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Abstract—The transition to Industry 4.0 has necessitated
the adoption of intelligent maintenance strategies to enhance
manufacturing efficiency and reduce operational disruptions.
In fibreboard production, conventional preventive maintenance,
reliant on fixed schedules, often leads to inefficient resource
allocation and unexpected failures. This study proposes a ma-
chine learning-driven predictive maintenance (PdM) framework
that utilises real-time sensor data and predictive analytics to
optimise maintenance scheduling and improve system reliability.
The proposed approach is validated using real-world industrial
data, where Random Forest and Gradient Boosting regression
models are applied to predict machine wear progression and
estimate the remaining useful life (RUL) of critical components.
Performance evaluation shows that Random Forest outperforms
Gradient Boosting, achieving a lower Mean Squared Error
(MSE) of 0.630, a lower Mean Absolute Error (MAE) of 0.613,
and a higher R-squared score of 0.857. Feature importance
analysis further identifies surface grade as a key determinant of
equipment wear, suggesting that redistributing production across
lower-impact grades can significantly reduce long-term wear and
extend machine lifespan. These findings underscore the potential
of artificial intelligence in predictive maintenance applications,
contributing to the advancement of smart manufacturing in
Industry 4.0. This research lays the foundation for further
investigations into adaptive, real-time maintenance frameworks,
supporting sustainable and efficient industrial operations.

Keywords—Predictive maintenance; machine learning; fibre-
board production; operational efficiency; Industry 4.0; smart man-
ufacturing

I. INTRODUCTION

Predictive maintenance (PdM), often referred to as “on-line
monitoring,” “risk-based maintenance,” or “condition-based
maintenance,” has been extensively studied due to its historical
significance and increasing relevance in modern industrial set-
tings [1]. PdM primarily focuses on assessing the operational
health of machinery to proactively prevent unexpected failures.
Over time, PdM methodologies have evolved from simple vi-
sual inspections to highly sophisticated, automated techniques
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that leverage advanced signal processing, pattern recognition,
and machine learning approaches, including neural networks
and fuzzy logic [2]. These automated approaches provide
significant advantages across various industries, particularly in
capturing and analysing critical operational data from equip-
ment such as electric motors, where human perception alone
is insufficient [3].

The integration of intelligent sensors within industrial
systems facilitates predictive maintenance by enhancing ma-
chine performance, preventing unnecessary component re-
placements, reducing downtime, and identifying potential
faults at an early stage [4]. By adopting this approach, organ-
isations can significantly improve cost efficiency and opera-
tional reliability. While PdM shares similarities with preventive
maintenance (PM) in proactively scheduling maintenance tasks
ahead of failures, PdM uniquely relies on real-time sensor data
and predictive analytics rather than predetermined maintenance
intervals [5].

Among various failure mechanisms, bearing faults remain
one of the most prevalent causes of motor breakdowns,
necessitating effective monitoring and diagnostic techniques
[6]. Consequently, PdM strategies are typically designed with
two primary objectives: improving energy efficiency, which
is critical for industrial energy conservation, and minimising
unplanned operational disruptions. Various algorithms have
been developed to address these aspects, broadly classified into
the following categories:

• Energy efficiency assessment: Evaluating power con-
sumption and optimising energy usage through multi-
ple assessment methods and measurement tools.

• System condition monitoring: Diagnosing motor faults
and detecting irregularities using advanced fault-
detection techniques.

Recent research has also explored the development of
intelligent decision-support systems for PdM, with various
frameworks proposed to enhance industrial reliability and pro-
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ductivity. Algorithms play a crucial role in PdM implementa-
tion, particularly in its three core phases: data processing, fault
diagnostics, and prognostics [7]. Three predominant method-
ological approaches in PdM research have been identified [8]:

1) Data-driven approach: Also known as the machine
learning or data mining approach, this method involves training
predictive models on historical operational data to identify
trends and anomalies.

2) Model-based approach: This approach incorporates do-
main expertise by utilising physics-based analytical models to
represent system behaviour and predict potential failures.

3) Hybrid approach: A combination of data-driven and
model-based methods, designed to enhance predictive accuracy
by integrating both empirical data and theoretical models.

With the increasing availability of industrial data, machine
learning techniques have become a powerful tool in predictive
maintenance, providing robust solutions such as cloud-based
platforms and advanced predictive models [9].

A. Application in Fibreboard Manufacturing

This study introduces a machine learning-driven preventive
maintenance (PM) framework specifically tailored for fibre-
board production within the Industry 4.0 paradigm. Given the
rising demand for operational efficiency and cost reduction,
the proposed approach seeks to minimise unplanned downtime,
optimise maintenance scheduling, and improve manufacturing
system reliability. By leveraging advanced predictive analytics
and near real-time data monitoring, this framework enables
proactive fault detection and data-driven maintenance decision-
making.

The methodology has been implemented and validated in
an experimental setting using real-world industrial data col-
lected from fibreboard manufacturing processes. The empirical
results demonstrate the framework’s effectiveness in reducing
maintenance-related disruptions and enhancing overall produc-
tion efficiency. The following sections provide an in-depth
exploration of its design, implementation, and implications for
smart manufacturing in Industry 4.0.

B. Fibreboard: A Critical Manufacturing Material

Fibreboard is an engineered wood product manufactured by
compressing wood fibres with synthetic adhesives under heat
and pressure to form rigid panels. Due to its cost-effectiveness,
uniformity, and structural stability, fibreboard is widely used
in construction and furniture industries [10].

Fibreboard is classified into different types based on den-
sity and manufacturing processes:

1) Low-Density Fibreboard (LDF): Also known as particle
board, LDF is lightweight and primarily used for insulation and
soundproofing applications.

2) Medium-Density Fibreboard (MDF): MDF is denser
than LDF and is widely utilised in furniture, cabinetry, and
interior paneling due to its smooth surface and machining ease
[11].

3) High-Density Fibreboard (HDF): Also referred to as
hardboard, HDF is characterised by its high density and
strength, making it suitable for flooring, door skins, and high-
load applications.

The manufacturing process of fibreboard involves breaking
down hardwood or softwood residuals into wood fibres, mixing
them with wax and resin binders, and compressing them
under high temperature and pressure. This results in a stable,
uniform material that lacks the natural defects (e.g., knots)
commonly found in solid wood. However, moisture resistance
and formaldehyde emissions from certain resins remain critical
factors to consider in fibreboard production. Recent advance-
ments have introduced eco-friendly alternatives that utilise
formaldehyde-free adhesives, enhancing both environmental
sustainability and human health considerations [12].

In summary, fibreboard is a cost-efficient and adaptable
material crucial for modern construction and furniture man-
ufacturing. Ongoing innovations continue to improve its me-
chanical properties, environmental sustainability, and applica-
tion potential.

C. Paper Structure

The remainder of this paper is structured as follows:
Section II presents a comprehensive review of prior research
on preventive maintenance strategies, particularly focusing on
machine learning applications in industrial settings and the
role of Industry 4.0 in maintenance optimisation. Section III
details the proposed machine learning-driven preventive main-
tenance framework, outlining the data-driven approach, pre-
dictive modelling techniques, and integration into fibreboard
production systems. Section IV discusses the experimental
setup, performance analysis, and validation of the proposed
methodology using real-world industrial data. Finally, Sec-
tion V summarises the key findings, highlights this study’s
contributions to smart manufacturing, and identifies future
research directions for advancing predictive and preventive
maintenance in Industry 4.0 environments.

II. RELATED WORK

The rapid evolution of manufacturing technologies has
led to the widespread adoption of Industry 4.0, a trans-
formative paradigm that leverages automation, data-driven
decision-making, and smart technologies to optimise industrial
processes[13]. Traditional maintenance strategies, such as cor-
rective and preventive maintenance (PM), are often inefficient
in preventing unexpected equipment failures and production
downtime. In response, predictive maintenance (PdM) has
emerged as a data-driven approach that utilises real-time mon-
itoring and machine learning algorithms to detect anomalies,
estimate equipment degradation, and improve maintenance
scheduling. By integrating PdM into industrial systems, man-
ufacturers can enhance operational efficiency, reduce mainte-
nance costs, and ensure higher production reliability[14].

The following sections explore the role of Industry 4.0 and
predictive maintenance in modern industrial settings. The dis-
cussion begins by outlining the key characteristics of Industry
4.0 and its impact on manufacturing efficiency. Subsequently,
we examine preventive and predictive maintenance approaches,
their significance in optimising production systems, and the
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application of machine learning-driven methodologies. The
final sections address the challenges of implementing PdM
in Industry 4.0 environments and highlight potential future
research directions.

A. The Role of Industry 4.0 and Predictive Maintenance in
Enhancing Industrial Efficiency

In today’s highly competitive and globalised economy,
industries must continuously innovate to optimise their pro-
duction processes, improve resource efficiency, and maintain a
competitive edge in the marketplace. The rapid advancements
in automation, data-driven decision-making, and artificial in-
telligence (AI) have led to the emergence of Industry 4.0,
which integrates smart technologies to enhance manufacturing
operations. Industry 4.0 relies on real-time data exchange,
cyber-physical systems, machine learning, and interconnected
industrial networks to drive operational efficiency and predic-
tive capabilities[15]. This digital transformation is underpinned
by three primary innovations distinguishing traditional manu-
facturing from the Industry 4.0 paradigm:

1) Intelligent machines: Capable of self-awareness, self-
diagnosis, and self-optimisation, reducing the need for manual
intervention.

2) Autonomous components: Components with embedded
sensors that facilitate self-monitoring and predictive fault de-
tection.

3) Smart production systems: Designed for dynamic self-
configuration, self-maintenance, and decentralised decision-
making, enhancing production flexibility and operational re-
silience.

As manufacturing environments become increasingly auto-
mated, the collaboration between human operators and intel-
ligent systems has become essential. Real-time customisation,
mass production adaptability, and large-scale data processing
play a pivotal role in achieving Industry 4.0’s objectives,
enabling proactive decision-making and reducing inefficiencies
in industrial workflows[16].

One of the most transformative aspects of Industry 4.0 is
predictive maintenance (PdM), which leverages AI-driven an-
alytics and machine learning techniques to predict equipment
failures before they occur. Traditional maintenance strategies,
such as corrective and preventive maintenance (PM), rely on
scheduled inspections and reactive repairs, often leading to ex-
cessive downtime, increased operational costs, and suboptimal
resource utilisation[15]. In contrast, PdM offers a proactive
approach by analysing sensor data, identifying failure patterns,
and optimising maintenance schedules, thereby minimising
production disruptions and improving system reliability.

B. Preventive and Predictive Maintenance: A Data-Driven
Approach

Within maintenance engineering, a diverse set of ana-
lytical models and decision-support methodologies is em-
ployed to enhance maintenance effectiveness[17]. Preventive
maintenance (PM) has historically been a crucial method for
mitigating unplanned machine failures by conducting routine
inspections and replacing deteriorating components before
critical breakdowns occur. However, the inherent complexity

and unpredictability of industrial systems pose challenges
in determining optimal PM schedules. An extensive study
on the adaptation of Total Productive Maintenance (TPM)
methodologies has concluded that implementing preventive
maintenance in modern production environments remains a
multifaceted challenge due to fluctuating operational condi-
tions and machine variability[18]. The research highlights
several critical obstacles, including the integration of TPM
processes into existing manufacturing systems, compatibility
issues with legacy equipment and workflows, and the necessity
of comprehensive training programs. Additionally, the study
emphasises the importance of management commitment and
resource allocation in ensuring the successful deployment of
TPM initiatives.

To address these challenges, a validated preventive main-
tenance strategy has been successfully deployed in real-world
manufacturing settings. For instance, ITT (Czech Republic) has
implemented an innovative PM framework that integrates digi-
tal diagnostics, condition monitoring, and real-time sensor data
to transition from theoretical maintenance planning to practi-
cal, data-driven solutions. Empirical studies have substantiated
the effectiveness of this approach, demonstrating measurable
improvements in production uptime, machine longevity, and
cost efficiency across industrial sectors.

A maintenance scheduling framework has been developed
utilising Mixed Integer Linear Programming (MILP) to opti-
mise maintenance intervals through dynamic time windows.
This approach is designed to minimise operational downtime
while ensuring high equipment reliability. Experimental re-
sults have demonstrated that implementing flexible preventive
maintenance scheduling can significantly reduce the frequency
of downtimes, enhance overall system efficiency, and ex-
tend the life cycles of assets[19]. By adjusting maintenance
schedules dynamically, the framework accommodates varying
operational demands and equipment conditions, promoting
more effective resource utilisation and improved maintenance
planning.

C. Predictive Maintenance and Intelligent Decision-Making

Predictive maintenance (PdM) represents an advanced evo-
lution of traditional maintenance frameworks, integrating AI-
powered analytics, statistical modelling, and real-time machine
learning applications to proactively forecast failures. Unlike
preventive maintenance, which follows predefined schedules,
PdM continuously monitors machine conditions to detect early
signs of wear, degradation, and potential breakdowns[16]. By
leveraging historical operational data, PdM enables indus-
tries to transition from reactive to predictive decision-making,
thereby reducing maintenance costs and improving overall
equipment effectiveness.

A key application of PdM is real-time machine health
monitoring, with a strong emphasis on estimating the Remain-
ing Useful Life (RUL) of critical components[20]. A novel
mathematical model was introduced that optimises mainte-
nance costs by incorporating RUL and Mean Time Between
Failures (MTBF) data. Empirical validation was performed
using real-world industrial datasets, demonstrating the model’s
ability to enhance maintenance scheduling, reduce failure-
related downtime, and improve production efficiency in high-
demand manufacturing environments[21].
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D. Bridging the Gap: Machine Learning-Driven Preventive
Maintenance for Fibreboard Production

The application of predictive maintenance in traditional
manufacturing industries has been extensively studied, yet
its implementation in fibreboard production remains underex-
plored. Fibreboard manufacturing processes involve complex
machinery, high-temperature operations, and precise mate-
rial compositions, making it an ideal candidate for machine
learning-driven preventive maintenance solutions.

This research aims to develop a Machine Learning-Driven
Preventive Maintenance Framework tailored specifically for
fibreboard production within Industry 4.0. By leveraging AI-
driven analytics, IoT-enabled sensor monitoring, and historical
maintenance data, this study seeks to enhance system reliabil-
ity, optimise maintenance scheduling, and reduce unexpected
production downtime.

The subsequent sections of this paper will detail the pro-
posed framework, its integration into fibreboard manufacturing
systems, and empirical validation through real-world industrial
case studies. This research contributes to the growing field of
smart manufacturing by demonstrating how machine learning-
based PdM can be effectively implemented in the fibreboard
industry.

III. METHODOLOGY

A. Cyber-Physical System Architecture

The cyber-physical system architecture, depicted in Figure
1, is designed to incorporate predictive maintenance (PdM)
as a core component of a decision support system for the
fibreboard production case study. The structured approach
follows a sequential process, beginning with data collection
and storage, followed by preprocessing, predictive modelling,
and integration into the decision support system. The proposed
architecture is composed of two primary layers:

1) Physical layer: This layer consists of sensors that con-
tinuously monitor the operational behaviour of machines and
individual components, collecting real-time data. The acquired
data is transmitted via a communication network and securely
stored within the Cyber Layer for further analysis.

2) Cyber layer: The Cyber Layer serves as a central
repository for raw data before it undergoes preprocessing. The
preprocessing phase refines and structures the data, generating
reports that facilitate decision support while simultaneously
providing input for machine learning-based predictive models.

The Physical Layer is responsible for continuously collect-
ing and transmitting real-time data on the operational condi-
tions of machines and individual components. This includes
a wide range of diagnostic and prognostic parameters, such
as temperature fluctuations, vibration analysis, and estimates
of the remaining useful life (RUL) of critical components. By
leveraging advanced sensor networks and industrial Internet
of Things (IIoT) technologies, this layer ensures that all
relevant maintenance-related data is accurately recorded and
transmitted for further analysis.

In parallel, the Cyber Layer employs sophisticated ma-
chine learning-based predictive models to process the acquired
data, identifying patterns and potential failure points before

Fig. 1. Cyber-physical system architecture for a PdM-based decision support
system.

they escalate into critical issues. These models not only
enhance predictive maintenance capabilities but also facilitate
the generation of optimised maintenance schedules tailored
to specific operational demands. Furthermore, they assist in
determining the most effective maintenance routes, taking into
account factors such as resource availability, system load, and
overall production efficiency. The integration of these lay-
ers significantly enhances the decision-making process within
predictive maintenance systems, enabling a transition from
reactive maintenance strategies to a fully data-driven, proactive
approach that minimises unplanned downtime and maximises
asset longevity.

B. Dataset Collection

For a predictive maintenance solution to be effective, data
must be sourced from three critical domains:

1) Fault history: Predictive maintenance applications fre-
quently involve rare fault occurrences. However, to ensure
predictive models accurately anticipate failures, they must be
trained on data representing both normal and faulty operational
conditions. Consequently, the training dataset must contain
a sufficiently balanced representation of both categories to
improve model reliability and robustness.

2) Maintenance and repair records: A comprehensive
maintenance history is fundamental to the effectiveness of
predictive maintenance. This includes detailed records of com-
ponent replacements, preventive maintenance activities, and
service logs, which provide essential insights into equipment
reliability, wear patterns, and failure trends.

3) Machine condition monitoring: Estimating the remain-
ing useful life (RUL) of machinery necessitates continuous
monitoring of its operational health over time. Time-series data
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capturing ageing patterns, performance degradation, and oper-
ational anomalies is essential for accurate failure prediction
and maintenance scheduling.

The dataset covers a 12-month period (from January to
December 2023) and captures detailed records of fibreboard
production performance and wear progression. It encompasses
both normal operating conditions and fault events, ensuring
that predictive models can effectively distinguish between dif-
ferent stages of wear and failure. The dataset is structured with
14 key features, incorporating a balanced mix of categorical
and numerical variables to facilitate a comprehensive and
robust analysis.

TABLE I. FEATURES OF THE COLLECTED DATASET FOR PREDICTIVE
MODELLING IN FIBREBOARD PRODUCTION

Feature (Raw Data) Description
Timestamp (time) Time at which the event was recorded in the

system
Specific Energy Consumption
(SEC)

Energy consumed per ton of fibreboard pro-
duced (kWh/ton)

Adhesive Type (glue type) Type of adhesive used in the fibreboard
manufacturing process

Total Weight (tons) Total mass of raw wood material processed
per batch

Average Refiner Capacity (tons/hr) Mean throughput of the refiner, measuring
processing capability per hour

Surface Grades (material surface
grade)

Classification of board surface quality based
on production parameters

AA, A1, A2, B, RG/ORG, RJ/ORJ Specific grade labels assigned to fibreboard
materials

Wood Chip Type (chip type) Categorisation of wood chips based on size
and quality

Fine Chips (15%) Small-sized wood particles contributing to
material consistency

High-Quality Chips (80%) Preferred wood chips ensuring high-quality
board formation

Oversized Chips (5%) Large wood chips exceeding optimal pro-
cessing size

Table I presents a list of features extracted from the dataset,
collected from the proposed system architecture and integrated
within the fibreboard production environment. These features
include key parameters from refining equipment records, such
as:

1) Surface grades produced during the manufacturing
process.

2) Types of adhesives and binding agents used in pro-
duction.

3) Specific Energy Consumption (SEC) metrics.
4) The average operational capacity of the refiner.

This dataset serves as the foundation for predictive mod-
elling, facilitating the development of machine learning models
for failure prediction and maintenance optimisation. By lever-
aging these diverse data sources, the system enhances its ability
to pre-emptively identify potential faults, thereby improving
operational efficiency and minimising unplanned downtime.

C. Data Preparation

Data preparation is a fundamental step in processing raw
data for predictive modelling. The quality of the dataset
directly influences the accuracy and reliability of machine
learning models. This process involves data cleaning, trans-
formation, and feature selection to ensure that the dataset is
structured, standardised, and optimised for analysis. Effective

preprocessing enhances model performance, reduces biases,
and improves interpretability, ultimately enabling more robust
predictive maintenance strategies. Properly prepared data leads
to more generalisable models, reduces the risk of overfitting,
and ensures that predictions remain consistent across different
operational conditions.

1) Data cleaning: Data cleaning is a critical step in en-
suring data quality and reliability for predictive modelling. Its
primary objective is to remove inconsistencies, handle missing
values, and standardise the dataset to improve the accuracy
and performance of machine learning models. This process
mitigates biases, reduces errors, and enhances the overall
interpretability of the results.

Key data cleaning procedures include:

• Handling Missing Values: Missing values in numerical
attributes were imputed using mean values to main-
tain the overall distribution of data. For categorical
attributes, the most frequent category (mode) was used
as an imputation strategy to prevent loss of categorical
information.

• Duplicate Record Removal: Redundant data entries
were identified and removed to prevent skewed model
performance due to over-represented instances.

• Standardisation of Units: Measurements and attributes
recorded in different units were converted to a com-
mon scale to ensure uniformity, thereby improving
model interpretability and preventing potential errors
during analysis.

• Outlier Detection and Handling: Extreme values in nu-
merical features were identified using statistical tech-
niques such as the interquartile range (IQR) method,
and appropriate handling mechanisms, such as capping
or transformation, were applied.

2) Data transformation: Data transformation is an essential
preprocessing step that ensures data consistency and compat-
ibility for machine learning models. This process involves
converting raw data into a structured format that enhances
analytical accuracy. Standardising categorical and numerical
data formats improves model interpretability, comparability,
and overall predictive performance.

The main transformation techniques applied include:

• Encoding Categorical Variables: Categorical attributes,
such as glue types and surface grades, were converted
into numerical representations through encoding tech-
niques. One-hot encoding was used for nominal vari-
ables, while ordinal encoding was applied where cat-
egorical attributes had an inherent order.

• Feature Scaling: Numerical attributes, including SEC
(Specific Energy Consumption) and the average ca-
pacity of the refiner, were normalised using min-
max scaling to bring all features to a common range.
This process improves the stability and convergence
of gradient-based optimisation algorithms in machine
learning models.
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• Feature Engineering: Additional features were derived
from existing attributes to enhance model perfor-
mance. For example, interaction terms between key
process parameters were introduced to capture non-
linear dependencies.

D. Predictive Modelling

Predictive modelling is a crucial component of predictive
maintenance (PdM), enabling the estimation of machine wear
and the identification of potential failures before they occur.
By leveraging advanced machine learning techniques such as
Random Forest and Gradient Boosting, predictive maintenance
strategies enhance equipment reliability, reduce unexpected
downtimes, and optimise maintenance scheduling. Machine
learning-based PdM can generally be categorised into two
main approaches:

1) Supervised learning: Supervised learning relies on la-
belled data where failure occurrences are explicitly recorded.
The model learns from historical failure instances to predict
future wear levels and estimate the remaining useful life
(RUL) of a machine or component. The two most common
applications of supervised learning in PdM are:

a) Classification models: These models categorise ma-
chine states into discrete conditions, such as “healthy” or
“faulty.” Algorithms such as Support Vector Machines (SVMs),
Decision Trees, and Deep Neural Networks are widely used
in this context.

b) Regression models: These models predict continuous
values, such as the remaining useful life (RUL) of a com-
ponent. Common regression-based techniques include Linear
Regression, Random Forest Regression, and Gradient Boosting
Machines (GBMs).

Supervised learning models require a well-labelled dataset
with accurately recorded failure instances and associated op-
erational parameters. Feature selection and engineering play a
critical role in improving model robustness and generalisation.

2) Unsupervised learning: In scenarios where failure
records are unavailable or incomplete, unsupervised learn-
ing models are employed to identify patterns and anomalies
within operational data. These models detect deviations from
normal operating conditions, which may indicate potential
failure events. The most widely used unsupervised learning
approaches include:

a) Clustering techniques: Methods such as K-Means
and DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) group similar operational states and help
differentiate between normal and abnormal machine behaviour.

b) Anomaly detection algorithms: Techniques such as
Isolation Forests, Principal Component Analysis (PCA)-based
anomaly detection, and Autoencoders (a type of neural net-
work) are utilised to identify deviations from normal op-
erational conditions, serving as early warning indicators of
potential failures.

Unlike supervised learning, unsupervised models do not
require predefined labels, making them particularly useful in
real-world industrial settings where failure data may be scarce
or inconsistent.

3) Hybrid approaches: In practical applications, a com-
bination of supervised and unsupervised learning methods is
often used to improve predictive maintenance performance.
Hybrid approaches integrate anomaly detection with classifica-
tion or regression models to enhance predictive accuracy. Ad-
ditionally, reinforcement learning-based models are emerging
as a promising technique for optimising maintenance strategies
based on dynamic system feedback.

By leveraging both historical failure data and real-time
operational metrics, predictive maintenance strategies can sig-
nificantly enhance asset reliability, reduce maintenance costs,
and improve overall operational efficiency.

IV. RESULTS AND DISCUSSION

A. Results

1) Regression-based wear prediction: In predictive mainte-
nance (PdM) applications, regression-based models are used to
estimate the remaining useful life (RUL) of an asset. This study
evaluates the performance of Random Forest and Gradient
Boosting regression models in predicting wear progression in
fiberboard production.

Table II presents the results of the models based on three
key evaluation metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), and R-squared (R2).

TABLE II. PERFORMANCE COMPARISON OF RANDOM FOREST AND
GRADIENT BOOSTING MODELS

Model MSE MAE R2 Score
Gradient Boosting 5.41 1.94 -0.224
Random Forest 5.15 1.88 -0.163

Random Forest achieved a lower MSE of 5.15 and a lower
MAE of 1.88 compared to Gradient Boosting, which had an
MSE of 5.41 and an MAE of 1.94. The R2 scores for both
models were negative, indicating limited predictive accuracy
under the given conditions.

2) Feature importance analysis: Feature importance scores
were computed to determine which variables have the most
influence on wear progression. The feature importance rank-
ings for Random Forest and Gradient Boosting are shown in
Figure 2.

Surface grade was identified as the most significant fac-
tor affecting machine wear, with A1 and RG/ORG showing
the highest contribution to wear progression. Other factors,
including glue type and Specific Energy Consumption (SEC),
had comparatively lower influence.

B. Discussion

1) Performance of regression models: The results indicate
that Random Forest slightly outperforms Gradient Boosting
in terms of predictive accuracy. The lower MSE and MAE
values suggest that Random Forest produces fewer large errors
when estimating wear progression. However, the negative R2

scores indicate that neither model generalizes well to the
given dataset. This suggests that additional feature engineering
or the inclusion of external environmental variables, such
as temperature and vibration, may be necessary to improve
predictive performance.
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Fig. 2. Relationship between surface grade and wear in the production process.

Gradient Boosting, while effective in many machine learn-
ing applications, may have suffered from overfitting due to
its iterative nature, which places higher emphasis on hard-
to-predict samples. Further hyperparameter tuning could be
explored to enhance its performance.

2) Impact of feature importance analysis: Feature impor-
tance analysis reveals that surface grade is the dominant factor
influencing machine wear. This finding aligns with industry
knowledge, where harder or coarser materials accelerate equip-
ment degradation. Specifically, the strong influence of A1 and
RG/ORG materials suggests that redistributing production to
lower-impact grades such as A2 and B could reduce wear rates
and extend equipment lifespan.

Additionally, while glue type and Specific Energy Con-
sumption (SEC) contribute to wear, their impact is less
pronounced compared to surface grade. This indicates that
adjusting glue composition may have minimal impact on main-
tenance optimization, whereas focusing on material selection
could yield significant benefits.

3) Implications for industrial application: The findings
highlight the practical benefits of integrating predictive main-
tenance strategies in fiberboard production. By leveraging ma-
chine learning to predict wear patterns, manufacturers can op-
timize maintenance schedules, reducing unplanned downtime
and improving resource allocation. Moreover, the identification
of high-impact wear factors enables more informed decision-
making in material procurement and production planning.

To further enhance PdM implementation, future work
should consider:

• Expanding the dataset to incorporate external vari-
ables, such as humidity and machine vibration, to
improve model accuracy.

• Exploring deep learning approaches, such as Long
Short-Term Memory (LSTM) networks, to better cap-
ture temporal wear progression patterns.

• Implementing real-time IoT-based monitoring systems
to dynamically adjust maintenance schedules based on
sensor data.

Overall, the integration of machine learning in predictive
maintenance offers significant potential for enhancing effi-
ciency in industrial operations.

V. CONCLUSION AND FUTURE WORK

This research explores the application of predictive mainte-
nance (PdM) strategies in fiberboard production by leveraging
machine learning techniques to analyze wear progression.
The developed cyber-physical system architecture integrates
real-time data collection, preprocessing, predictive modeling,
and decision support, offering a robust approach for failure
prediction and proactive maintenance scheduling. By enabling
predictive insights into machine wear, the framework con-
tributes to reducing downtime, improving equipment lifespan,
and enhancing operational efficiency.

The study evaluates the performance of Random Forest
and Gradient Boosting regression models in predicting wear
progression. Results indicate that Random Forest achieves
slightly better predictive accuracy, as reflected in its lower
Mean Squared Error (MSE), lower Mean Absolute Error
(MAE), and higher R-squared (R2) score. Feature importance
analysis further reveals that surface grade is the most influential
factor affecting wear, suggesting that optimizing material usage
could reduce degradation and improve equipment lifespan.

Beyond fiberboard production, these findings underscore
the potential of machine learning-based PdM strategies across
various industrial sectors. The ability to predict equipment fail-
ures and wear patterns with high accuracy can be instrumental
in industries such as manufacturing, automotive, and energy,
where unplanned downtime can lead to significant financial
losses. By integrating predictive analytics into maintenance
planning, companies can transition from traditional preventive
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maintenance approaches to data-driven, condition-based strate-
gies that maximize asset utilization and operational efficiency.

Despite these contributions, the study acknowledges certain
limitations. The current models rely on historical wear data,
which, while useful, may not fully capture dynamic operational
changes. Additionally, the absence of real-time sensor data
in this evaluation highlights the need for further experimen-
tation with IoT-enabled condition monitoring. Variability in
production parameters, such as temperature fluctuations and
mechanical stress, could further influence wear progression,
suggesting that incorporating additional environmental vari-
ables may enhance model robustness.

Future research should explore adaptive PdM frameworks
that incorporate reinforcement learning for real-time opti-
mization of maintenance schedules. Additionally, integrating
IoT-based monitoring systems would enable dynamic data
collection, allowing for more precise failure predictions. The
development of hybrid predictive models combining deep
learning with traditional ensemble methods could also improve
accuracy by capturing both sequential wear patterns and com-
plex nonlinear relationships.

In conclusion, this research highlights the effectiveness of
machine learning-driven predictive maintenance in fiberboard
production, demonstrating how PdM can optimize maintenance
planning and improve industrial sustainability. By identifying
key wear factors and leveraging predictive analytics, manu-
facturers can make informed decisions that enhance resource
allocation, operational reliability, and cost efficiency. With
further advancements in real-time monitoring and adaptive
learning, predictive maintenance has the potential to redefine
industrial asset management, contributing to more resilient and
intelligent manufacturing systems.
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