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Abstract—Electric Vehicles (EV) chargers rely on resource-
constrained embedded hardware to execute critical charging
operations. However, conventional security solutions may not
adequately meet the needs of these devices. Increasingly, machine
learning techniques are being leveraged to detect cyber attacks
during electric vehicle charging. This study aims to evaluate
various base machine learning methods and conduct binary and
multi-class classification experiments to enhance security and op-
erational efficiency in EV charging stations. The experiments uti-
lize the CICEVSE2024 dataset, curated by the Canadian Institute
for Cybersecurity at the University of New Brunswick, designed
specifically for anomaly detection and establishing behavioral
patterns in EV charging stations. The analysis highlights nuances
in performance across different machine learning classifiers. For
instance, Random Forest achieved 95.07% accuracy in binary
classification by constructing robust decision trees. Ensemble
methods such as CatBoost and LightGBM further improved
binary classification to 95.37% and 95.41%, respectively through
gradient boosting techniques. In multi-class attack classification,
ensemble methods demonstrated superior performance, with the
Stacking Ensemble achieving 91.1% accuracy by combining
multiple models, and Voting Ensemble achieving 90.7%. Notably,
among homogeneous base classifiers, Extra Trees and HistGra-
dient Boosting were particularly effective, achieving 90.2% and
89.8% accuracy respectively in multi-class classification tasks.
These findings underscore the efficacy of machine learning in en-
hancing cybersecurity measures for EV charging infrastructure.
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threats; distributed denial of service attack; charging stations

I. INTRODUCTION

The proliferation of electric vehicles (EVs) has led to
a significant increase in the deployment of electric vehicle
charging stations (EVCS) worldwide. However, this expansion
has brought attention to cybersecurity vulnerabilities asso-
ciated with these stations [1]. This section examines the
widespread adoption of EVCS, explores their susceptibility
to cyber-attacks, discusses the role of machine learning (ML)
in bolstering their security, and identifies the common attack
patterns targeting EVCS, their implications, and mitigation
strategies.

The transition to electric vehicles (EVs) is gaining mo-
mentum globally, driven by environmental concerns and ad-
vancements in technology. Central to this shift is the devel-
opment and deployment of electric vehicle charging infras-
tructure (EVCI), which plays a critical role in supporting the
widespread adoption of EVs. This infrastructure has rapidly
grown to support the increasing number of electric vehicles

on the road [2]. It encompasses a diverse range of charging
stations, from residential Level 1 chargers to high-power DC
fast chargers installed along highways and in urban centers.
Governments, private sector entities, and utilities worldwide
are investing in expanding EVCI networks to meet the grow-
ing demand for electric mobility [3]. Governments, private
companies, and utilities have invested heavily in establishing
charging networks to promote sustainable transportation [4].
The deployment spans various types of chargers, including
Level 1, Level 2, and DC fast chargers, catering to different
charging needs and speeds [5].

Despite significant progress, EVCI deployment faces sev-
eral challenges as: 1) the uneven distribution of charging sta-
tions, with rural and suburban areas often lagging behind urban
centers in accessibility [6], 2) the high cost of infrastructure
installation and grid capacity upgrades also pose financial chal-
lenges for stakeholders [7], 3) interoperability issues between
different charging networks and varying charging standards can
complicate the user experience and slow down adoption rates
[8], and 4) the most severe one is the vulnerability of those
station from Cyber attacks [9].

EVCS are vulnerable to cyber-attacks due to their inter-
connected nature and reliance on communication networks for
operation and management [10]. Threats range from unau-
thorized access to charging data and financial information to
potential disruption of service or even physical damage to
vehicles through malicious software or hacking attempts [11],
[9]. Vulnerabilities can arise from weaknesses in network pro-
tocols, inadequate authentication mechanisms, or compromised
software updates [12].

Machine learning techniques offer promising solutions to
mitigate cybersecurity risks associated with EVCS. ML algo-
rithms can analyze large volumes of data generated by charging
stations to detect anomalies indicative of cyber-attacks or unau-
thorized access attempts [13]. Techniques such as anomaly
detection, pattern recognition, and predictive analytics can
enhance the ability to identify and respond to potential threats
in real-time, thereby fortifying the security posture of EVCS
[14], [15].

Recent studies highlight ongoing efforts to integrate ML-
based security solutions into EV charging infrastructure [16].
Researchers are exploring adaptive ML models capable of
learning from evolving attacks, their threats and improving
detection accuracy over time [17]. Furthermore, advance-
ments in cryptographic protocols and secure communication
frameworks aim to safeguard data transmission between EVs,
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charging stations, and central management systems [18].

Those stations are subjects of attacks of several categories
as follows:

1) Man-in-the-Middle (MitM) attacks: occur when an at-
tacker intercepts the communication between the EV and
the charging station or the charging station and the backend
system. This allows the attacker to eavesdrop, alter, or inject
malicious data into the communication stream. MitM attacks
can lead to unauthorized charging, data theft, and even ma-
nipulation of charging parameters, potentially damaging the
vehicle or infrastructure [19].

2) Denial of Service (DoS) attacks: aim to make the
charging service unavailable to legitimate users. Attackers can
overwhelm the charging station or its network with excessive
requests, causing the system to crash or become unresponsive.
This type of attack can disrupt the availability of charging
services, leading to inconvenience for EV users and potential
revenue loss for service providers [20].

3) Malware and Ransomware charging stations: like other
networked devices, can be targeted with malware or ran-
somware. Malware can compromise the station’s software,
causing it to malfunction or operate incorrectly. Ransomware
can encrypt the station’s data or control systems, rendering it
inoperable until a ransom is paid. Such attacks can lead to
service disruptions and financial losses [21].

4) Unauthorized access and physical tampering: Physical
access to charging stations can allow attackers to tamper with
the hardware or install unauthorized devices. This can lead
to direct theft of electricity, physical damage to the station, or
insertion of malicious components that facilitate further cyber-
attacks. Ensuring physical security is as crucial as securing
network communications [22].

5) False data injection attacks: In false data injection at-
tacks, attackers send incorrect data to the charging station or its
management system. This can affect billing, load management,
and the operational integrity of the station. For example, false
readings could lead to incorrect billing or overloads on the
power grid if demand is misrepresented [23].

Those attacks can have wide-ranging implications such as
financial losses for operators, inconvenience and safety risks
for users, and broader impacts on the electrical grid and urban
infrastructure. Additionally, compromised EVCS can serve
as entry points for attacks on other critical systems, posing
significant national security risks [24].

Mitigation actions/processes can be adopted to manage
those attacks. Main actions found in literature are:

• Implementing robust encryption protocols and multi-
factor authentication. Public Key Infrastructure (PKI)
and Transport Layer Security (TLS) are commonly
recommended to secure data exchanges [22].

• Keeping software and firmware up-to-date is crucial
for addressing vulnerabilities. Regular updates and
timely patch management can mitigate the risk of
exploits targeting known weaknesses [22].

• Deploying Intrusion Detection and Prevention Sys-
tems (IDPS) can help detect and respond to suspi-
cious activities in real-time. Machine learning-based

IDPS can analyze patterns and identify anomalies that
indicate potential attacks [25].

• Securing the physical infrastructure of charging sta-
tions with surveillance, tamper-evident seals, and re-
stricted access can prevent unauthorized physical in-
teractions that could compromise cybersecurity [18].

• Building redundancy into the charging network and
ensuring resilience through backup systems and al-
ternative power supplies can help maintain service
continuity during and after an attack [18].

The remainder of this paper is organized as follows. Section
II presents the applied research methodology, Section III
discusses the obtained results and Section IV concludes and
summarizes this work.

II. METHODOLOGY

The framework and the stages followed in this research
including data collection, machine learning implementation
for cyber-attack detection, and performance evaluation are
described in Fig. 1.

A. Data Collection

1) Dataset Description: This work is based on the dataset
named CICEVSE2024, designed to enhance the security of
Electric Vehicle Charging Stations (EVCS) through the appli-
cation of machine learning techniques for cyber-attack detec-
tion [26]. The dataset was generated using a comprehensive
and realistic setup involving real Electric Vehicle Supply
Equipment (EVSE) to capture authentic power consumption
data under various operational states. A Raspberry Pi was
employed to simulate network traffic and host activities, pro-
viding a versatile and cost-effective solution for capturing data
in a controlled environment. The data collection framework
integrated sensors and monitoring tools to continuously record
power usage, network traffic, and host activities. Various cyber-
attack scenarios, such as Denial of Service (DoS), spoofing,
and malware injection, were simulated to generate labelled
instances of attack conditions. Additionally, data under nor-
mal operational conditions was collected to establish baseline
patterns of power consumption, network traffic, and host
activities.

This dataset offers several key advantages. The use of
real EVSE equipment ensures the capture of realistic power
consumption patterns, enhancing the reliability of machine
learning models trained on this data. The multi-dimensional
nature of the dataset, encompassing power consumption, net-
work traffic, and host activities, provides a holistic view of
EVCS operations and potential attack vectors. The inclusion
of labelled instances of both normal and attack conditions
facilitates supervised learning, enabling the development of
accurate and effective anomaly detection models. The use
of Raspberry Pi for simulating network and host activities
allows for flexible and scalable data collection, accommodating
various types of cyber-attacks and operational scenarios. The
detailed annotations and comprehensive coverage of different
aspects of EVCS operations make the dataset suitable for
benchmarking and comparing different machine learning algo-
rithms for cyber-attack detection. By leveraging this dataset,
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Fig. 1. Research methodology framework.

researchers and practitioners can develop robust machine learn-
ing models that enhance the security of EV charging stations,
ensuring reliable and safe operation in the face of potential
cyber threats. This work focuses primarily on attack detection
based on the electric vehicle supply equipment (EVSE) power
consumption data under both normal and attack settings. Table
I summarizes the power consumption features used in this
work. As shown, the dataset contains four numeric features
along with a single categorical feature. The numeric features
include shunt voltage (mV), Bus voltage, EVSE Current, and
EVSE power consumption. On the other hand, the categor-
ical feature indicates whether the EVSE is in the idle or
the charging state. Table II presents descriptive statistics of
numeric features within a dataset, including shunt voltage, bus
voltage, current, and power measurements. On average, the
shunt voltage is approximately 619.79 mV, with a standard
deviation of 197.19 mV, indicating considerable variability.
In contrast, the bus voltage remains relatively stable around
5.19 V, with a minimal standard deviation of 0.01 V. Current
readings average around 619.76 mA, displaying a similar level
of variability to the shunt voltage. Power consumption averages
3212.78 mW, with a wider range from 2160 mW to 6300 mW.
These descriptive statistics offer insights into the distribution
and variability of the dataset’s numeric features.

On the other hand, Table III delineates descriptive statistics
of numeric features categorized by two classes: "attack" and
"benign".

In terms of shunt voltage, the "attack" class exhibits
a higher mean of approximately 631.17 mV compared to
the "benign" class, which averages around 539.83 mV. Both
classes display variability, with the "attack" class having a
wider standard deviation of 204.85 mV compared to 99.72
mV for "benign" (Fig. 2).

The bus voltage remains relatively consistent across
classes, hovering around 5.19 V to 5.20 V, with minimal
standard deviations (Fig. 3).

Moving to current values, the "attack" class shows a higher
mean of approximately 631.32 mA, indicating potentially more
intense activity compared to the "benign" class, which averages
about 538.54 mA. Furthermore, the "attack" class displays
a wider spread in current readings, with a larger standard
deviation of 204.96 mA compared to 98.91 mA for "benign"
(Fig. 4).

Fig. 2. Shunt voltage histogram per class.

Fig. 3. Bus voltage histogram per class.

Regarding power consumption, the "attack" class exhibits
a higher mean of approximately 3271.47 mW, reflecting
increased energy usage during potential attacks, while the
"benign" class averages around 2800.39 mW. Similarly, the
"attack" class demonstrates greater variability in power con-
sumption, with a larger standard deviation of 1050.57 mW
compared to 513.59 mW for "benign" (Fig. 5).

In order to delve into deeper details of the dataset and
assess the degree of variability exhibited by each numeric
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TABLE I. EV POWER CONSUMPTION FEATURES

Feature name Description Type
Shunt_voltage (mV) Voltage drop that occurs across a shunt resistor of I2C Wattmeter
Bus_voltage DC Voltage supply numeric
Current_mA EVSE-B Current consumption numeric
Power_mw EVSE-B Power consumption numeric
State EVCS state (idle, charging) categorical

TABLE II. DESCRIPTIVE STATISTICS OF NUMERIC FEATURES

shunt_voltage bus_voltage_V current_mA power_mW
count 115298 115298 115298 115298
mean 619.79 5.19 619.76 3212.78
std 197.19 0.01 197.31 1011.57
min 417 5.15 417 2160
25% 467 5.18 467 2420
50% 510 5.2 510 2660
75% 746 5.2 747 3860
max 1214 5.21 1220 6300

TABLE III. DESCRIPTIVE STATISTICS OF NUMERIC FEATURES PER BINARY CLASS

shunt_voltage bus_voltage_V current_mA power_mW
attack benign attack benign attack benign attack benign

count 100935 14363 100935 14363 100935 14363 100935 14363
mean 631.17 539.83 5.19 5.2 631.32 538.54 3271.47 2800.39
std 204.85 99.72 0.01 0.01 204.96 98.91 1050.57 513.59
min 458 417 5.15 5.16 456 417 2360 2160
25% 467 445 5.17 5.19 467 445 2420 2320
50% 506 521 5.2 5.2 506 520 2620 2680
75% 831 593 5.2 5.2 834 591 4300 3040
max 1214 995 5.2 5.21 1220 991 6300 5180

Fig. 4. Current dissipation histogram per class.

feature under each attack type, Table IV and Fig. 6 illus-
trate descriptive statistics for shunt voltage per attack type.
The confined statistics reveal distinct differences in feature
values among Backdoor, cryptojacking, and syn-flood attacks.
Backdoor attacks show a mean shunt voltage of 643.23 mV
with a high standard deviation of 130.17, indicating significant
variability. The range spans from a minimum of 466 mV to
a maximum of 1149 mV, suggesting a broad distribution of
shunt voltage values within this attack type. Cryptojacking
attacks have a much higher mean shunt voltage of 946.59 mV,
but they exhibit lower variability, as indicated by the standard
deviation of 53.35. The values range from 752 mV to 1214
mV, showing a more concentrated distribution compared to
Backdoor attacks. The lower standard deviation and tighter

Fig. 5. Power consumption histogram per class.

interquartile range (25% to 75%) indicate that shunt voltage
values for cryptojacking attacks are more consistent. Syn-flood
attacks, with a mean shunt voltage of 927.73 mV and a stan-
dard deviation of 134.21, show variability similar to Backdoor
attacks. The range of shunt voltage values for syn-flood attacks
spans from 474 mV to 1203 mV, indicating considerable
overlap with Backdoor attacks. However, the distribution is
slightly more consistent than that of Backdoor attacks but
less so than cryptojacking attacks. In summary, cryptojacking
attacks stand out with higher and more consistent shunt voltage
values, while Backdoor and syn-flood attacks exhibit greater
variability and broader ranges, resulting in a higher degree of
overlap in their shunt voltage distributions.

On the other hand, Table V and Fig. 7 show descriptive
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TABLE IV. DESCRIPTIVE STATISTICS FOR SHUNT VOLTAGE PER ATTACK
TYPE

Backdoor cryptojacking syn-flood
count 21137 11596 13517
mean 643.23 946.59 927.73
std 130.17 53.35 134.21
min 466 752 474
25% 545 911 907
50% 625 944 962
75% 724 981 1008
max 1149 1214 1203

Fig. 6. Shunt voltage histogram per attack type.

statistics for bus voltage across three distinct attack types:
Backdoor, cryptojacking, and syn-flood. Each attack type
demonstrates a comparable degree of variability in bus voltage,
as evidenced by similar standard deviations. Backdoor attacks
showcase a mean bus voltage of 5.1869 (V) with a standard
deviation of 0.0096, cryptojacking attacks exhibit a mean
of 5.1649 with a standard deviation of 0.0037, and syn-
flood attacks display a mean of 5.1647 (V) with a standard
deviation of 0.0095. Despite this similarity in variability, subtle
differences emerge in their respective ranges. Backdoor attacks
span from 5.1530 to 5.2050, cryptojacking attacks range from
5.1490 (V) to 5.1770 (V), and syn-flood attacks span from
5.1490 (V) to 5.2010 (V). These ranges suggest overlapping
distributions of bus voltage values among the different attack
types, despite their comparable degrees of variability.

TABLE V. DESCRIPTIVE STATISTICS FOR BUS VOLTAGE PER ATTACK
TYPE

Backdoor cryptojacking syn-flood
count 21137 11596 13517
mean 5.1869 5.1649 5.1647
std 0.0096 0.0037 0.0095
min 5.1530 5.1490 5.1490
25% 5.1810 5.1610 5.1610
50% 5.1890 5.1650 5.1610
75% 5.1930 5.1690 5.1650
max 5.2050 5.1770 5.2010

Moreover, Table VI and Fig. 8 depict current values per
attack type, highlighting discernible differences among Back-
door, cryptojacking, and syn-flood attacks. Backdoor attacks
exhibit a mean current value of 643.97 mA with a standard
deviation of 130.73 mA, indicating notable variability. The
range spans from a minimum of 466 mA to a maximum of

Fig. 7. Bus voltage histogram per attack type.

1101 mA, suggesting a wide distribution of current values
within this attack type. Cryptojacking attacks demonstrate
a significantly higher mean current value of 946.69 mA,
accompanied by a lower standard deviation of 52.79 mA,
implying a more consistent distribution. The values range from
753 mA to 1184 mA, showcasing a narrower spread compared
to Backdoor attacks. The lower standard deviation and tighter
interquartile range (25% to 75%) suggest that current values
for cryptojacking attacks are more uniform. Syn-flood attacks,
with a mean current value of 927.80 mA and a standard
deviation of 134.25 mA, display variability akin to Backdoor
attacks. The range of current values for syn-flood attacks
extends from 473 mA to 1220 mA, indicating considerable
overlap with Backdoor attacks. However, the distribution is
slightly more consistent than that of Backdoor attacks but
less so than cryptojacking attacks. In summary, cryptojacking
attacks stand out with higher and more consistent current
values, while Backdoor and syn-flood attacks exhibit greater
variability and broader ranges, resulting in a higher degree of
overlap in their current value distributions.

TABLE VI. DESCRIPTIVE STATISTICS FOR CURRENT VALUES PER
ATTACK TYPE

Backdoor cryptojacking syn-flood
count 21137 11596 13517
mean 643.97 946.69 927.80
std 130.73 52.79 134.25
min 466 753 473
25% 545 912 906
50% 626 945 963
75% 726 981 1007
max 1101 1184 1220

Furthermore, different attack type reveal varying patterns
in their power usage characteristics, measured in milliwatts
(mW) as shown in Table VII and Fig. 9. Backdoor attacks show
a mean power consumption of 3335.85 mW with a standard
deviation of 664.86 mW, indicating considerable variability.
The range spans from a minimum of 2420 mW to a maxi-
mum of 5840 mW, suggesting a broad distribution of power
consumption values within this attack type. Cryptojacking
attacks exhibit a substantially higher mean power consumption
of 4887.07 mW, coupled with a lower standard deviation of
273.09 mW, implying a more consistent power usage pattern.
The values range from 3800 mW to 6100 mW, showcasing
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Fig. 8. Current values histogram per attack type.

Fig. 9. Power consumption histogram per attack type.

a narrower spread compared to Backdoor attacks. The lower
standard deviation and tighter interquartile range (25% to
75%) suggest that power consumption values for cryptojacking
attacks are more uniform. Syn-flood attacks, with a mean
power consumption of 4796.12 mW and a standard deviation
of 680.34 mW, display variability similar to Backdoor attacks.
The range of power consumption values for syn-flood attacks
extends from 2460 mW to 6300 mW, indicating considerable
overlap with Backdoor attacks. However, the distribution is
slightly more consistent than that of Backdoor attacks but
less so than cryptojacking attacks. In summary, cryptojacking
attacks stand out with higher and more consistent power con-
sumption values, while Backdoor and syn-flood attacks exhibit
greater variability and broader ranges, resulting in a higher
degree of overlap in their power consumption distributions.

TABLE VII. DESCRIPTIVE STATISTICS FOR POWER CONSUMPTION PER
ATTACK TYPE

Backdoor cryptojacking syn-flood
count 21137 11596 13517
mean 3335.85 4887.07 4796.12
std 664.86 273.09 680.34
min 2420 3800 2460
25% 2820 4720 4680
50% 3240 4880 4980
75% 3760 5040 5220
max 5840 6100 6300

These statistics provide nuanced insights into the distinc-
tions in numeric features between the “attack" and “benign"
classes within the dataset, suggesting potential patterns related
to malicious activity.

2) Dataset filtering: Based on the information provided
in the preprint paper, Enhancing EV Charging Station Se-
curity Using A Multi-dimensional Dataset, the dataset origi-
nally contained seven different attack classes: Cryptojacking,
Backdoor, None (Benign), TCP-Port-Scan, Service-Version-
Detection, OS-Fingerprinting, and Syn-flood. However, in this
study, the first step in the preprocessing pipeline, is to filter
the dataset to include only four specific classes: "Backdoor",
"cryptojacking", "none", and "syn-flood". This selective ap-
proach is a well-reasoned decision that serves to enhance the
relevance, performance, and interpretability of the machine
learning models developed using this dataset. The primary
justification lies in the need to tailor the dataset to the specific
challenges and threats faced by EV charging infrastructure.
Electric vehicles and their supporting charging ecosystem are
becoming increasingly prevalent, and ensuring the cybersecu-
rity of these systems is of paramount importance. By focusing
the dataset on the most critical attack scenarios, such as
backdoor intrusions, cryptojacking, and denial-of-service (syn-
flood) attacks, we are aligning the data with the real-world
security concerns that need to be addressed. This targeted
approach to data selection serves to optimize the performance
of the machine learning models trained on the CICEVSE2024
dataset. Including only the most relevant attack classes and
the normal (non-attack) condition allows the models to focus
on distinguishing between these key scenarios, rather than
being distracted by less critical attack types. Furthermore,
the decision to filter the dataset to these specific classes
also simplifies the analysis of feature importance across the
different attack types. When working with a comprehensive
dataset that includes a wide range of attack scenarios, the
assessment of which features are most significant for each class
can become a complex and challenging task.

3) Features and labels encoding: Next, an encoding is
applied on the state feature, which represents the charging
state of the electric vehicle. So, we have chosen to encode
"Idle" as 0 and "Charging" as 1. This binary encoding is
a common approach when dealing with categorical variables
that have a natural ordering or hierarchy. By converting the
state feature to a numerical representation, that can enable the
machine learning models to better understand and incorporate
this important feature into their decision-making process. In
addition, the encoding step is applied on the attack labels, to
ensure that the proposed models can properly interpret and
learn from the different types of attacks present in the dataset.
This include encoding the four selected classes: "Backdoor",
"cryptojacking", "none", and "syn-flood".

4) Class balancing: In the context of Power Consumption
Data, the class imbalance problem is a significant challenge
that needs to be addressed in order to develop effective
machine learning models for detecting cyber attacks on elec-
tric vehicle charging stations. The dataset contains a dispro-
portionately high number of normal (non-attack) instances
compared to the various attack classes, such as Backdoor,
cryptojacking, and syn-flood. To mitigate this issue, this work
has chosen to employ the Synthetic Minority Over-sampling
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Fig. 10. Dataset class balancing.

Technique (SMOTE) to balance the class distribution. SMOTE
is a powerful oversampling method that generates synthetic
samples of the minority classes, helping to create a more
balanced dataset [27]. The process of applying SMOTE to
the Power Consumption Data dataset involves identifying the
minority classes, determining the oversampling rate, generating
synthetic samples, and combining the original and synthetic
samples. For each minority class instance, SMOTE identifies
its k nearest neighbors in the feature space and generates
synthetic samples by interpolating between the minority class
instance and its randomly selected nearest neighbor(s) [27],
[28]. This process is repeated until the desired number of
synthetic samples is generated for each minority class. By
applying SMOTE to the Power Consumption dataset, that leads
to effectively increasing the representation of the minority
attack classes, which is crucial for training machine learning
models to accurately detect these rare and anomalous events,
the effect of data balncing is explained in Fig. 10. The benefits
of using SMOTE in this context are twofold: it helps to prevent
the machine learning models from being biased towards the
majority (non-attack) class, and it can improve the models’
ability to generalize and detect previously unseen attack in-
stances. However, it’s important to note that while SMOTE is
a powerful technique, it also has some limitations, such as not
working well for datasets with overlapping classes or high-
dimensional feature spaces. Additionally, the quality of the
synthetic samples generated by SMOTE can vary depending on
the choice of hyperparameters, such as the number of nearest
neighbors (k) to consider [28].

5) Standardizing the Features: The final step in your pre-
processing pipeline is to standardize the features. Standardiza-
tion is a crucial data preprocessing technique used in machine
learning to ensure that all features are on a similar scale. In
this work we used the scikit-learn library for this purpose.
In this work the StandardScaler is employed to ensures that
the features have a mean of zero and a standard deviation of
one, which is often a requirement for many machine learning
algorithms (e.g. linear regression, logistic regression, SVM, k-
means, PCA). The StandardScaler works by subtracting the
mean from each feature and then dividing by the standard
deviation, as explained in the formula in Eq. 1.

z =
x− µ

σ
(1)

where:

• x is the original feature value,

• µ is the mean of the feature,

• σ is the standard deviation of the feature,

• z is the scaled feature value.

This process is performed independently for each feature,
ensuring that the resulting features have a mean of 0 and a
standard deviation. Standardization is particularly important
when working with algorithms that are sensitive to the scale of
the input features, such as logistic regression, support vector
machines, and neural networks. By standardizing the data,
these algorithms can focus on the underlying relationships
between the features and the target variable, rather than being
influenced by the differences in scale. Another benefit of
standardization is that it can improve the numerical stability
and convergence speed of optimization algorithms used in
machine learning models. This is because the standardized
features have a similar range of values, which can help prevent
numerical overflow or underflow issues during the optimization
process.

B. Classification Techniques

1) Base classifiers: In this study, the intermediate classifi-
cation strategy is used to assess individual classifiers to be
used and decide to include in the ensemble methods, this
involves evaluating the performance of individual classifiers
using different measures. This approach helps in selecting the
best-performing models to include in the final ensemble [29],
[30].

a) Decision Trees (DT): are a popular machine learning
algorithm used for classification tasks. DTs build a model
that resembles a tree-like structure, where each internal node
represents a test on a feature, each branch represents an
outcome of the test, and each leaf node represents a class label.
The algorithm works by recursively partitioning the feature
space based on the information gain of each attribute. The
attribute with the highest information gain is selected as the
root node, and the process continues until a stopping criterion
is met, such as reaching a maximum depth or a minimum
number of samples in a leaf node. DTs are known for their
interpretability and ease of visualization, making them valuable
for understanding the decision-making process of the model.
They can handle both numerical and categorical features and
are robust to outliers and noise in the data. However, DTs can
be prone to overfitting, especially when the tree grows too deep
or the dataset is small [31], [32].

b) Naive Bayes (NB): is a family of probabilistic al-
gorithms based on the Bayes theorem, which calculates the
probability of an event occurring given the probability of
another event that has already occurred. In the context of
machine learning, Naive Bayes classifiers are used for text
classification tasks, such as spam filtering, sentiment analysis,
and topic modeling. The algorithm assumes that the features
are independent of each other given the class label, which
simplifies the computation and allows for efficient training
and prediction. Despite this strong assumption, Naive Bayes
classifiers often perform well in practice, especially when the
features are truly independent or when the dependencies are
weak. However, Naive Bayes can be sensitive to the scale
of the features and may not perform well when the features
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are highly correlated or when the class distributions are not
Gaussian. Additionally, the algorithm assumes that the features
are independent, which may not always be the case in real-
world datasets [33].

c) Support Vector Machines (SVMs): are a powerful
tool for both one-class and binary classification tasks, offering
a flexible and robust approach to classification that can handle
high-dimensional data and non-linear relationships. The SVM
algorithm is based on the idea of finding the best hyperplane
that separates the data into two classes, with the mathematical
formulation involving minimizing the dual expression subject
to constraints on the Lagrange multipliers, class labels, and
regularization parameter. Key concepts include support vectors,
which are the data points closest to the separating hyperplane,
and the margin, which is the distance between the hyperplane
and the support vectors. The choice of kernel function, such
as the linear kernel, polynomial kernel, or radial basis function
(RBF) kernel, is crucial in SVMs, as it transforms the data into
a higher-dimensional space where the data can be separated
by a hyperplane. The regularization parameter, C, controls
the trade-off between the margin and the complexity of the
decision boundary, with a larger value leading to a more
complex decision boundary and a smaller value leading to a
simpler decision boundary [34], [35].

d) K-Nearest Neighbors (KNN): is a non-parametric
algorithm used for both classification and regression tasks. In
the context of classification, KNN assigns a class label to a new
instance based on the majority vote of its K nearest neighbors
in the feature space. The algorithm works by calculating
the distance between the new instance and all the training
instances, typically using metrics such as Euclidean distance or
Manhattan distance. The K nearest instances are then selected,
and the class label with the highest frequency among these
neighbors is assigned to the new instance. One of the main ad-
vantages of KNN is its simplicity and ease of implementation.
KNN is also effective for multi-class classification problems
and can be easily adapted to handle imbalanced datasets.
However, KNN can be computationally expensive, especially
when the training dataset is large or the number of features
is high. It can also be sensitive to the choice of K and the
distance metric used. Additionally, KNN can be affected by
the curse of dimensionality, where the performance of the
algorithm deteriorates as the number of features increases [32],
[36].

e) Random Forest (RF): is an ensemble learning
method that combines multiple decision trees to improve the
accuracy and stability of predictions. RF builds a collection
of decision trees, each trained on a random subset of the
features. The final prediction is made by taking the ma-
jority vote of the individual trees. The algorithm works by
introducing randomness at two levels: feature selection and
sample selection. At each node of a decision tree, a random
subset of features is considered for splitting, and the best split
is chosen based on the information gain. Additionally, each
tree is trained on a random subset of the training instances,
obtained through a process called bagging. Random Forest
inherits the interpretability and robustness of decision trees
while overcoming their tendency to overfit. By combining
multiple trees, RF reduces the variance of individual trees and
improves the overall performance of the model. RF is known

for its ability to handle high-dimensional data, missing values,
and outliers. It can also provide feature importance scores,
which can be useful for understanding the relative contribution
of each feature to the prediction. However, Random Forest can
be computationally expensive, especially when the number of
trees is large or the dataset is large. It may also not perform
well when the features are highly correlated or when the class
distributions are imbalanced [37], [38], [39].

f) The Multilayer Perceptron (MLP): is a feedforward
artificial neural network that comprises multiple layers of
interconnected nodes, each layer linked to the next. In contrast
to a single-layer perceptron, the MLP can learn complex non-
linear relationships in data. The network architecture typically
includes an input layer for data input, hidden layers for
processing, and an output layer for generating predictions.
During training, the MLP undergoes forward propagation,
where input data is processed through the network, and the
output is computed at each layer. Subsequently, the error
between the predicted and actual output is calculated, initi-
ating the backpropagation process. Backpropagation involves
adjusting the weights and biases iteratively to minimize the
error, enhancing the network’s predictive accuracy. MLPs are
known for their ability to handle high-dimensional data, learn
intricate patterns, and generalize well to unseen data. Acti-
vation functions like sigmoid, tanh, or ReLU introduce non-
linearity, enabling the network to model complex relationships
within the data. Despite their effectiveness, MLPs can be
computationally intensive, especially with large datasets or
complex architectures, and may be prone to overfitting if not
appropriately regularized [40], [41].

2) Homogeneous ensemble classifiers: This section
presents the Homogeneous ensemble methods that utilize
some of the previously mentioned methods, Decision Trees
(DT), Multilayer Perceptron (MLP), Random Forest (RF), or
K-Nearest Neighbors (KNN) as base estimators that form a
powerful classification technique. These methods leverage the
strengths of individual base estimators to enhance predictive
performance and robustness. The next paragraphs outline the
main methods used for homogeneous ensemble classification
[30], [36].

a) Bagging (Bootstrap aggregating): is an ensemble
learning method that combines multiple base models, typically
decision trees, to improve the accuracy and stability of pre-
dictions. Bagging works by creating multiple subsets of the
training data through a process called bootstrapping, where
samples are drawn randomly with replacement. Each subset is
used to train a separate base model, and the final prediction
is made by aggregating the outputs of all the models, either
through majority voting (for classification) or averaging (for
regression). Bagging helps to reduce overfitting and improve
the generalization performance of the base models by intro-
ducing randomness and reducing the variance of individual
models. It is particularly effective when dealing with high-
variance models like decision trees [29].

b) AdaBoost (Adaptive boosting): is an ensemble learn-
ing algorithm that combines multiple weak learners, such as
decision stumps, to create a strong classifier. AdaBoost works
by iteratively training base models on the training data, with
each subsequent model focusing more on the instances that
were misclassified by the previous models. The final prediction
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is made by combining the outputs of all the base models, with
each model weighted by its performance on the training data.
AdaBoost is known for its ability to improve the performance
of weak learners and its robustness to overfitting. However,
AdaBoost can be sensitive to noisy data and outliers, and it
may not perform well when dealing with imbalanced datasets
or complex non-linear relationships [36].

c) Gradient boosting: is an ensemble learning method
that combines multiple weak learners, typically decision trees,
to create a strong predictive model. Gradient Boosting works
by iteratively training base models on the residuals (the differ-
ence between the true output and the predicted output) of the
previous models. The final prediction is made by summing the
outputs of all the base models, each weighted by a learning
rate. Gradient Boosting is known for its ability to handle a wide
range of data types, including numerical, categorical, and text
data. It is also effective in dealing with missing values and can
provide feature importance scores [29], [30].

d) XGBoost (Extreme gradient boosting): is a highly
efficient and scalable implementation of gradient boosting,
which has gained popularity due to its superior performance
and computational efficiency. XGBoost incorporates several
optimizations, such as parallel processing, sparse data han-
dling, and regularization, to improve the training speed and
generalization performance of gradient boosting models. XG-
Boost has been widely used in various machine learning
competitions and has achieved state-of-the-art results in many
applications, such as credit card fraud detection, click-through
rate prediction, and bioinformatics. Its efficiency and flexibility
make it a popular choice for large-scale machine learning
problems [42].

e) Extra tree: is an ensemble learning method that com-
bines multiple extremely randomized decision trees to create
a strong predictive model. Extra Tree works by introducing
randomness at two levels: feature selection and split point
selection. At each node of a decision tree, a random subset of
features is considered for splitting, and the split point is chosen
randomly within the range of the selected feature. Extra Tree is
known for its ability to handle high-dimensional data, missing
values, and outliers. It is also computationally efficient and can
provide feature importance scores [42], [43].

f) CatBoost: is a gradient boosting framework that
can handle categorical features without the need for explicit
encoding. CatBoost automatically encodes categorical features
using a technique called target encoding, which replaces each
category with the mean of the target variable for that cate-
gory. CatBoost also incorporates several other features, such
as overfitting prevention, missing value handling, and GPU
acceleration.

g) Hist gradient boosting: is a variant of gradient
boosting that uses histogram-based decision trees to improve
computational efficiency. Instead of storing the individual
feature values, Hist Gradient Boosting uses a histogram-based
approach to approximate the feature values, which reduces
the memory footprint and speeds up the training process.
Hist Gradient Boosting is particularly useful for large-scale
machine learning problems and has been successfully applied
in various domains, such as click-through rate prediction,
recommendation systems, and bioinformatics [29], [36].

3) Heterogeneous ensemble classifiers: In order to tackle
different attack scenarios, there is a need to develop robust
and accurate methods for identifying and categorizing these
attacks. One such approach is the use of heterogeneous classi-
fiers, which combine the strengths of multiple classification
algorithms to improve overall performance. In this section,
stacking and voting are two popular ensemble methods that
can be used to combine the predictions of heterogeneous
classifiers. In the context of host and network attack detection,
heterogeneous classifiers can be used to classify different
types of attacks. For example, in the context of host and
network attack detection, heterogeneous classifiers can be used
to classify different types of attacks. For example, RF can be
used to classify attacks based on their characteristics, such as
the type of traffic and the source IP address. MLP can be
used to classify attacks based on their patterns, such as the
sequence of packets and the duration of the attack. KNN can
be used to classify attacks based on their proximity to other
attacks, such as the similarity in traffic patterns. DT can be
used to classify attacks based on their decision tree structure,
such as the sequence of decisions made during the attack.
Combining diverse models, such as linear models, decision
trees, and neural networks, is often more effective than using
only one type of model. Voting and stacking are two popular
ensemble techniques that can leverage this diversity to achieve
superior performance. The choice between voting and stacking
depends on the specific problem, the available data, and the
characteristics of the base models. In general, voting is a good
choice when the base models are already performing well and
have different strengths, while stacking is more appropriate
when the base models have room for improvement and can
benefit from the meta-learner’s ability to learn the optimal
combination weights.

a) Voting classifiers: Classifiers aim to combine diverse
models for robust predictions. Voting classifiers are a powerful
ensemble learning technique that combines the predictions
of multiple trained models to create a final, more robust
classifier. By leveraging the strengths of diverse base models,
voting classifiers can achieve superior performance compared
to individual models. The key to effective voting is ensuring
the underlying classifiers are sufficiently different, which is
often accomplished by training them on distinct subsets of
features. Soft voting allows assigning weights to each base
model, while hard voting relies on majority vote. However,
it’s important to note that training all ensemble members on
the same set of features is generally not recommended, as it
can limit the diversity of the models. Instead, using different
subsets of features or even different types of models, such as
decision trees and random forests, can lead to more effective
voting and better predictive performance [35], [44].

b) Stacking classifiers: aim for learning to optimally
combine models. Stacking is another ensemble learning tech-
nique that combines the predictions of multiple base models
to produce a final prediction. Unlike voting, which uses pre-
specified weights or majority vote, stacking employs a meta-
learner to learn the optimal way to combine the base model
predictions from data. This meta-learner is a higher-level
model that takes the base model outputs as input features
and the true labels as the target variable. By allowing the
meta-learner to learn the combination weights, stacking can
often outperform voting when the base models are diverse and
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have different strengths and weaknesses. Stacking can improve
overall performance by leveraging the unique capabilities of
each base model while mitigating their individual limitations.
The key steps in stacking are; first: splitting the data into
training and holdout sets. Second, training the base models
on the training data. Third, using the trained base models to
make predictions on the holdout set. Finally, using the holdout
set predictions as input features and the true labels as the target
for training the meta-learner [36], [44].

C. Performance Measures

In assessing the performance of the previously outlined
classification machine learning (ML) methods, it is crucial to
evaluate their accuracy, recall, precision, and F1 score [45].
These metrics provide valuable insights into the model’s ability
to correctly classify instances, detect relevant instances, and
balance between precision and recall [46].

• Accuracy is a measure of how well a model is able
to correctly classify instances. It is calculated as the
proportion of correctly classified instances out of the
total number of instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision is a measure of how well a model is able to
avoid false positives. It is calculated as the proportion
of true positives out of the total number of instances
classified as positive.

Precision =
TP

TP + FP
(3)

• Recall measures the proportion of actual positive in-
stances that are correctly identified by the model. It
is calculated by dividing the number of true positives
by the sum of true positives and false negatives.

Recall =
TP

TP + FN
(4)

• F1 score is a harmonic mean of precision and recall,
providing a balanced measure of a model’s perfor-
mance.

F1 =
2 · Precision · Recall
Precision + Recall

(5)

where:
◦ TP is the number of true positives (correctly

classified samples).
◦ TN is the number of true negatives (correctly

rejected samples).
◦ FP is the number of false positives (incor-

rectly classified samples).
◦ FN is the number of false negatives (incor-

rectly rejected samples).

III. RESULTS AND DISCUSSION

A. Binary Classification Results

1) Base classifiers results: Table VIII presents the perfor-
mance metrics of various classifiers for the binary classification

task in which each power consumption instance is classified
as either benign or attack. The Random Forest classifier
outperforms others with an accuracy of 95.074%, precision
of 94.890%, recall of 95.074%, and F1-score of 94.914%.
The Multilayer Perceptron also shows strong performance
with an accuracy of 94.436%, precision of 94.234%, recall of
94.436%, and F1-score of 94.054%. K-Nearest Neighbors and
the Decision Tree exhibit solid performance metrics, while the
Logistic Regression and Support Vector Machine have lower
scores comparatively. The Naive Bayes classifier performs the
poorest with significantly lower metrics across all categories,
especially with an accuracy of 43.040% and an F1-score of
51.095%.

TABLE VIII. PERFORMANCE METRICS OF VARIOUS BASE CLASSIFIERS
FOR BINARY CLASSIFICATION

Classifier Accuracy Precision Recall F1-score
Decision Tree 93.608% 93.538% 93.608% 93.571%
K-Nearest Neighbors 94.350% 94.118% 94.350% 94.173%
Logistic Regression 87.606% 84.885% 87.606% 84.983%
Multilayer Perceptron 94.436% 94.234% 94.436% 94.054%
Naive Bayes 43.040% 76.572% 43.040% 51.095%
Random Forest 95.074% 94.890% 95.074% 94.914%
Support Vector Machine 91.210% 90.615% 91.210% 89.879%

2) Ensemble methods results: Table IX presents the perfor-
mance of various ensemble methods for the binary classifica-
tion task, categorizing instances as either attack or benign. In
terms of accuracy, CatBoost and LightGBM lead with 95.37%
and 95.41%, respectively, followed closely by HistGradient
Boosting at 95.29%. XGBoost and Bagging (Random Forest)
also perform well, with accuracies of 95.26% and 95.19%.

TABLE IX. PERFORMANCE METRICS OF VARIOUS ENSEMBLE METHODS
FOR BINARY CLASSIFICATION

Classifier Accuracy Precision Recall F1-score
Bagging (Decision Tree) 94.63% 94.41% 94.63% 94.44%
Bagging (KNN) 94.36% 94.13% 94.36% 94.18%
Bagging (MLP) 94.21% 93.94% 94.21% 93.89%
Bagging (Random Forest) 95.19% 95.01% 95.19% 95.01%
AdaBoost (Decision Tree) 94.05% 93.80% 94.05% 93.87%
Gradient Boosting 91.11% 91.94% 91.11% 89.02%
XGBoost 95.26% 95.08% 95.26% 95.09%
Extra Trees 94.50% 94.26% 94.50% 94.25%
HistGradient Boosting 95.29% 95.12% 95.29% 95.13%
CatBoost 95.37% 95.21% 95.37% 95.21%
LightGBM 95.41% 95.25% 95.41% 95.25%
Voting Classifier 94.75% 94.53% 94.75% 94.52%
Stacking Classifier 94.39% 94.16% 94.39% 94.22%

Precision is highest for LightGBM at 95.25%, followed by
CatBoost at 95.21%, and HistGradient Boosting at 95.12%.
XGBoost and Bagging (Random Forest) also maintain high
precision at 95.08% and 95.01%.

Recall metrics reveal that LightGBM and CatBoost excel
with 95.41% and 95.37%, respectively, with HistGradient
Boosting at 95.29%. Bagging (Random Forest) and XGBoost
maintain high recall at 95.19% and 95.26%.

F1-scores, which balance precision and recall, are highest
for LightGBM (95.25%), CatBoost (95.21%), and HistGradi-
ent Boosting (95.13%). Bagging (Random Forest) and XG-
Boost show strong F1-scores at 95.01% and 95.09%.

Notably, the Voting Classifier and Stacking Classifier are
heterogeneous ensembles, achieving accuracies of 94.75%
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and 94.39%, respectively, with the Voting Classifier showing
slightly higher performance metrics. Other methods, such
as Bagging and Boosting techniques, are homogeneous en-
sembles, demonstrating a range of high to low performance
based on the classifier used. The heterogeneous ensembles,
despite not having the highest individual metrics, still show
competitive performance, illustrating the strength of combining
diverse models.

B. Multi-Class Classification Results

1) Base Classifiers Results: Table X presents the perfor-
mance metrics of selected base classification methods for a
multi-class classification task, where each instance is catego-
rized as either benign or one of three possible attack types.
Among the classifiers, Random Forest shows the highest per-
formance with an accuracy of 90.857%, precision of 90.819%,
recall of 90.857%, and an F1-score of 90.815%. The K-Nearest
Neighbors (KNN) classifier follows, achieving an accuracy
of 88.788%, precision of 88.750%, recall of 88.788%, and
an F1-score of 88.677%. The Decision Tree classifier also
performs robustly with an accuracy of 87.711%, precision of
87.670%, recall of 87.711%, and an F1-score of 87.636%.
The Multi-Layer Perceptron (MLP) classifier, while slightly
lower in performance compared to the others, still maintains
a reasonable accuracy of 81.928%, precision of 82.268%,
recall of 81.928%, and an F1-score of 81.969%. Overall,
Random Forest demonstrates the strongest performance across
all metrics for this multi-class classification task.

TABLE X. PERFORMANCE METRICS OF BASE CLASSIFIERS FOR
MULTI-CLASS CLASSIFICATION

Classifier Accuracy Precision Recall F1 Score
Random Forest 90.857% 90.819% 90.857% 90.815%
KNN 88.788% 88.750% 88.788% 88.677%
Decision Tree 87.711% 87.670% 87.711% 87.636%
MLP 81.928% 82.268% 81.928% 81.969%

2) Ensemble methods results: Table XI demonstrates the
performance of various ensebmle method for multi-class classi-
fication. The ensemble methods employed in the classification
task displayed varying levels of performance.

TABLE XI. PERFORMANCE METRICS OF ENSEMBLE METHODS FOR
MULTI-CLASS CLASSIFICATION

Ensemble Method Accuracy Precision Recall F1 Score
Bagging (Decision Tree) 89.716% 89.674% 89.716% 89.688%
AdaBoost (Decision Tree) 89.657% 89.605% 89.657% 89.621%
Gradient Boosting 81.490% 81.937% 81.490% 81.627%
XGBoost 86.535% 86.711% 86.535% 86.565%
Extra Trees 90.189% 90.177% 90.189% 90.177%
HistGradient Boosting 89.805% 89.860% 89.805% 89.800%
CatBoost 86.316% 86.498% 86.316% 86.347%
Stacking Classifier 91.076% 91.030% 91.076% 91.040%
Voting Classifier 90.721% 90.694% 90.721% 90.702%

Bagging, utilizing decision trees, achieved an accuracy
of 89.716%, closely followed by AdaBoost, which attained
89.657%. While accuracy provides an overall measure of
correctness, other metrics offer deeper insights. For instance,
Gradient Boosting exhibited a lower accuracy of 81.490%,
indicating comparatively weaker performance among the meth-
ods. However, its precision, recall, and F1 score values, around

81.937%, 81.490%, and 81.627%, respectively, reveal its abil-
ity to maintain a balance between true positives, true nega-
tives, false positives, and false negatives. XGBoost demon-
strated a moderate accuracy of 86.535%, with precision, recall,
and F1 score values approximately 86.711%, 86.535%, and
86.565%, respectively, showcasing its effectiveness in correctly
identifying both positive and negative instances. Extra Trees
emerged as the top performer, achieving the highest accuracy
of 90.189%. Its precision, recall, and F1 score closely matched
the high accuracy, indicating robust and consistent perfor-
mance across different evaluation metrics. HistGradient Boost-
ing and CatBoost displayed similar accuracies of 89.805%
and 86.316% respectively, with corresponding precision, recall,
and F1 score values reflecting their performance in handling
large datasets and categorical features, respectively. Among the
ensemble techniques, the Stacking Classifier outperformed oth-
ers, reaching an accuracy of 91.076%. Its precision, recall, and
F1 score values closely mirrored the high accuracy, indicating
robust performance across various evaluation metrics. Simi-
larly, the Voting Classifier demonstrated strong performance
with an accuracy of 90.721%. These results underscore the
importance of considering multiple evaluation metrics when
selecting appropriate ensemble methods for classification tasks,
with the Stacking Classifier showcasing the highest overall
performance in terms of accuracy and other key metrics.

C. Discussion

1) Binary classification results: The binary classification
task aimed to differentiate between benign and malicious
instances of power consumption. The evaluation of various
base classifiers revealed intriguing nuances in their perfor-
mance. Random Forest emerged as the standout performer,
boasting an impressive accuracy of 95.074%. Its ability to con-
struct numerous decision trees and aggregate their predictions
led to robust classification, particularly effective in handling
the complexity of distinguishing between benign and attack
instances. Conversely, the Naive Bayes classifier exhibited
starkly lower accuracy metrics, shedding light on its inherent
limitations in capturing the intricacies of power consumption
patterns. Transitioning to ensemble methods, we witnessed
a paradigm shift in performance dynamics. CatBoost and
LightGBM showcased remarkable accuracies of 95.37% and
95.41%, respectively, surpassing even Random Forest. Their
gradient boosting mechanisms facilitated iterative refinement,
effectively capturing subtle patterns indicative of attack behav-
iors. Precision, recall, and F1-score analyses further empha-
sized the superiority of these ensemble methods, reaffirming
their efficacy in correctly classifying instances across various
evaluation metrics. However, it’s essential to acknowledge the
interpretability trade-off inherent in these advanced ensemble
methods. While they excel in predictive accuracy, the opacity
of their internal mechanisms may limit interpretability, posing
challenges in explaining model decisions—a crucial consider-
ation in security-critical applications.

2) Multi-class classification results: In the context of
the reference preprint of this study, in which the different
classifiers are applied on CICEVSE2024 Dataset, where the
focus is on detecting and classifying various types of attacks
such as syn-flood, cryptojacking, and backdoor attacks this
analysis evaluates the performance of several classifiers. These
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classifiers include homogeneous models like Bagging (De-
cision Tree), AdaBoost (Decision Tree), Gradient Boosting,
XGBoost, Extra Trees, HistGradient Boosting, and CatBoost.
Additionally, ensemble methods such as stacking and voting
ensembles are assessed. As shown in Table XI, the perfor-
mance metrics considered for evaluation are Accuracy, Preci-
sion, Recall, and F1 Score.

Starting by Bagging, which is an ensemble method aimed
at improving the stability and accuracy of machine learning al-
gorithms. The Bagging classifier with Decision Trees achieved
an accuracy of 0.897. The high values of Precision, Recall, and
F1 Score indicate a well-balanced performance, suggesting that
the model is not only accurate but also consistent in identifying
both attacks and normal activities without significant bias
towards any specific class. This performance demonstrates
Bagging’s effectiveness in creating robust models by reducing
variance through aggregation.

AdaBoost combines multiple weak classifiers to form a
strong classifier. The performance metrics for AdaBoost are
slightly lower than Bagging, with an accuracy of 0.897.
However, the difference is minimal, showing that AdaBoost is
almost as effective as Bagging in this context. The similarity
in performance metrics across Accuracy, Precision, Recall, and
F1 Score reflects a balanced classifier. AdaBoost’s iterative
process of focusing on misclassified instances helps improve
model accuracy, though it might not significantly outperform
Bagging in this dataset.

Gradient Boosting builds models sequentially to correct
the errors of its predecessors, achieved an accuracy of 0.815.
Despite its lower accuracy, the Precision of 0.819 is slightly
higher, suggesting that while it may miss some attacks (hence
lower Recall), it is precise in the predictions it makes. The
relatively lower performance could be due to the complexity
and potential overfitting of Gradient Boosting to specific
instances.

XGBoost demonstrated better performance than standard
Gradient Boosting with an accuracy of 0.865. XGBoost’s
enhanced algorithm and regularization techniques often re-
sult in better performance and faster training times, which
is reflected in its higher Precision and Recall compared to
Gradient Boosting. The improvement highlights XGBoost’s
efficiency in handling the dataset’s intricacies through its
advanced optimization and handling of missing data. The Extra
Trees classifier performed the best among all homogeneous
classifiers with an accuracy of 0.902. The high Precision,
Recall, and F1 Score indicate that Extra Trees is highly
effective in classifying different types of attacks and normal
activities. Its randomness in splitting points and selection of
features might have contributed to its superior performance by
reducing overfitting. This classifier’s ability to generate diverse
trees by randomizing splits results in a robust and accurate
model.

HistGradient Boosting, which bins the data into discrete
intervals to speed up computation, achieved an accuracy
of 0.898. This method is particularly efficient with large
datasets. Its performance metrics are very close to Bagging
and Extra Trees, indicating that it is also a strong contender
for classifying attacks in this dataset. The binning process
helps reduce computational complexity, thereby enhancing

performance without sacrificing accuracy. CatBoost designed
to handle categorical features, achieved an accuracy of 0.8632.
Although its performance metrics are slightly lower than XG-
Boost and Extra Trees, CatBoost’s ability to efficiently handle
categorical data might make it a preferred choice in datasets
with significant categorical features. Its balanced Precision and
Recall further indicate a reliable classification performance.
The specialized handling of categorical variables by CatBoost
results in a model that is robust and less prone to overfitting.

The Stacking Ensemble, which combines multiple models
to improve performance, achieved the highest accuracy of
0.911. By leveraging the strengths of different models, stacking
can often outperform individual models. The high Precision,
Recall, and F1 Score indicate that this ensemble method is very
effective in classifying the different types of attacks. Stack-
ing’s ability to combine different models’ predictions into a
meta-model enhances its accuracy and robustness. The Voting
Ensemble method, which aggregates the predictions of several
models, also showed strong performance with an accuracy of
0.907. The high Precision, Recall, and F1 Score suggest that
this method is effective in making robust predictions. Voting,
especially when using a combination of different types of
classifiers, helps balance the weaknesses of individual models,
leading to a reliable overall performance.

In comparing these classifiers, the ensemble methods,
particularly the Stacking Ensemble, demonstrated superior
performance with the highest accuracy, precision, recall, and
F1 scores. Among the homogeneous classifiers, Extra Trees
and HistGradient Boosting showed the best performance, indi-
cating their effectiveness in handling the dataset’s complexity.
Bagging and AdaBoost showed comparable and slightly lower
performance, suggesting that while boosting and aggregating
can enhance performance, they might not always outperform
more complex methods like Extra Trees. Overall, this analy-
sis of various homogeneous and ensemble classifiers on the
CICEVSE2024 dataset reveals that ensemble methods, partic-
ularly the Stacking Ensemble, deliver the best performance in
classifying different types of attacks. These methods leverage
the strengths of multiple models to achieve high accuracy,
precision, recall, and F1 scores.

In summary, the binary and multi-class classification results
underscored the multifaceted nature of power consumption
analysis in cybersecurity. While individual classifiers show-
cased distinct strengths and weaknesses, ensemble methods
emerged as indispensable tools for navigating the intricacies of
classification tasks. By harnessing the collective intelligence of
diverse models, ensemble methods transcended the limitations
of individual classifiers, offering unparalleled accuracy and
robustness—a testament to their pivotal role in advancing
cybersecurity analytics.

IV. CONCLUSION

The application of machine learning techniques to cy-
ber attack detection in electric vehicle charging stations has
demonstrated significant potential. The analysis of various
base classifiers and ensemble methods has provided valuable
insights into the nuances of model performance in this domain.

The standout performance of the Random Forest classifier
highlights the advantages of ensemble learning through the
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construction of multiple decision trees. Its ability to robustly
capture the complex patterns in power consumption data,
distinguishing between benign and malicious instances, un-
derscores the value of this approach. Conversely, the limita-
tions of the Naive Bayes classifier in this context shed light
on the importance of selecting appropriate models that can
effectively handle the intricacies of the problem at hand. The
superior performance of ensemble methods, such as CatBoost
and LightGBM, further reinforces the benefits of leveraging
multiple models to enhance predictive accuracy. These gradient
boosting-based techniques achieved high accuracy surpassing
even the strong performance of Random Forest. Their ability
to iteratively refine predictions, capturing subtle indicators of
attack behaviors, highlights the potential of ensemble learning
in security-critical applications.

The multi-class classification results on the CICEVSE2024
dataset corroborate these findings, with the Stacking Ensem-
ble and Voting Ensemble demonstrating the highest accu-
racies . These ensemble methods effectively combined the
strengths of various homogeneous classifiers, including the
well-performing Extra Trees and HistGradient Boosting mod-
els, to achieve robust and reliable attack detection. However,
As the adoption of electric vehicles continues to grow, the
need for robust and reliable cyber attack detection in charging
infrastructure becomes increasingly paramount. The findings
of this study underscore the significant potential of machine
learning, particularly ensemble methods, in enhancing the
security and resilience of these critical energy systems.
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