represent the GTF feature 
channel and the MF_RP feature channel, respectively. The four 
comma-separated numbers in each row represent the number of 
repetitions, the number of feature mapping layers, the size of 
the convolutional kernels, and the size of the max-pooling 
layers, respectively. A stride of 1 is used for all experiments, 
and zero-padding is performed for each convolutional layer. 

TABLE IV.  CNN FILTER CHANNEL ARCHITECTURE COMPARISON 

GTF Feature 

Channel 

MF_RP Feature 

Channel 

Training 

Accuracy 

Testing 

Accuracy 

3,4,5,4 2,4,6,5 0.75 0.48 

2,5,7,4 3,6,8,4 0.88 0.53 

2,4,6,4 2,7,9,5 0.91 0.58 

3,3,5,5 4,6,8,4 0.87 0.57 

2,4,5,4 3,5,7,4 0.96 0.63 
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TABLE V.  DIFFERENT CNN FILTER CHANNEL ARCHITECTURE 

COMPARISON (EMOTION) 

GTF Feature 

Channel 

MF_RP Feature 

Channel 

Training 

Accuracy 

Testing 

Accuracy 

3,5,4,4 2,4,6,5 0.81 0.46 

2,4,5,4 3,6,8,4 0.84 0.50 

2,5,8,4 2,7,9,5 0.94 0.63 

3,3,5,5 3,5,8,4 0.88 0.54 

2,4,5,4 3,6,9,5 0.91 0.57 

TABLE VI.  DIFFERENT CNN FILTER CHANNEL ARCHITECTURE 

COMPARISON (4Q-EMOTION) 

GTF Feature 

Channel 

MF_RP Feature 

Channel 

Training 

Accuracy 

Testing 

Accuracy 

3,4,5,4 2,3,5,4 0.91 0.56 

2,3,5,4 2,6,8,4 0.97 0.63 

2,4,8,4 2,7,8,4 0.85 0.52 

3,4,5,4 3,6,8,4 0.83 0.50 

2,3,5,4 3,6,8,4 0.92 0.58 

It can be observed that on different datasets, adapting the 
CNN structure to the type and size of features can improve 
classification accuracy. The same filter channel structure 
ignores the feature size and complexity. A too deep structure 
will extract redundant deep features of GTF, while too shallow 
structures may result in incomplete deep features of MF_RP. 
Selecting the appropriate filter channel parameters can better 
extract both features. 

With a batch_size of 128, 3895 pieces of music are 
processed through Chord2Vec and music preprocessing to 
extract chord vectors, GTF features, and MF_RP features. The 
latter two are input into the modified filter channels. The CNN 
layer, as the filtering channel for MFCC and GTF features, 
extracts deep information with three feature mapping layers 
and 2x2 filters for GTF features, and max-pooling layers of 
2x2, repeated twice. The MFCC_RP feature's CNN filtering 
channel contains 6 feature mapping layers and 3x3 filters, with 
max-pooling layers of 2x2, repeated three times. Both use BN 
layers to normalize the outputs. Subsequently, a fully 
connected layer fuses the two features into a 1x256 data matrix, 
which is then fed into a 1x256 BILSTM layer. The data trained 
by the BILSTM layer isfurther fused with the chord vectors, 
and finally, the Broad Learning System (BLS) is used for node 
enhancement to obtain the final output. 

B. Experimental Results and Analysis 

This section verifies the improvement in emotional 
classification accuracy of the MULTISPEC-DNN model based 
on the Chord2Vec chord vector representation, within the same 
experimental environment. The MULTISPEC-DNN model is 
also compared with existing mainstream classification models 
to evaluate whether the proposed model can improve the 
accuracy and overall efficiency of music emotion classification. 
Experiments were conducted on the EMA dataset, Emotion 
dataset, and 4Q dataset, with each dataset divided into three 
different data partitions: training set, validation set, and test set. 
Ten-fold cross-validation was employed to ensure that these 
three partitions do not overlap, thus maximizing the accuracy 
of the experiments. 

1) Experimental scheme: The effectiveness of the chord 

vector feature is first verified by comparing the accuracy of 

the MULTISPEC-DNN model that only uses weighted fusion 

features of GTF and MF_RP with the MULTISPEC-DNN 

model that adds chord vector features. Subsequently, 

performance comparisons of the overall model structure are 

conducted with five mainstream models selected for 

comparison, introduced as follows: 

a) MCCLSTM and MCCBL: Both models start with 

CNN filtering channels with convolutional kernels of three 

different sizes to extract music information such as pitch and 

interval. The former concatenates the output of each CNN 

channel and uses it as the input for the LSTM layer, while the 

latter enhances the nodes using a BLS layer and finally trains 

to obtain the classification results for emotions. 

b) RCNNLSTM and RCNNBL: These two models 

contain two layers of CNN as the filtering channels for input 

features, where each CNN layer has a fixed convolution kernel 

size but a random number of kernels. The former uses the 

output of the final CNN layer as the input for LSTM, while the 

latter uses BLS layer for enhancement to obtain the final 

emotion classification results. 

c) LSTM_BLS: This model directly uses the extracted 

features as input for a multi-layer LSTM and as feature nodes 

for BLS. The latter connects the final output to the 

enhancement nodes during processing and combines both to 

obtain the final classification results. 

In this experiment, the MCCLSTM, MCCBL, and 
RCNNBL models refer to the literature for parameter settings. 
The LSTM_BLS model sets the number of LSTM layers to 2, 
with memory cell counts of 1024 and 512, respectively, and 
uses the MF_RP feature as the input for this model. The input 
and detailed parameters for the models in this section are a 
batch size of 64, dropout of 0.2, and the optimizer is Adam. 

2) Experimental analysis: Tables Ⅶ to Ⅸ show the 

results obtained by each model when recognizing emotions on 

the EMA dataset, Emotion dataset, and 4Q dataset, 

respectively. A detailed analysis of these tables reveals that 

the emotional classification accuracy of the model in this 

section reached 61.8% on the EMA dataset, which is 7.6% 

higher than MCCLSTM, 4.4% higher than RCNNBL, and 

1.5% higher than LSTM_BLS; in the Emotion dataset, the 

model's classification accuracy reached 63.8%, which is 4.6% 

higher than MCCLSTM, 2.4% higher than RCNNBL, and 5% 

higher than LSTM_BLS. 

TABLE VII.  MODEL CLASSIFICATION COMPARISON (EMA) 

Model Accuracy Precision Recall F1 
Traning 

time(s) 

MCCLSTM 0.557 0.615 0.557 0.585 520.43 

MCCBL 0.548 0.590 0.548 0.568 95.72 

RCNNLSTM 0.562 0.608 0.562 0.584 1105.12 

RCNNBL 0.581 0.599 0.581 0.590 120.49 

LSTM_BLS 0.610 0.633 0.610 0.621 335.78 

MULTISPEC-

DNN 
0.624 0.645 0.624 0.634 470.94 
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TABLE VIII.  MODEL CLASSIFICATION COMPARISON (EMOTION) 

Model Accuracy Precision Recall F1 
Training 

time (s) 

MCCLSTM 0.591 0.642 0.553 0.596 280.45 

MCCBL 0.578 0.601 0.525 0.560 42.18 

RCNNLSTM 0.573 0.612 0.508 0.556 630.12 

RCNNBL 0.589 0.603 0.618 0.610 58.37 

LSTM_BLS 0.641 0.655 0.612 0.633 175.49 

MULTISPEC-
DNN 

0.647 0.670 0.625 0.648 223.74 

TABLE IX.  MODEL CLASSIFICATION COMPARISON (4Q) 

Model Accuracy Precision Recall 𝐅𝟏 
Training 

time (s) 

MCCLSTM 0.581 0.598 0.569 0.583 198.34 

MCCBL 0.589 0.624 0.571 0.596 35.21 

RCNNLSTM 0.593 0.635 0.574 0.603 550.42 

RCNNBL 0.622 0.633 0.624 0.629 50.81 

LSTM_BLS 0.661 0.674 0.671 0.673 132.47 

MULTISPEC-

DNN 
0.635 0.658 0.629 0.643 191.54 

It is evident that on different datasets, models based on 
BLS have a much higher training efficiency than those based 
on LSTM. This is because the model depth of BLS is much 
shallower compared to LSTM, significantly reducing the 
complexity of the model, while the accuracy difference 
between the MCCBL model and the MCCLSTM model is only 
around 2%. The random number of CNNs can to some extent 
compensate for the lack of deep information extraction by BLS, 
therefore the RCNNBL model outperforms the RCNNLSTM 
model in both accuracy and training efficiency. The 
LSTM_BLS model further demonstrates that LSTM can 
extract the temporal relationships of music, thereby 
maximizing the preservation of musical emotion features. 
Although the training efficiency is not high when combining 
BLS with LSTM, the classification accuracy is greatly 
improved. 

The MULTISPEC-DNN model introduced in this section, 
which combines dual-channel CNN layer filtering and the 
novel chord vector features, achieved the best results on both 
the EMA dataset and the Emotion dataset. Since the BILSTM 
model itself is more complex than LSTM and CNN, its training 
efficiency is lower than the MCCBL model, the RCNNBL 
model, and the LSTM_BLS model. For the 4Q dataset, 
whether in terms of training efficiency or model classification 
accuracy, the MULTISPEC-DNN model is not as good as the 
LSTM_BLS model, indicating that 1286 pieces of music are 
not sufficient for the MULTISPEC-DNN model to learn 
enough information, leading to overfitting and ultimately 
resulting in mediocre classification accuracy. 

VI. CONCLUSION 

In this paper, we have conducted in-depth discussions and 
research on the extraction and optimization of musical emotion 
features within the field of music emotion recognition and 
analysis. The proposed MultiSpec-DNN model integrates 
spectral features of different resolutions, using an attention 
mechanism enhanced CNN and BLSTM networks, to deeply 
mine the emotional information in the music signals across 
time, frequency, and temporal dimensions. The emotion 
recognition rate on the EmoDB dataset is 91.24%, and on the 

IEMOCAP dataset, it is 71.88%, both demonstrating excellent 
recognition capabilities. The comparative experiments in this 
paper further analyze the performance differences between 
composite features and single features in the task of music 
emotion recognition, concluding that composite features can 
significantly improve the accuracy of emotion recognition. In 
summary, the feature optimization selection algorithm and the 
MultiSpec-DNN model proposed in this paper have shown 
significant effectiveness in the field of music emotion 
recognition. These research findings are of great importance 
for improving the accuracy and practical application value of 
music emotion recognition. Future work can be extended on 
the existing foundation to achieve more accurate and natural 
music emotion recognition, enhancing people's auditory 
experience and emotional communication. 

ACKNOWLEDGMENT 

Supported by the Scientific Research Project of the 
Department of Education of Jilin Province - Project Name: 
Application and Promotion of Eight-line Digital Notation in 
Music Teaching in Higher Education Institutions. Project 
Number: JJKH20250841SK. 

REFERENCES 

[1] Liu S, Zheng P, Bao J. Digital Twin-based manufacturing system: a 
survey based on a novel reference model[J]. Journal of Intelligent 
Manufacturing, 2023: 1-30. 

[2] Liu S, Zheng P, Xia L, et al. A dynamic updating method of digital twin 
knowledge model based on fused memorizing-forgetting model[J]. 
Advanced Engineering Informatics, 2023, 57: 102115. 

[3] Zheng H, Liu S, Zhang H, et al. Visual-triggered contextual guidance for 
lithium battery disassembly: a multi-modal event knowledge graph 
approach[J]. Journal of Engineering Design, 2024: 1-26. 

[4] Fu T, Li P, Liu S. An imbalanced small sample slab defect recognition 
method based on image generation[J]. Journal of Manufacturing 
Processes, 2024, 118: 376-388. 

[5] Sordo M, Celma O, Bogdanov D. MIREX 2011: Audio tag classification 
using weighted-vote nearest neighbor classification[C]// Music 
Information Retrieval Evaluation Exchange. 2011. 

[6] Yang Y H, Hu X. Cross-cultural Music Mood Classification: A 
Comparison on English and Chinese Songs[C]//ISMIR. 2012: 19-24. 

[7] K Markov, M Iwata, T Matsui. Music emotion recognition using 
Gaussian Processes. 2014. 

[8] Weninger F, Eyben F, Schuller B. On-line continuous-time music mood 
regression with deep recurrent neural networks[C]// ICASSP 2014 - 
2014 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE, 2014. 

[9] Chin Y H, Lin P C, Tai T C, et al. Genre based emotion annotation for 
music in noisy environment[C]// 2015 International Conference on 
Affective Computing and Intelligent Interaction (ACII). IEEE, 2015. 

[10] Panda R, Malheiro R, Paiva R P. Novel audio features for music 
emotion recognition[J]. IEEE Transactions on Affective Computing, 
2018, 11(4): 614-626. 

[11] Yang Y H, Liu C C, Chen H H. Music emotion classification: a fuzzy 
approach[C]// Acm International Conference on Multimedia. ACM, 
2006. 

[12] Schmidt E M, Turnbull D, Kim Y E. Feature selection for content-based, 
time-varying musical emotion regression[C]// Proceedings of the 11th 
ACM SIGMM International Conference on Multimedia Information 
Retrieval, MIR 2010, Philadelphia, Pennsylvania, USA, March 29-31, 
2010. ACM, 2010. 

[13] Wang J C, Yang Y H, Wang H M, et al. The Acoustic Emotion 
Gaussians Model for Emotion-based Music Annotation and 
Retrieval[C]// ACM Multimedia. ACM, 2012. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 3, 2025 

841 | P a g e  

www.ijacsa.thesai.org 

[14] Wang J C, Wang H M, Lanckriet G. A histogram density modeling 
approach to music emotion recognition[C]// IEEE International 
Conference on Acoustics. IEEE, 2015. 

[15] Li X, Xianyu H, Tian J, et al. A deep bidirectional long short-term 
memory based multi-scale approach for music dynamic emotion 
prediction[C]// 2016 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). IEEE, 2016. 

[16] Wang Y, Wang H. Multilingual convolutional, long short-term memory, 
deep neural networks for low resource speech recognition[J]. Procedia 
Computer Science, 2017, 107: 842-847. 

[17] Luz, Santamaria-Granados, Mario, et al. Using Deep Convolutional 
Neural Network for Emotion Detection on a Physiological Signals 
Dataset (AMIGOS)[J]. IEEE Access, 2018. 

[18] Chen X, Wang L, Pan A, et al. Channel-wise Attention Mechanism in 
Convolutional Neural Networks for Music Emotion Recognition[J]. 
2021. 


