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Abstract—Cardiovascular disease (CVD) remains one of the
leading causes of mortality worldwide, highlighting the need
for early and precise prediction to support timely intervention.
This study introduces an ensemble-based adaptive approach that
personalizes CVD prediction by dynamically adjusting model
configurations based on patient subgroups. To achieve this,
various clustering techniques, including KMeans, DBSCAN, and
MeanShift, are employed alongside feature selection methods
such as chi-square, Mutual Information, and a baseline that
incorporates all features. By tailoring classifier selection to each
cluster, the proposed approach optimizes predictive performance,
with ensemble models configured using Multi-Layer Perceptron
(MLP) or Decision Tree classifiers. Through extensive experi-
ments utilizing 10-fold cross-validation, results indicate that the
adaptive ensemble consistently surpasses the static ensemble in
key performance metrics, including accuracy, precision, recall,
F1 score and AUC. In particular, the highest accuracy of 95.57%
was achieved using MeanShift clustering with the entire set
of features, demonstrating the effectiveness of density-based
clustering in improving classification performance. Notably, this
accuracy exceeds the best-reported results in previous studies,
establishing a new benchmark for CVD prediction. These findings
highlight the potential of adaptive ensemble selection to signifi-
cantly improve diagnostic precision, providing valuable insights
for personalized CVD prediction and broader applications in
medical decision making.
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I. INTRODUCTION

Cardiovascular disease (CVD) is a broad category of
conditions that affect the heart and blood vessels, including
hypertension, valvular disorders, arrhythmias, and coronary
artery disease [1], [2]. As one of the leading causes of
mortality worldwide, CVD underscores the urgent need for
an early and accurate diagnosis to improve patient outcomes
[3]. Traditional diagnostic approaches, such as analyzing vi-
tal signs, conducting physical examinations, and interpreting
electrocardiograms, have proven effective but are often time
consuming, prone to human error, and dependent on expert
interpretation [4], [5]. These limitations can delay diagnosis
and can lead to missed early indicators of disease progression.
As a result, there is a growing demand for advanced diagnostic
tools that can facilitate early detection and support timely
clinical intervention [6].

Rapid advances in artificial intelligence (AI) and machine
learning (ML) have opened new possibilities to automate and
improve CVD diagnosis [7], [8]. ML algorithms excel at
analyzing complex patterns in large-scale cardiac datasets,
allowing more precise and data-driven predictions that aid clin-
ical decision making [9]. A wide range of ML techniques, in-
cluding logistic regression, k-nearest neighbors, decision trees,
support vector machines, and ensemble models, have been
successfully applied to CVD prediction [10], [11]. Among
these, ensemble learning has gained significant traction due to
its ability to combine multiple models, improving predictive
accuracy and robustness for complex medical conditions like
CVD [12], [13].

Despite these advancements, traditional ensemble models
often rely on a fixed feature set, which may include irrelevant
or redundant variables. This can lead to overfitting, reduced
generalization, and increased computational complexity. Fea-
ture selection plays a crucial role in mitigating these challenges
by identifying the most informative predictors, thereby enhanc-
ing model efficiency and improving diagnostic performance
[14], [15], [16].

This study introduces an ensemble-based adaptive approach
for CVD diagnosis that tailors model configurations to distinct
subgroups of patients. By incorporating clustering techniques,
patients are segmented into groups with shared characteristics,
allowing the optimization of ensemble configurations based
on the specific characteristics of each cluster. In addition,
multiple feature selection techniques are applied and analyzed,
including chi-square and mutual information, to assess their
impact on predictive accuracy, alongside a baseline scenario
where all features are retained. This comprehensive evaluation
aims to highlight the role of feature selection in improving
diagnostic reliability and efficiency.

The key contributions of this study include:

• The development of a dynamic ensemble-based CVD
detection framework that adapts model selection based
on patient clustering to enhance diagnostic perfor-
mance.

• A comparative analysis of feature selection methods,
examining their impact on model accuracy and effi-
ciency in contrast to a baseline approach using all
available features.
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• A thorough evaluation of various clustering and en-
semble configurations across multiple performance
metrics to identify the most effective strategies for
CVD diagnosis.

The remainder of this paper is organized as follows. Section
II provides an overview of related work on ensemble-based ML
models for CVD prediction. Section III details the methodol-
ogy, covering data pre-processing, clustering, feature selection,
and model training. Section IV presents the experimental
results, followed by a discussion of key findings. Finally,
Section V concludes with insight and implications for future
research.

II. LITERATURE REVIEW

The application of machine learning (ML) in the diag-
nosis of cardiovascular disease (CVD) has gained significant
attention in recent years due to its potential to enhance both
accuracy and efficiency. Traditional diagnostic methods often
depend on extensive clinical expertise and are susceptible
to human error. To overcome these challenges, ML models
have been increasingly employed to analyze complex clinical
data, providing more reliable and data-driven predictions [17].
Among these approaches, ensemble learning has emerged as
a powerful technique for integrating multiple base models,
improving both prediction accuracy and robustness in CVD
detection.

Ensemble learning combines predictions from multiple
classifiers to enhance overall model performance, as demon-
strated in recent studies exploring various voting and stacking
strategies. For instance, the authors of [18] implemented a
voting ensemble that integrated deep learning (DL) classifiers
with traditional ML models, achieving an accuracy of 88.7%
in heart disease prediction. Their approach used six classifiers:
Random Forest (RF), k-Nearest Neighbors (KNN), Decision
Tree (DT), Extreme Gradient Boosting (XGB), Deep Neural
Network (DNN), and Kernel Deep Neural Network (KDNN).
Similarly, studies in [10], [19] explored voting ensembles com-
bining classifiers such as Naı̈ve Bayes (NB), Artificial Neural
Network (ANN), Logistic Regression (LR), DT, and KNN.
These studies also incorporated extra tree feature selection,
demonstrating improved accuracy on the Cleveland dataset.

The integration of feature selection with ensemble mod-
els has become a key research area, improving both model
interpretability and computational efficiency. Selecting only
the most relevant features reduces overfitting and enhances
predictive performance. For example, [20] applied Chi-square
and recursive feature elimination (RFE) together with en-
semble methods, reporting that Classification and Regression
Trees (CART) achieved the highest accuracy (87. 65%) in
CVD prediction. Furthermore, [21] investigated the effects of
combining bagging, boosting, majority voting, and stacking
with feature selection in various base classifiers, including NB,
RF, C4.5, Bayesian Network, Multilayer Perceptron (MLP),
and Projective Adaptive Resonance Theory (PART), achieving
an accuracy improvement of 7. 26% for weaker classifiers.

To further refine predictive accuracy, advanced optimiza-
tion techniques have been integrated into the ensemble
frameworks. For example, [22] explored the combination of
correlation-based feature selection (CFS) with Particle Swarm

Optimization (PSO), achieving an accuracy of 85.71% for
CVD diagnosis. Similarly, [23] developed a voting ensemble
incorporating Support Vector Machine (SVM), DT, and ANN
classifiers, significantly outperforming individual models in
precision, recall, and F1 score. Another study, [24], proposed
a novel voting strategy using an ensemble of six ML models,
achieving an accuracy of 83%, exceeding the performance of
any single model.

Recent efforts have also incorporated deep learning tech-
niques into ensemble frameworks to capture complex patterns
in high-dimensional medical data. In [25], the authors com-
bined Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) networks with traditional ML models such as
RF, SVM and KNN in a voting ensemble, leading to an
increase in accuracy of 2.1% compared to individual models
in the Cleveland dataset. Similarly, [26] proposed an ensemble
approach using SVM, NB and ANN classifiers with majority
vote, reporting an accuracy of 87 05%.

One of the most recent advances in this field is presented
in [27], where a voting ensemble approach was integrated with
the selection of Chi-square characteristics for improved CVD
detection. This model employed classifiers such as NB, RF,
LR, and KNN, achieving an accuracy of 92.11% demonstrating
the impact of feature selection in reducing computational
overhead while improving predictive performance.

Although these studies highlight the effectiveness of en-
semble learning for CVD prediction, most rely on static
ensemble configurations that do not adapt to individual patient
profiles. In addition, limited research has comprehensively
examined the influence of different feature selection tech-
niques, particularly in scenarios where all features are retained,
within ensemble frameworks for CVD prediction. This study
addresses these gaps by introducing a dynamic ensemble-based
approach, where patient clustering is employed to segment
individuals into subgroups, each with an optimized ensemble
configuration. Furthermore, multiple feature selection tech-
niques are assessed, offering a comparative analysis of their
impact on predictive performance in CVD diagnosis.

III. METHODOLOGY

The pseudocode presented in Algorithm 1 outlines a sys-
tematic approach to evaluate machine learning models and
ensemble configurations in the detection of cardiovascular
disease. Each step is designed to build on the previous one,
ensuring a comprehensive and robust model evaluation process.
The methodology begins with data loading, preprocessing, and
scaling to standardize the data set, ensuring consistency be-
tween models and minimizing bias caused by the varying range
of features. Feature selection techniques are then applied to
identify the most relevant predictors, reducing dimensionality,
and improving computational efficiency. This step improves
the effectiveness of both clustering and classification by fo-
cusing on the most informative features.

Once the feature selection process is complete, clustering
techniques are used to segment patients into distinct groups.
These clusters serve as the foundation for adaptive ensemble
models, allowing classifier configurations to be optimized for
each subgroup based on their unique characteristics. Following
clustering, individual classifiers are trained, fine-tuned, and
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integrated into static and adaptive ensemble frameworks to
improve predictive performance. To ensure the reliability and
generalizability of the models, cross-validation is conducted
across multiple performance metrics. Finally, the performance
results are aggregated and stored for further analysis, enabling
a comparative evaluation of different ensemble configurations
and providing insights into their effectiveness in CVD predic-
tion.

Algorithm 1 Main Steps of the Research Methodology

1: Set random seed for reproducibility
2: Load and Prepare the Dataset
3: Load data from CSV
4: Split data into training and test sets
5: Normalize feature values
6: Define Feature Selection, Clustering Methods, and

Ensemble Selectors
7: Set Up Cross-Validation and Hyperparameter Grids

for Base Models
8: for each feature selection method do
9: Apply feature selection

10: Train and tune individual classifiers
11: Define static and adaptive ensemble configurations
12: for each clustering method and ensemble selector do
13: Apply clustering to training data
14: Train ensemble selector based on clusters
15: for each validation fold do
16: Predict using dynamic adaptive ensemble
17: Evaluate performance metrics
18: end for
19: Store results for dynamic ensemble
20: end for
21: Evaluate Static Ensemble with Cross-Validation
22: for each validation fold do
23: Predict using static ensemble
24: Evaluate performance metrics
25: end for
26: Store results for static ensemble
27: end for
28: Save All Results to CSV

A. Data Collection

In this study, the Cleveland Heart Disease dataset, a widely
used public dataset from the University of California at Irvine
(UCI) Machine Learning Repository, was used to predict the
probability of heart disease [28]. The data set comprises 303
patient records and 76 attributes, although most research efforts
usually focus on a subset of 14 key features. These include 13
input variables: age, sex, cholesterol level, heart rate, type of
chest pain, fasting blood sugar, blood pressure, resting ECG,
exercise-induced angina, ST slope, ST depression, the number
of vessels detected by fluoroscopy, and thalassemia status.
The final attribute serves as the output variable, indicating the
presence or absence of heart disease as a binary classification
(0 or 1) [29]. A detailed description of these attributes is
provided in Table I.

B. Data Preparation and Preprocessing

The first step in the methodology involves data set prepara-
tion and pre-processing, which serves as a crucial foundation

TABLE I. ATTRIBUTE INFORMATION FOR THE CLEVELAND HEART
DISEASE DATASET

Attribute Type Details
Age Num Age (years)
Sex Categorical 1: Male, 0: Female
Cp Categorical Chest pain type (4: asymptomatic, 3: non-anginal, 2:

atypical, 1: typical)
Trestbps Num Resting BP (mmHg)
Chol Num Serum cholesterol (mg/dL)
Fbs Categorical Fasting blood sugar > 120 mg/dL (1: true, 0: false)
Restecg Categorical ECG (2: LV hypertrophy, 1: ST-T abnormality, 0:

normal)
Thalach Num Max heart rate
Exang Categorical Exercise-induced angina (1: yes, 0: no)
Oldpeak Num ST depression during exercise
Slope Categorical ST segment slope (3: downward, 2: flat, 1: upward)
Ca Categorical Major vessels (0-3) visualized by fluoroscopy
Thal Categorical Thallium test (7: reversible defect, 6: fixed defect, 3:

normal)
Num Categorical Heart disease diagnosis (1: > 50% narrowing, 0: ≤

50%)

for building robust and accurate machine learning models.
The data set is first loaded using pandas, with the input
features (X) and the target variable (y) carefully separated to
ensure a clear distinction between predictive factors and dis-
ease classification. To standardize feature ranges and improve
model performance, MinMaxScaler is applied, normalizing
all feature values between 0 and 1. This scaling process not
only facilitates faster model convergence, but also ensures that
features contribute fairly to the learning process, ultimately
enhancing the predictive accuracy of cardiovascular disease
detection.

C. Feature Selection

Feature selection plays a crucial role in refining the input
variables to include only the most relevant features, thus reduc-
ing dimensionality, minimizing noise, and improving compu-
tational efficiency. Three selection methods are examined: no
feature selection, Chi-Squared [30], and Mutual Information
[31]. The Chi-Squared method evaluates the independence
between features and the target variable, selecting features that
are most correlated with disease presence. Mutual information,
alternatively, calculates the information shared between each
feature and the target, highlighting the features with the
highest contribution to accurate predictions. By identifying the
optimal subset of features, this stage improves model focus and
predictive power in cardiovascular disease detection.

D. Clustering Methods

In the context of adaptive learning, clustering provides
an unsupervised approach to grouping data points based on
inherent similarities, enabling the identification of underlying
patterns in the data set. This study explores eight cluster-
ing methods-KMeans, Gaussian mixture model (GMM), DB-
SCAN, aggregative clustering, spectral clustering, meanshift,
affinity propagation and fuzzy C-means. Each technique offers
a distinct approach to data segmentation, capturing various
clustering structures that may correspond to different risk
profiles or disease stages.

• K-Means [32]: A widely used centroid-based cluster-
ing method that partitions data into k clusters by min-
imizing intra-cluster variance. The objective function
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is given by:

k∑
j=1

∑
xi∈cj

∥xi − µj∥2

where each data point xi is assigned to the nearest
cluster centroid µj . As a “hard” clustering method,
K-Means is efficient for large datasets but assumes
spherical clusters, which may limit performance on
complex data distributions.

• Gaussian Mixture Model (GMM) [33]: A probabilistic
clustering approach that models data as a mixture of
multiple Gaussian distributions. Each data point is
assigned a probability of belonging to each cluster,
enabling “soft” assignments. The probability distribu-
tion is given by:

P (xi) =
k∑

j=1

πjN (xi|µj ,Σj)

where πj is the weight of cluster j, and N (xi|µj ,Σj)
represents the Gaussian distribution with mean µj

and covariance matrix Σj . GMM is effective for
modeling elliptical clusters and capturing overlapping
distributions.

• DBSCAN [34]: Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) identifies high-
density regions in the data space and groups points
accordingly. Clusters are formed where the number
of points in an ϵ-neighborhood exceeds a predefined
threshold (MinPts):

|{xj ∈ Neighborhood(xi, ϵ)}| ≥ MinPts

DBSCAN is effective for detecting arbitrarily shaped
clusters and handling noise, as it does not require
predefining the number of clusters.

• Agglomerative Clustering [35]: A hierarchical clus-
tering method that initially treats each data point as
an individual cluster and iteratively merges clusters
based on similarity. Various linkage criteria (single,
complete, or average linkage) determine how clusters
are merged, making it adaptable to different data
structures.

• Spectral Clustering [36]: A graph-based clustering
method that constructs an affinity matrix capturing
pairwise similarities between data points. Eigenvalue
decomposition is then applied to identify clusters.
Spectral Clustering is particularly effective for non-
convex data structures where traditional methods like
K-Means may struggle.

• MeanShift [37]: A density-based clustering algorithm
that iteratively shifts data points towards the nearest
high-density region (mode). It does not require spec-
ifying the number of clusters in advance, making it
adaptable to varying data distributions but computa-
tionally intensive for large datasets.

• Affinity Propagation [38]: An exemplar-based cluster-
ing algorithm that identifies representative points (ex-
emplars) through a message-passing mechanism. Un-
like K-Means, Affinity Propagation does not require
specifying k in advance, making it highly adaptive to
complex data structures.

• Fuzzy C-Means (FCM) [39]: A soft clustering tech-
nique where data points have varying degrees of mem-
bership to multiple clusters. The objective function is
given by:

J =

n∑
i=1

k∑
j=1

um
ij∥xi − µj∥2

where uij represents the membership degree of xi in
cluster j, and m > 1 controls the fuzziness level. FCM
is effective when dealing with overlapping clusters.

These clustering techniques provide valuable information
on the structure of the dataset, allowing the adaptive ensemble
model to tailor its configurations to the distinct properties of
each cluster. In the context of cardiovascular disease detection,
these methods help uncover subgroups of patients that may
correspond to varying risk profiles or stages of the disease.

Diverse base classifiers are employed, including Random-
ForestClassifier, SVC, KNeighborsClassifier, LogisticRegres-
sion, and NaiveBayes to capture different patterns in the dataset
[40]. Each classifier offers distinct advantages: Random Forest
leverages multiple decision trees for robust predictions, SVC
maximizes the margin between classes using support vectors,
k-NN classifies based on similarity measures, and Logistic
Regression estimates the probability of binary classification
as follows:

P (y = 1|x) = 1

1 + e−(β0+β1x1+···+βpxp)

To maximize predictive performance, hyperparameter tun-
ing is conducted using GridSearchCV, ensuring each model
operates at its optimal configuration for the detection of
cardiovascular diseases.

E. Ensemble Models: Static and Adaptive Configurations

To enhance model robustness and accuracy, ensemble
methods are employed to combine predictions from multiple
classifiers. Both static and adaptive configurations are consid-
ered, as outlined in Table II:

1) Static ensemble: A voting classifier aggregates predic-
tions from tuned base models using soft voting [41]:

y = argmax
c

∑
i

P (yi = c)

where P (yi = c) represents the probability assigned by
classifier i to class c. This approach leverages the collective
predictive power of multiple classifiers to improve accuracy.
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2) Adaptive ensemble: This approach applies three con-
figurations that dynamically select specific models based on
clustering labels, adapting to distinct cluster-specific patterns.
A stacking classifier is further introduced, where the outputs
of base classifiers serve as input to a meta-classifier, refining
the final prediction.

These ensemble strategies improve the accuracy of the
overall prediction by integrating the insights of multiple mod-
els, making them particularly effective for the detection of
cardiovascular disease in diverse patient profiles.

F. Cross-Validation and Performance Evaluation

To ensure a rigorous evaluation, a 10-fold cross-validation
is performed, preserving class distribution across folds. This
stratified validation provides a reliable assessment of model
generalization [42]. Key performance metrics: accuracy, preci-
sion, recall, F1 score, and AUC are calculated to evaluate the
detection efficacy of each model:

• Accuracy: Measures the overall accuracy of the model.

• Precision: Reflects the reliability of positive predic-
tions.

• Recall: Measures the sensitivity to actual positive
cases.

• F1-score: Balances precision and recall.

• AUC: Evaluates the discriminative ability of the
model.

This stage ensures a comprehensive evaluation of each
model’s ability to detect cardiovascular disease accurately and
reliably.

G. Adaptive Ensemble Selection

Adaptive ensemble selection leverages clustering labels to
dynamically tailor ensemble configurations for each identified
cluster. By matching clusters with the most suitable ensemble
models, this approach effectively captures variations within
the dataset. This adaptability improves predictive accuracy
by optimizing model selection for different subgroups of
patients. In addition, it improves interpretability by providing
information on the variability of the predictions in groups,
supporting a more personalized and reliable approach to the
detection of cardiovascular disease.

H. Result Aggregation and Analysis

Upon completing cross-validation, the performance metrics
for each model configuration are averaged and analyzed. This
aggregation identifies the configurations that achieve the best
balance across key evaluation criteria, including accuracy,
precision, recall, F1-score, and AUC. By highlighting the
most effective models for the detection of cardiovascular
disease, these insights provide an evidence-based assessment
of predictive performance.

To facilitate detailed comparisons, the results are stored
in a CSV file, allowing further analysis and evaluation. This
structured approach supports a comprehensive assessment of
the effectiveness of the adaptive ensemble system in improving
disease detection accuracy.

I. Performance Measures

In assessing the effectiveness of classification models for
the detection of cardiovascular disease, key performance met-
rics are evaluated: accuracy, precision, recall, F1 score and
AUC-ROC [43]. These metrics provide a comprehensive view
of each model’s ability to classify instances correctly, balance
detection between different health statuses, and maintain robust
performance across varying classification thresholds.

• Accuracy quantifies the proportion of correctly clas-
sified instances in the detection of cardiovascular dis-
ease. It is computed as the ratio of correctly predicted
cases (both positive and negative) to the total number
of cases:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where:
◦ TP (True Positives): Correctly classified

disease-positive cases.
◦ TN (True Negatives): Correctly classified

disease-negative cases.
◦ FP (False Positives): Cases incorrectly classi-

fied as disease-positive.
◦ FN (False Negatives): Cases incorrectly clas-

sified as disease negative.
Accuracy provides an overall assessment of the cor-
rectness of the model in identifying both disease and
non-disease cases.

• Precision measures the reliability of the model in
identifying true disease cases among those classified
as disease-positive, minimizing false positives. It is
defined as:

Precision =
TP

TP + FP
(2)

A high-precision score indicates that, when the model
predicts a positive case, it is likely correct.

• Recall (or sensitivity) evaluates the proportion of
actual disease cases correctly identified by the model.
This metric is particularly crucial in medical diag-
nostics, where missing actual disease cases (false
negatives) can have serious consequences. Recall is
computed as:

Recall =
TP

TP + FN
(3)

In the detection of cardiovascular disease, a high recall
score ensures that most cases of disease are correctly
identified.

• F1 Score provides a balanced measure of precision and
recall. As the harmonic mean of these two metrics, it
is particularly useful when both aspects are equally
important. The F1 score is calculated as:

F1 =
2 · Precision · Recall
Precision + Recall

(4)

A high F1 score indicates that the model achieves
a good balance between correctly identifying disease
cases and minimizing false positives.
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TABLE II. CLUSTER CONFIGURATION OF ENSEMBLE MODELS

Ensemble Type Configuration Description
Static Ensemble Voting (Soft) Combines predictions from RandomForest (RF), SVC, k-NN, and Logistic Regression

(LR) using soft voting. This ensemble aggregates the predictions of each classifier and averages the
probabilities to improve robustness and accuracy across the entire dataset.

Adaptive Ensemble 1 Voting (Soft) Combines RandomForest (RF) and Logistic Regression (LR) using soft voting. This
configuration adapts to clusters where tree-based and linear models best capture the underlying
patterns.

Adaptive Ensemble 2 Voting (Soft) Combines SVC and k-NN using soft voting. This configuration is applied to clusters that may benefit
from both margin-based and instance-based classification techniques.

Adaptive Ensemble 3 Stacking (with Logistic Regression meta-classifier) Integrates RandomForest (RF), SVC, and k-NN, with Logistic Regression as meta-
classifier. The metaclassifier learns from the base classifiers’ predictions, adapting to clusters where
combined outputs from tree, margin, and instance-based models are beneficial.

• AUC-ROC (Area Under the Receiver Operating Char-
acteristic Curve) evaluates the ability of the model
to differentiate between disease and non-disease cases
in varying classification thresholds. It is computed as
the area under the ROC curve, which plots the true
positive rate (recall) against the false positive rate:

AUC-ROC =

∫ +∞

−∞
TPR(x) dFPR(x) (5)

where:
◦ TPR (True Positive Rate) corresponds to the

recall.
◦ FPR (False Positive Rate) represents the pro-

portion of non-disease cases incorrectly clas-
sified as disease positive.

A higher AUC-ROC score indicates superior overall
performance in distinguishing between disease and
non-disease cases.

These performance metrics collectively provide a rigor-
ous evaluation framework, helping identify the most effective
model configurations for the detection of cardiovascular dis-
ease based on the data set and research objectives.

IV. RESULTS AND ANALYSIS

This section presents a comprehensive analysis of the
results obtained from the evaluation of individual classifiers
and ensemble methods under various clustering and feature
selection configurations. The primary objective is to evaluate
the performance of classifiers both independently and within
adaptive and static ensemble frameworks.

The evaluation is carried out using key performance met-
rics, including accuracy, precision, recall, F1 score, and AUC,
to determine the effectiveness of each approach in the detection
of cardiovascular disease. The analysis provides insights into
how different ensemble strategies and clustering techniques
influence model performance, highlighting the most effective
configurations.

A. Individual Classifiers Results

Table III presents a summary of the performance of individ-
ual classifiers under different feature selection methods. The
evaluation reveals several key trends in classifier performance
in various feature selection strategies.

In general, using all features (denoted as “All features”)
resulted in consistently strong performance across classifiers.

In particular, Naive Bayes (NB) achieved the highest overall
metrics, with an accuracy of 83%, precision of 85%, recall
of 83%, F1 score of 83%, and AUC of 83%. This suggests
that NB performs robustly when provided with the full feature
set, likely due to its probabilistic nature and ability to handle
redundant features effectively.

Support Vector Classifier (SVC) and Logistic Regression
(LR) also exhibited stable performance across feature selection
methods, with only slight variations. However, SVC demon-
strated notable improvements with Chi-Squared feature selec-
tion, achieving the highest accuracy (84%) while maintaining
strong scores in other metrics. This suggests that chi-square
selection improves the ability of SVC to capture relevant
patterns while reducing noise.

Additionally, Chi-Squared feature selection benefited K-
Nearest Neighbors (KNN), improving both precision and recall
compared to the full feature set. This improvement may
indicate that the Chi-square selection aligns well with the
neighborhood-based approach of KNN, likely by eliminat-
ing irrelevant or less discriminative features, thus refining
similarity-based classification.

Overall, these results highlight the impact of feature se-
lection on model performance, with Chi-Squared emerging as
a particularly beneficial method to improve certain classifiers
while maintaining overall predictive effectiveness.

In contrast, the selection of mutual information features
(MutualInfo) produced mixed results between the classifiers.
Naı̈ve Bayes (NB) continued to perform well, maintaining
high precision, recall, and AUC, demonstrating its resilience
to feature reduction. However, MutualInfo negatively impacted
Random Forest (RF), as indicated by a drop in accuracy (77%),
precision (78%), recall (77%), F1 score (77%), and AUC
(76%). This suggests that RF may rely on a wider set of
features for optimal performance, as feature reduction could
limit its ability to leverage multiple informative attributes.

Similarly, K-Nearest Neighbors (KNN) exhibited a de-
crease in the F1 score and AUC under MutualInfo, implying
that, like RF, it benefits less from this feature selection method.
The performance reduction may be due to the nature of KNN,
which depends on distance-based comparisons, making it more
sensitive to the availability of relevant features.

Overall, the results suggest that Naı̈ve Bayes and Support
Vector Classifier (SVC) exhibit more stable and resilient
performance across feature selection methods, with SVC par-
ticularly excelling under Chi-Squared selection. In contrast,
RF and KNN displayed greater sensitivity to feature selection,
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TABLE III. 10-FOLD CROSS-VALIDATION RESULTS FOR DIFFERENT CLASSIFIERS UNDER VARIOUS FEATURE SELECTION METHODS

Classifier Feature Selection Accuracy Precision Recall F1 Score AUC
RF All features 81.00% 82.00% 81.00% 81.00% 81.00%
SVC All features 82.00% 83.00% 82.00% 82.00% 82.00%
KNN All features 81.00% 82.00% 81.00% 80.00% 80.00%
LR All features 82.00% 83.00% 82.00% 82.00% 82.00%
NB All features 83.00% 85.00% 83.00% 83.00% 83.00%
RF ChiSquared 80.00% 80.00% 80.00% 80.00% 80.00%
SVC ChiSquared 84.00% 84.00% 84.00% 84.00% 83.00%
KNN ChiSquared 82.00% 83.00% 82.00% 82.00% 82.00%
LR ChiSquared 82.00% 83.00% 82.00% 82.00% 81.00%
NB ChiSquared 81.00% 82.00% 81.00% 81.00% 81.00%
RF MutualInfo 77.00% 78.00% 77.00% 77.00% 76.00%
SVC MutualInfo 82.00% 83.00% 82.00% 82.00% 81.00%
KNN MutualInfo 80.00% 81.00% 80.00% 79.00% 79.00%
LR MutualInfo 81.00% 82.00% 81.00% 81.00% 80.00%
NB MutualInfo 83.00% 84.00% 83.00% 83.00% 83.00%

especially under MutualInfo, indicating their preference for a
larger set of features to maintain balanced precision, recall,
and discriminatory power.

These findings emphasize the importance of selecting
appropriate feature selection methods to optimize classifier
performance. Specifically, Chi-Squared selection appears par-
ticularly beneficial for SVC and Logistic Regression (LR),
whereas utilizing all features might yield the best results for
NB.

B. Ensemble Methods Results

1) Performance analysis of adaptive and static ensemble
selection: This section provides a comprehensive evaluation
of the performance of adaptive and static ensemble selection
methods, emphasizing the advantages of adaptive configu-
rations, particularly when combined with various clustering
techniques, across all evaluated metrics. The reported results
are based on 10-fold cross-validation averages for each clus-
tering method, with values averaged across two ensemble
selectors, Multi-Layer Perceptron (MLP) and Decision Tree.
Notably, the “All Features” feature selection case refers to
configurations where all available features are used without
reduction. By evaluating classifier performance across multiple
folds and ensemble configurations, this analysis ensures a
robust assessment of model stability and effectiveness.

Across all feature selection methods, adaptive ensemble
selection consistently outperforms static ensemble, demonstrat-
ing its effectiveness in leveraging the underlying data struc-
ture. The static ensemble, which aggregates classifiers without
considering data clusters, serves as a baseline and exhibits
relatively lower performance across all metrics. Specifically,
the static ensemble records lower average accuracy (80. 60%
to 82. 81%), precision (81. 09% to 83. 33%), recall (80. 60%
to 82. 81%), F1 score (80. 38% to 82. 57%) and AUC (79.
89% to 81. 99%). These results underscore the benefits of
adaptive ensemble methods that dynamically adjust classifier
configurations based on specific data clusters.

a) Impact of clustering on accuracy: Focusing on accu-
racy, the adaptive ensemble selection method demonstrates sig-
nificantly higher performance, as illustrated in Fig. 1, particu-
larly when combined with density-based clustering techniques
such as MeanShift and DBSCAN. Under the “All features”
setting, these clustering techniques achieve up to 95.57%

and 93.35% accuracy, respectively. These results suggest that
density-based clustering effectively captures natural groupings
in the data, leading to more precise classifications within each
cluster.

Even with Chi-Squared feature reduction, adaptive ensem-
ble selection combined with Agglomerative and MeanShift
clustering achieves an accuracy of 91.18%, indicating that
these clustering methods retain essential information despite
the reduced feature set. Furthermore, under Mutual Informa-
tion feature selection, MeanShift clustering attains the highest
accuracy (87.21%), demonstrating its robustness even when
the feature set is limited to five selected attributes.

b) Impact on precision and recall: Turning to precision
(Fig. 2), which measures the model’s ability to minimize
false positives, adaptive ensembles using MeanShift clustering
achieve the highest precision (95. 70%) under the selection
of “All features”. DBSCAN and Affinity Propagation also
demonstrate strong precision results, achieving up to 93 52%,
highlighting the effectiveness of density-based and affinity-
based clustering in improving classification reliability. Under
Chi-Squared feature selection, Agglomerative and MeanShift
clustering achieve the highest precision (91.48%), suggesting
their ability to retain relevant features for accurate positive
classifications.

Similarly, in terms of recall (Fig. 3), adaptive ensem-
ble selection demonstrates an advantage, particularly when
combined with MeanShift (95.57%) and DBSCAN (93.35%)
clustering under the selection “All features”. These results
indicate that these clustering techniques allow the model to
capture relevant patterns within the data, leading to more true
positives. Even with feature reduction through chi-squared
selection, Agglomerative and MeanShift clustering maintain a
high recall (91. 18%), further confirming their ability to retain
key features necessary to correctly identify positive cases.

c) Impact on F1 Score and AUC: Examining the F1
score (Fig. 4), which balances precision and recall, adaptive
ensemble selection again outperforms static ensemble. The
highest F1 score is observed in adaptive ensembles using
MeanShift (95.54%) and DBSCAN (93.32%) clustering meth-
ods with the “All features” selection. With Chi-Squared selec-
tion, Agglomerative and MeanShift clustering maintain high
F1 scores ( 91.12%), demonstrating their ability to preserve
critical features for balanced classification performance despite
feature reduction.
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Fig. 1. CV Mean recall across different clustering and feature selection methods.
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Fig. 2. CV Mean Precision across different clustering and feature selection methods.

Finally, considering AUC (Fig. 5), which assesses the
model’s ability to distinguish between classes, adaptive en-
sembles again achieve the highest scores. MeanShift clustering
reaches the highest AUC (95.22%) under the “All features”
selection, indicating strong discriminatory power and class
separation. DBSCAN and Affinity Propagation clustering also
demonstrate high AUC values ( 92.95%), reinforcing their role
in improving class separation. Even under Chi-Squared feature
selection, Agglomerative and MeanShift clustering achieve the
highest AUC (90.62%), further validating their effectiveness in
class discrimination.

d) Summary and key insights: In summary, adaptive
ensemble selection shows consistent improvements in all met-
rics compared to the static ensemble approach. The ability
of adaptive methods to dynamically adjust model selection
based on cluster characteristics yields substantial performance
gains, particularly when paired with MeanShift, DBSCAN, and
Affinity Propagation clustering. These clustering techniques
allow the adaptive ensemble to tailor model selection to
different clusters, resulting in increased accuracy, precision,
recall, F1 score, and AUC across different feature selection
strategies.
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Fig. 3. CV Mean recall across different clustering and feature selection methods.
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Fig. 4. CV Mean F1 Score across different clustering and feature selection methods.

In contrast, the static ensemble lacks this flexibility, show-
ing consistently lower scores across all metrics. The greatest
performance gaps are observed in accuracy and recall, where
the adaptive ensemble’s ability to capture distinct data patterns
within groups allows significantly higher scores.

These findings highlight the effectiveness of adaptive en-
semble selection in capturing nuanced data structures within
clusters, offering superior performance over static methods.
The results suggest that adaptive ensemble selection is par-
ticularly advantageous in complex datasets where clusters
represent meaningful subgroups, as it allows the model to

dynamically adjust to the intrinsic structure of the data. This
capability provides a robust and precise classification frame-
work with potential applications in medical diagnosis, risk
assessment, and other high-stakes decision-making contexts.

2) Impact of ensemble selectors on adaptive ensemble per-
formance: This subsection examines the influence of different
ensemble selectors, namely Decision Tree and Multi-Layer
Perceptron (MLP), on the performance of adaptive ensemble
selection methods across various clustering techniques and
feature selection strategies. The reported results are based on
10-fold cross-validation averages, as summarized in Table IV.
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Fig. 5. CV Mean AUC across different clustering and feature selection methods.

a) Effect of ensemble selectors under “All Features”
selection: Under the “All features” selection method, where all
13 features are used without reduction, the choice of ensemble
selector has a generally minor impact on performance across
clustering methods. However, some differences are notable.

• With DBSCAN clustering, the MLP ensemble selector
achieves slightly higher accuracy (93.35%) compared
to the Decision Tree selector (92.92%).

• For FuzzyCMeans clustering, MLP attains an accuracy
of 92.91%, noticeably outperforming Decision Tree
(90.28%).

• With MeanShift clustering, both ensemble selectors
yield identical accuracy (95.57%), indicating that for
this clustering technique, the choice of ensemble se-
lector has negligible effect on performance.

This trend is consistently observed across all performance
metrics, where MeanShift clustering achieves peak perfor-
mance regardless of the ensemble selector. These observations
suggest that while MLP may offer marginal gains with specific
clustering techniques, the overall impact of the ensemble
selector is minimal under the “All features” configuration.

b) Effect of ensemble selectors under ChiSquared fea-
ture selection: Under ChiSquared feature selection, which
reduces the set of features to the five most relevant features
based on correlation with the target variable, the impact of the
ensemble selector remains varied:

• For K-Means clustering, MLP achieves a slightly
higher accuracy (88.55%) than Decision Tree
(88.11%), a trend that is mirrored in precision, recall,
and F1 score metrics.

• Both Agglomerative and MeanShift clustering meth-
ods exhibit identical accuracy and F1 scores (91.18%)

for both selectors, suggesting that these clustering
techniques maintain consistent performance regardless
of the ensemble selector.

• With FuzzyCMeans clustering, MLP marginally out-
performs Decision Tree, achieving 88.54% accuracy
compared to 88.11%.

These results indicate that while ChiSquared feature se-
lection introduces some performance variations depending on
the ensemble selector, the differences remain relatively small,
with MLP offering minor improvements in certain clustering
methods.

c) Effect of ensemble selectors under mutual infor-
mation feature selection: Under Mutual Information feature
selection, which retains the five most informative features
based on their dependency on the target, the influence of the
ensemble selector is even less pronounced:

• Across most clustering techniques, such as K-Means,
GMM, and DBSCAN, both MLP and Decision Tree
selectors achieve identical performance, with accuracy
values of 86.78% for K-Means and GMM, and 86.34%
for DBSCAN.

• MeanShift clustering, again, attains the highest ac-
curacy (87.21%) for both MLP and Decision Tree
selectors along with similar high precision and F1
scores.

• The only noticeable difference appears with Fuzzy-
CMeans clustering, where MLP achieves slightly
higher accuracy (86.77%) than Decision Tree
(85.89%), as depicted in Table IV.

Overall, in Mutual Information selection, the ensemble se-
lector has minimal impact on performance, and both selectors
produce comparable results across clustering methods.
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TABLE IV. 10-FOLD CROSS-VALIDATION RESULTS FOR DIFFERENT CLUSTERING AND ENSEMBLE SELECTOR CONFIGURATIONS UNDER VARIOUS
FEATURE SELECTION METHODS

Feature Selection Clustering Method Ensemble Selector CV Mean Accuracy CV Mean Precision CV Mean Recall CV Mean F1 CV Mean AUC
All features KMeans DecisionTree 92.02% 92.37% 92.02% 91.92% 91.45%
All features KMeans MLP 92.03% 92.31% 92.03% 91.95% 91.47%
All features GMM DecisionTree 91.58% 91.95% 91.58% 91.49% 90.97%
All features GMM MLP 92.03% 92.31% 92.03% 91.95% 91.47%
All features DBSCAN DecisionTree 92.92% 93.03% 92.92% 92.88% 92.55%
All features DBSCAN MLP 93.35% 93.52% 93.35% 93.32% 92.95%
All features Agglomerative DecisionTree 93.36% 93.40% 93.36% 93.35% 93.22%
All features Agglomerative MLP 92.47% 92.58% 92.47% 92.44% 92.22%
All features Spectral DecisionTree 90.69% 90.83% 90.69% 90.63% 90.25%
All features Spectral MLP 90.69% 90.83% 90.69% 90.63% 90.25%
All features MeanShift DecisionTree 95.57% 95.70% 95.57% 95.54% 95.22%
All features MeanShift MLP 95.57% 95.70% 95.57% 95.54% 95.22%
All features AffinityPropagation DecisionTree 93.35% 93.52% 93.35% 93.32% 92.95%
All features AffinityPropagation MLP 93.35% 93.52% 93.35% 93.32% 92.95%
All features FuzzyCMeans DecisionTree 90.28% 90.51% 90.28% 90.25% 90.00%
All features FuzzyCMeans MLP 92.91% 93.13% 92.91% 92.85% 92.45%
All features Static Static Voting Ensemble 80.60% 81.09% 80.60% 80.38% 79.89%
ChiSquared KMeans DecisionTree 88.11% 88.75% 88.11% 87.98% 87.39%
ChiSquared KMeans MLP 88.55% 89.20% 88.55% 88.42% 87.79%
ChiSquared GMM DecisionTree 88.11% 88.75% 88.11% 87.98% 87.39%
ChiSquared GMM MLP 88.11% 88.75% 88.11% 87.98% 87.39%
ChiSquared DBSCAN DecisionTree 89.43% 89.84% 89.43% 89.33% 88.79%
ChiSquared DBSCAN MLP 89.43% 89.84% 89.43% 89.33% 88.79%
ChiSquared Agglomerative DecisionTree 91.18% 91.48% 91.18% 91.12% 90.62%
ChiSquared Agglomerative MLP 91.18% 91.48% 91.18% 91.12% 90.62%
ChiSquared Spectral DecisionTree 88.10% 88.45% 88.10% 87.99% 87.44%
ChiSquared Spectral MLP 88.10% 88.45% 88.10% 87.99% 87.44%
ChiSquared MeanShift DecisionTree 91.18% 91.48% 91.18% 91.12% 90.62%
ChiSquared MeanShift MLP 91.18% 91.48% 91.18% 91.12% 90.62%
ChiSquared AffinityPropagation DecisionTree 88.11% 88.65% 88.11% 87.99% 87.39%
ChiSquared AffinityPropagation MLP 88.11% 88.65% 88.11% 87.99% 87.39%
ChiSquared FuzzyCMeans DecisionTree 88.11% 88.65% 88.11% 87.99% 87.39%
ChiSquared FuzzyCMeans MLP 88.54% 89.10% 88.54% 88.41% 87.79%
ChiSquared Static Static Voting Ensemble 81.04% 81.56% 81.04% 80.81% 80.24%
MutualInfo KMeans DecisionTree 86.78% 87.01% 86.78% 86.72% 86.34%
MutualInfo KMeans MLP 86.78% 87.01% 86.78% 86.72% 86.34%
MutualInfo GMM DecisionTree 86.78% 87.01% 86.78% 86.72% 86.34%
MutualInfo GMM MLP 86.78% 87.01% 86.78% 86.72% 86.34%
MutualInfo DBSCAN DecisionTree 86.34% 86.63% 86.34% 86.23% 85.77%
MutualInfo DBSCAN MLP 86.34% 86.63% 86.34% 86.23% 85.77%
MutualInfo Agglomerative DecisionTree 85.89% 86.10% 85.89% 85.80% 85.34%
MutualInfo Agglomerative MLP 85.89% 86.10% 85.89% 85.80% 85.34%
MutualInfo Spectral DecisionTree 86.76% 87.03% 86.76% 86.65% 86.14%
MutualInfo Spectral MLP 86.76% 87.03% 86.76% 86.65% 86.14%
MutualInfo MeanShift DecisionTree 87.21% 87.41% 87.21% 87.12% 86.64%
MutualInfo MeanShift MLP 87.21% 87.41% 87.21% 87.12% 86.64%
MutualInfo AffinityPropagation DecisionTree 86.77% 87.04% 86.77% 86.67% 86.24%
MutualInfo AffinityPropagation MLP 86.34% 86.60% 86.34% 86.25% 85.84%
MutualInfo FuzzyCMeans DecisionTree 85.89% 86.14% 85.89% 85.79% 85.27%
MutualInfo FuzzyCMeans MLP 86.77% 86.97% 86.77% 86.69% 86.24%
MutualInfo Static Static Voting Ensemble 82.81% 83.33% 82.81% 82.57% 81.99%

d) Comparison with static ensemble selection: When
comparing adaptive ensemble selection with the static ensem-
ble (which combines classifiers without clustering or dynamic
selection), it is evident that adaptive configurations, regardless
of the ensemble selector, consistently outperform the static
case. The static ensemble’s accuracy ranges from 80.60% to
82.81% across feature selection methods, significantly lower
than the highest accuracy achieved by adaptive ensembles. This
trend is consistent in all performance metrics, precision, recall,
F1 score, and AUC, reinforcing the superiority of adaptive
ensemble selection over static methods.

e) Summary and key insights: The results demonstrate
that the choice of the ensemble selector (MLP or Decision
Tree) has a relatively minor influence on the performance
of adaptive ensemble selection. Although MLP offers slight
advantages in specific configurations, particularly when com-
bined with clustering methods such as DBSCAN and Fuzzy-

CMeans, both ensemble selectors exhibit comparable high
performance under the MeanShift clustering method.

These findings suggest that the main driver of improved
performance in adaptive ensemble selection is the clustering
method, while the ensemble selector plays a secondary role.

C. Comparison with Existing Methods

As shown in Table V, the proposed dynamic ensemble
method significantly outperforms existing approaches on the
Cleveland dataset. Achieving an accuracy of 95.57%, the
proposed method surpasses the best reported static ensemble
approach, which achieves an accuracy of 92.11% [27], by a
margin of 3.46%.

In addition, other notable studies, such as [19] and [8],
report lower accuracies of 88.70% and 87.78%, respectively,
further strengthening the superior performance of the proposed
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TABLE V. PERFORMANCE COMPARISON OF THE PROPOSED DYNAMIC
ENSEMBLE METHOD WITH EXISTING APPROACHES ON THE CLEVELAND

DATASET

Reference Year Dataset Ensemble Type Accuracy (%)
[8] 2019 Cleveland Static 87.78
[16] 2019 Cleveland Static 84.79
[18] 2020 Cleveland Static 85.71
[21] 2020 Cleveland Static 87.30
[23] 2020 Cleveland Static 75–86
[22] 2021 Cleveland Static 83.00
[24] 2021 Cleveland Static 87.05
[15] 2022 Cleveland Static 87.00
[19] 2022 Cleveland Static 88.70
[27] 2024 Cleveland Static 92.11
Proposed 2025 Cleveland Dynamic (MeanShift, MLP) 95.57

approach. These findings validate the efficacy of the adaptive
framework, particularly the integration of the MeanShift clus-
tering method and MLP as the ensemble selector.

Importantly, the results highlight that the choice of clus-
tering technique plays a pivotal role in enhancing the perfor-
mance of the ensemble by forming more effective groups of
base classifiers, which the dynamic selection mechanism then
optimally leverages.

Thus, the proposed method represents a significant ad-
vancement in adaptive ensemble selection for the prediction
of cardiovascular disease, achieving substantial improvements
over state-of-the-art approaches in terms of predictive accuracy
and classification performance.

V. CONCLUSION

Cardiovascular disease (CVD) poses a significant global
health challenge, making early and accurate prediction essen-
tial for improving patient outcomes and reducing healthcare
care burdens. In this study, an adaptive ensemble selection
approach was proposed to improve CVD prediction by dy-
namically tailoring model configurations to distinct patient
subgroups. By integrating various clustering techniques, such
as K-Means, DBSCAN, and MeanShift, with feature selection
methods, including Chi-Squared and Mutual Information, this
approach aimed to improve predictive performance by adapt-
ing to the unique characteristics of each group of patients.
Ensemble selectors were tested with both Multi-Layer Percep-
tron (MLP) and Decision Tree configurations to assess their
effectiveness across different clustering strategies.

The findings indicated that adaptive ensemble selection
consistently outperformed static ensemble in all key perfor-
mance metrics, including accuracy, precision, recall, F1 score,
and AUC. Specifically, the use of MeanShift and DBSCAN,
combined with the retention of all characteristics, produced the
highest accuracy, demonstrating the effectiveness of clustering
based on density to capture meaningful patterns in patient data.
These results highlight the advantages of adaptive ensemble
selection in leveraging cluster-specific insights, particularly in
complex, heterogeneous datasets where patient subgroups may
differ in risk profiles or disease stages.

In summary, this study demonstrated that adaptive en-
semble selection, particularly when paired with density-based
clustering methods like MeanShift, holds substantial promise
for personalized CVD prediction. By dynamically adjusting to

the underlying data structure, this adaptive approach offers a
scalable and robust solution for improving diagnostic accuracy
in high-stakes medical applications. The results suggest that
adaptive ensemble methods could serve as a valuable tool in
personalized healthcare, allowing more targeted and effective
interventions tailored to individual patient needs.
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