(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 3, 2025

Small Object Detection in Complex Images:
Evaluation of Faster R-CNN and Slicing Aided
Hyper Inference

Fatma Mazen Ali Mazen!©*, Yomna Shaker?
Faculty of Engineering-Electrical Engineering Department, Fayoum University, Fayoum, Egypt!-2
Engineering Department, University of Science and Technology of Fujairah (USTF), Fujairah, United Arab Emirates?

Abstract—Small object detection has many applications, in-
cluding maritime surveillance, underwater computer vision, agri-
culture, traffic flow analysis, drone surveying, etc. Object detec-
tion has made notable improvements in recent years. Despite
these advancements, there is a notable disparity in performance
between detecting small and large objects. This gap is because
small objects have less information and a weaker ability to
express features. This paper investigates the performance of
Faster Region-Based Convolutional Neural Networks (R-CNN),
one of the most popular and user-friendly object detection
models for head detection and counts in artworks rather than
images of real humans. The impacts of Slicing Aided Hyper
Inference (SAHI) on the enhancement of the model’s capability
to detect small heads in large-size images are also being analyzed.
The Kaggle-hosted Artistic Head Detection dataset was used to
train and evaluate the proposed model. The effectiveness of the
proposed methodology was demonstrated by integrating SAHI
into two other object detection models, Cascaded R-CNN and
Adaptive Training Sample Selection (ATSS). The experimental
results reveal that applying SAHI on top of any object detector
enhances its ability to recognize and detect tiny and various scaled
heads in large-scale images, which is a significant challenge in
numerous applications. At a confidence level of 0.8, the SAHI-
enhanced Faster R-CNN achieved the best private Root Mean
Square Error (RMSE) score of 5.31337, while the SAHI-enhanced
Cascaded R-CNN obtained the highest public RMSE score of
3.47005.

Keywords—Faster R-CNN; Cascaded R-CNN; SAHI; ATSS;
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I. INTRODUCTION

Recently, there has been a rapid increase in the devel-
opment of digital fine art collections [1]. The maintenance
of digital archives is filled with difficulties, but they have
immense potential as a vital resource for documenting stud-
ies and stimulating development within museum narratives.
This automatic annotation of digital artworks provides content
analysis creativity, which helps with the task of protecting
and maintaining cultural resources. Moreover, it can enhance
virtual reality experiences in museums and access to internet
data sources [2]]. Deep neural networks beat all prior machine-
learning algorithms in computer vision, achieving the best
object detection accuracy. Deep learning (DL) is a machine
learning technology that enables direct learning of features
from data. Unlike traditional machine learning algorithms,
which necessitate some human involvement to generate cus-
tomized features, DL can determine these features on its own.
Object detection is commonly achieved with DL utilizing

deep CNN, which have made significant contributions [3].
However, including a CNN trained with real-world images
in the detection of artistic paintings poses challenges due
to the substantial dissimilarities between the two in terms
of low-level features, including color histograms and texture
statistics. The representation of painting pictures can also
vary significantly, as there exist numerous creative approaches
through which they can be depicted. In this study, three object
detection models, Faster R-CNN [4], which is an extension of
Fast R-CNN, Cascaded R-CNN [5]], ATSS [6]], are trained for
the task of head detection in artworks. To train and evaluate the
proposed models, the Kaggle-hosted Artistic Head Detection
dataset [7] presented by Scale Rapid [8] was utilized. The
dataset includes paintings, prints, and drawings from public-
domain artwork with different resolutions and various scales.
While some images have one head, others include several tiny,
medium, and large-scale heads. The high-resolution images are
first preprocessed with SAHI [9] to tackle the issue of many
tiny heads in high-resolution images during inference time.
SAHI was used to segment the images into several overlapping
slices, leading tiny objects to occupy more significant pixel
regions on the resulting images. As a result, the model’s
capacity to recognize and detect tiny heads improves.

This research study constitutes the first attempt to address
the problem of automatic artistic head detection in artworks
using Faster R-CNN, Cascaded R-CNN, and ATSS models.
Additionally, this study is the first to experiment with the
Kaggle-hosted Artistic Head Detection dataset. The results
obtained from this study can provide valuable guidance for
future research endeavors in this domain. Furthermore, this
paper presents a generic solution for enhancing the accuracy
of any object detector, by integrating SAHI into the detection
process. The structure of this paper encompasses five distinct
sections. A comprehensive overview of the related work is
provided in Section. [l Section [[]] outlines the dataset, while
Section details the Methodology. Section [V] provides a
complete analysis and discussion of the experiment outcomes.
Finally, section presents the research’s conclusion and
future scope.

II. RELATED WORK

Many DL methods, like those in [1]] and [10], have been
proposed to identify the artist, style, or genre in artistic
artworks. In [[1]], a study was conducted to identify the optimal
set of visual features that would yield the highest level of
accuracy in artist, style, and genre classification. They studied
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Fig. 1. Samples of artistic head detection dataset .

the application of metric learning methodologies and the
performance of various visual features to learn similarities in
a collection of fine-art paintings. To test performance for the
tasks mentioned above, they performed comparative studies
using the most extensive publicly available collection of fine-
art paintings. In [10]], a large-scale study using CNNs was
proposed to classify the genre, style, and artist of fine-art
paintings. The key objective of their research was to determine
whether the machine can capture “imagination” in paintings.
To validate their work, they utilized the large-scale "Wikiart
paintings” dataset, which contains over 80,000 paintings. Their
approach reached an accuracy of (68%) in overall performance.
In another study [I1]], the authors proposed novel solutions
to overcome the shortage of labeled training data for digital
fine-art paintings and therefore leverage the promise of deep
learning in this application. In their research, they employed
artistic style transfer as a means of dataset augmentation on
natural images, utilizing specific transformations to enhance
the training dataset size. Subsequently, they employed labeled
paintings as training images for various classification tasks,
including style recognition. Two parallel CNNs were trained,
and their output features were combined in a support vector
machines (SVM) classifier. The researchers utilized multiple
datasets, such as PASCAL VOC 2012, the Painting dataset, and
the WikiArt dataset, to train their proposed models. Through
a cross-validation test using fine-art painting images, their
methodolgy outperformed a competing strategy, demonstrating
higher average accuracy. This suggested technique enables
real-time object detection on digital paintings, contributing
to advancements in cultural heritage preservation, enhancing
online resources, and enriching cultural experiences during
trips.

Regarding DL and object recognition in digital fine-art
painting, a new methodology was proposed in for per-
forming object retrieval in paintings using CNN and transfer
learning. They demonstrated that CNNs features generated
from diverse natural picture resources could effectively retrieve
paintings containing these specific objects. Moreover, they
developed a system that trains object classifiers from Google

Photos and then utilizes them to detect a wide range of
previously unknown items in a dataset that contains 210,000
paintings.

There are other machine-learning researches on using
brushstrokes to recognize artists, like those proposed by
and [14]). In [13], various signal processing approaches were
utilized such as Wavelet transforms, the Hidden Markov Model
(HMM), and geometric characteristics of strokes to visually
analyze brushwork in paintings for artist identification. Van
Gogh utilized pre-packaged tube colors, thus the rheology of
his paints was predominantly influenced by the commercial
methodologies employed in their preparation. The surface upon
which brushstrokes are placed is another crucial component
influencing their appearance. The authors used a dataset of
101 high-resolution grayscale scans of paintings to evaluate the
results of the proposed approaches. A computational method
was presented in to authenticate artistic works, primarily
sketches, and paintings, using high-resolution scans of the
originals. This approach utilizes the statistical analysis of
first- and higher-order wavelet statistics to construct a model
that characterizes an artist based on authenticated artwork
scans. This model is subsequently employed to compare and
evaluate new works for authentication purposes. Their early
findings demonstrated that these approaches, in conjunction
with current physical authentication, would play a significant
role in art forensics.

In their research [@], the authors introduced a three-stage
methodology aimed at improving the detection accuracy of
small objects within aerial images. Employing the VisDrone-
2019 dataset for both training and evaluating a modified
RetinaNet model, they adjusted anchor parameters as part of
this process. To address the issue of class imbalance, various
augmentation techniques were employed. Their proposed ap-
proach demonstrated superior performance compared to other
existing object detection models.

To enhance the real-time capabilities of detecting small
targets within aerial imagery, the authors of [16] developed
the CMF-YOLOvSs model. This included the design of a
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novel multi-scale fusion module (MFF) and the construction
of a multi-scale detection head with four outputs, aimed at
augmenting the network’s capacity to perceive small targets.
They employed a genetic algorithm to optimize the K-means
algorithm, thereby generating more suitable anchor boxes
for aerial images. The proposed model was evaluated us-
ing the VisDrone-2019 dataset. In comparison to the orig-
inal YOLOVSs, the detection accuracy metrics, specifically
mAP_0.5 and mAP_0.5:0.95 for small targets, were enhanced
by 5.5% and 3.6%, respectively. Furthermore, the model
demonstrated superior performance over eight lightweight ob-
ject detection models.

In another related study [17], a novel RetinaNet model was
introduced to improve the detection of small drones in infrared
imagery. Firstly, the researchers developed a super-resolution
texture-enhancement network aimed at improving the texture-
related information for small infrared targets. Additionally,
they incorporated an asymmetric attention fusion mechanism
to enhance semantic and locational detail information. Further-
more, a global average pooling layer was utilized to capture
the global spatial information necessary for the classification
stage. The proposed model was trained and evaluated using
the publicly available infrared image dim-small drone target
detection dataset. The experimental results demonstrated that
this approach outperformed other existing mainstream methods
in terms of detection accuracy and can be applied to any small
object detection task.

In the study [18]], the ASFF-YOLOv5s model, a real-
time algorithm for detecting small targets in unmanned aerial
vehicle (UAV) imagery, is presented. The model employs
Adaptively Spatial Feature Fusion (ASFF) to enhance the
capability of multi-scale information fusion. Furthermore, the
quality of anchor frames was improved using the K-means
algorithm. The authors also incorporated the Convolutional
Block Attention Module (CBAM) to effectively capture sig-
nificant features while suppressing redundant ones. The SIoU
loss function was utilized to achieve a better convergence rate.
The proposed model was trained and evaluated using the Vis-
Drone2021 dataset. Compared to the original YOLOvVSs model,
the proposed model demonstrated significant improvements
in precision, Fl-score, and mean Average Precision (mAP)
values.

Feng, Qihan et al. [19] provided a comprehensive survey
on recent approaches based on deep learning for addressing
the challenge of small object detection (SOD). They examined
the various challenges inherent in SOD and systematically
analyzed the methodologies employed to mitigate these chal-
lenges, such as data augmentation, scale-aware training, and
enhancement of input feature resolution. Furthermore, the
study emphasized the prevalent SOD tasks, including the
detection of small pedestrians, faces, and objects in aerial
imagery. Finally, the authors conducted a detailed evaluation of
the performance of SOD models utilizing four well-recognized
small object datasets.

IMD-Net [20] is an interpretable multiscale detection net-
work developed to identify dim and small objects in infrared
images with complex backgrounds. The network first enhances
objects and extracts shallow detail features before acquiring
high-level semantic features through a series of multiscale
object enhancement modules. Low-level and high-level fea-
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tures are then iteratively fused after computing the global
object response, allowing for pixel classification of objects
and background noise. The process is finalized by multiple
loss joint constraint networks that refine pixel classification
to match actual object distributions. Comparative and ablation
tests validate the robustness and effectiveness of the network,
showcasing its strong object detection and contour description
capabilities in challenging infrared conditions and its high
reliability.

Concerning SAHI, the authors of [9] conducted exper-
iments with Fully Convolutional One-Stage Object Detec-
tion (FCOS) [21]], Task-aligned One-stage Object Detec-
tion(TOOD) [22], and VFNet [23]], models and discussed the
results of sliced fine-tuning and slicing-aided hyper inference
for their models. They have shown that SAHI enhanced tiny
object recognition performance while decreasing big object
detection performance in particular circumstances. They also
demonstrated that sliced fine-tuning enhances tiny object de-
tection performance. The only drawback to take into consider-
ation is that sliced inference requires a longer model inference
time due to the additional quantity of information that the
models must process.

In another study [24], the performance of Exceeding You

Only Look Once (YOLOX) and YOLOvS was evaluated
for tiny object detection. They used the challenging Vis-
Drone2019Det dataset to train and test the proposed models.
This dataset is hard to analyze since most items are tiny
compared to the image sizes. They demonstrated the benefits
of slicing-aided inference in boosting the Average Precision
(AP50) score in all experiments.
The main aim of this study is to build an automated system
capable of detecting and counting artistic heads in artworks. To
achieve this, three commonly utilized object detection models,
known for their effectiveness in addressing this complex task,
were employed. Additionally, SAHI, a generic approach for
enhancing the accuracy of detecting small objects, was applied.
The key parameters that can influence model predictions were
then reviewed. Our future directions include the integration of
SAHI with cutting-edge object detection models to enhance
detection accuracy. Furthermore, the development and deploy-
ment of a mobile application specifically designed for museum
environments, allowing widespread access to the SAHI model,
is also aimed for.

III. THE DATASET

The dataset utilized in this study is the Kaggle-hosted
Artistic Head Detection dataset [7] created by Scale Rapid, the
fastest platform that assists in annotation and obtaining high-
quality labels. The key purpose of the challenge is to build
a model for identifying and counting heads in works of art
instead of images of real people. The Metropolitan Museum of
Art in New York provided the original images for this dataset.
Each image is a print, painting, or drawing from public domain
artwork, as shown in Fig. [T}

Each head is at least 50 pixels wide and 50 pixels tall.
The dataset labelers were told to disregard heads with no
visible face. The image files are stored in the train/ and test/
directories, with the filename representing the unique id. For
example, the train with boxes.csv comprises one entry for each
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image in the train/ folder, with three columns: id, num human
heads, and boxes.

The filename in the train/ folder corresponds to the id.
The num human heads are the number of heads in the image
that meet the conditions mentioned above. Finally, the boxes
column is a list of bounding boxes, where each bounding box
has the format (x min, X max, y min, y max) that specifies the
pixel coordinates of the box, measured from the image’s upper
left-hand corner. It was converted to the Common Objects in
Context (COCO) format to facilitate training. Although the
data set comprises images with only one head, it also contains
images with multiple heads. Fig. [2] depicts some images and
their corresponding bounding boxes overlaid on them.

IV. METHODS

This section presents an introduction to the fundamental
principles of the Faster R-CNN, Cascade R-CNN, and ATSS
models.

A. Faster R-CNN

Faster R-CNN is an extension of Fast R-CNN. It is
composed of two blocks; the RPN module generates region
proposals, while the Fast R-CNN module identifies objects
in the suggested regions. As shown in Fig. [3] the first stage
involves applying a proposal sub-network ("H0”) on the whole
image to generate initial detection hypotheses defined as object
proposals. These hypotheses are then processed in the second
stage by a region-of-interest detection sub-network ("HI1”),
also known as the detection head. Each hypothesis is given
a final classification score ("C1”) and a bounding box ("B1”).

Cascade R-CNN is a multi-stage version of the well-known
two-stage R-CNN object identification method as depicted in

Fig. @]
B. Cascaded R-CNN

It is comprised of a sequence of end-to-end trained de-
tectors with progressively increasing Intersection over Union
(IoU) thresholds, making them pickier for near false positives.
The output of a prior stage detector is passed on to a sub-
sequent stage detector, and the detection results are enhanced
stage by stage.

C. Adaptive Training Sample Selection (ATSS)

Adaptive Training Sample Selection (ATSS) is a technique
proposed for automatically selecting positive and negative
samples based on the statistical properties of the object. It acts
as a bridge between anchor-free and anchor-based detectors.
It considerably enhances the performance of state-of-the-art
detectors by a wide margin to 50.7% AP without adding any
overhead.

V. RESULTS AND DISCUSSION

This section presents an analysis of the outcomes obtained
from the object detection models proposed in this study, uti-
lizing the competition evaluation metric and other established
metrics commonly employed for object detection problems.
Furthermore, an examination of the integration of the SAHI
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method is undertaken, with emphasis placed on its fundamental
role in the accurate detection of tiny objects. The experiments
were executed using Python programming language on a
Kaggle platform, utilizing an NVIDIA TESLA P100 GPU for
computational acceleration.

For the sake of simplicity, the evaluation metric for this
competition is the root mean square error or RMSE. RMSE
is often used in forecasting and regression analysis to validate
experimental results. RMSE is given by (I):

n

1
E Z(ytrue - ypred)2 (1)

i=1

RMSE =

where the variables yyue and ypeq represent the actual and
predicted number of artistic heads, respectively, and n is the
number of samples in the dataset. The RMSE metric calculates
the differences between predicted values and actual values,
equally penalizing overestimations and underestimations to
evaluate the accuracy and precision of the prediction. The
result of this calculation is then subjected to a square root
operation to obtain the root-mean-square value.

It is required to forecast the number of human heads larger
than 50px by 50px and not look away from the viewer. Com-
pared with the baseline network, the performance of all models
is enhanced when using SAHI. With a confidence level of 0.8,
the SAHI-enhanced Faster R-CNN achieved the best private
RMSE of 5.31337, while the SAHI-enhanced Cascaded R-
CNN obtained the highest public RMSE of 3.47005. This study
aims to thoroughly assess object detection models and evaluate
their ability to identify objects of varying sizes, shapes, and
orientations. To evaluate and quantify the performance of these
models, various forms of the mean average precision (mAP)
metric are typically employed, including mAP_0.5, mAP_0.75,
mAP_s, mAP_m, and mAP_0.5:0.95 are shown in Fig. [6]
Equations (@), (3), and @) outline the mathematical procedure
for computing Precision (P), Recall (R), and mean Average
Precision (mAP) respectively:

_ (TP)
F= (TP +FP) @
__ (P
= (TP + FN) ©)
1 n
mAP = E; AP; 4)

where:

AP= fol P(R)dR, TP is the True Positive, F'P is the False
Positive, F'N is the False Negative, and n is the number of
classes. One commonly used metric is mAP@[.5:.95], which
is defined as the average precision of the model at different
IoU thresholds ranging from 0.5 to 0.95. Specifically, mAP_0.5
measures the average precision when the IoU threshold is set at
0.5, while mAP_0.75 measures the average precision at an IoU
threshold of 0.75. In contrast, mAP_s, mAP_m, and mAP_I
utilize the average precision value within the IoU threshold
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(a) Single head.
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(b) Multiple heads.

Fig. 2. Sample images and corresponding bounding boxes .
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Fig. 3. Faster R-CNN network architecture.

range of 0.5 to 0.95 for small, medium, and large objects,
respectively.

Table m highlights the public RMSE, private RMSE, AP,
and Average Recall (AR) at various IoU values for the baseline
and SAHI-enhanced proposed models.

For evaluation purposes, a representative sample image
from the test set was chosen. The image included tiny, medium,
and large heads to highlight the significant effect of integrating

® el
W lm s

» conv

Fig. 4. Cascaded R-CNN network architecture.

SAHI into object detection models. Each input image has been
divided into multiple overlapping slices of size 1024x1024
with overlap height ratio = 0.2 and overlap width ratio = 0.2.
The size of the test image is 3753%2698, so it has been divided
into 20 overlapping slices, as shown in Fig.

Several values of the confidence level were investigated in
the SAHI technique. Then the results were compared, as shown
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(b) Resulting overlapping patches.

Fig. 5. Cutting the query image into 20 overlapping patches of size 1024x1024 for SAHI inference.
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Fig. 6. Evaluation metrics for faster R-CNN, Cascaded R-CNN, and ATSS: (a) mAP_0.5:0.95, (b) mAP_0.5, (c¢) mAP_0.75, (d) mAP_s, (¢) mAP_m, (f)
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TABLE 1. EVALUATION METRICS FOR FASTER R-CNN, CASCADED R-CNN, AND ATSS MODELS

Metric Faster R-CNN Cascaded R-CNN ATSS
Inference RMSE (Private) [threshold=0.001] 6.9223 7.79984 56.63364
SAHI-based RMSE (Private) [threshold=0.8] 5.31337 5.57163 11.5534
Inference RMSE (Public) [threshold=0.001] 6.29219 6.6753 54.31293
SAHI-based RMSE (Public) [threshold=0.8] 3.80065 3.47005 13.36742
Average Precision (AP) @ [1oU=0.50:0.95 — area = all — maxDets = 100] 0.368 0.399 0.375
Average Precision (AP) @ [IoU=0.50 — area = all — maxDets = 1000] 0.641 0.651 0.630
Average Precision (AP) @ [IoU=0.75 — area = all — maxDets = 1000] 0.381 0.430 0.394
Average Precision (AP) @ [1oU=0.50:0.95 — area = small — maxDets = 1000] 0.004 0.009 0.006
Average Precision (AP) @ [1oU=0.50:0.95 — area = medium — maxDets = 1000] 0.189 0.205 0.174
Average Precision (AP) @ [IoU=0.50:0.95 — area = large — maxDets = 1000] 0.449 0.486 0.468
Average Recall (AR) @ [IoU=0.50:0.95 — area = all — maxDets = 100] 0.448 0.480 0.507
Average Recall (AR) @ [IoU=0.50:0.95 — area = all — maxDets = 300] 0.448 0.480 0.507
Average Recall (AR) @ [IoU=0.50:0.95 — area = all — maxDets = 1000] 0.448 0.480 0.507
Average Recall (AR) @ [IoU=0.50:0.95 — area = small — maxDets = 1000] 0.037 0.056 0.037
Average Recall (AR) @ [IoU=0.50:0.95 — area = medium — maxDets = 1000] 0.272 0.293 0.285
Average Recall (AR) @ [IoU=0.50:0.95 — area = large — maxDets = 1000] 0.532 0.569 0.613

TABLE II. SUMMARIZATION OF THE COMPARATIVE ANALYSIS PERFORMED TO FINE-TUNE THE CONFIDENCE LEVEL PARAMETER FOR SAHI
INTEGRATED MODELS AND THE CORRESPONDING PUBLIC AND PRIVATE RMSE SCORES

Model Confidence Level Number of Detected Heads Public Score Private Score

0.001 449 heads 31.28875 27.17679
Faster R-CNN 0.4 280 heads 7.82784 11.58052

0.8 131 heads 3.80065 5.31337

0.001 443 heads 34.87448 29.35343
Cascaded R-CNN 0.4 275 heads 8.89154 12.03526

0.8 128 heads 3.47005 5.57163

0.001 530 heads 12.81895 10.7536
ATSS 0.4 100 heads 9.36027 8.09853

0.8 0 heads 13.36742 11.5534

in Fig.[7} For a confidence level of 0.001, the SAHI-integrated
Faster R-CNN discovered 449 heads, the majority of which
were fewer than 50 pixels wide and tall, as required by the
competition host. The model spotted 280 heads by gradually
raising the confidence value to 0.4. When the confidence level
is set to 0.8, the model performs best in terms of RMSE.
It discovered 131 heads, the majority of which meet the
annotation restrictions.

The same approach has been repeated for Cascaded R-CNN
and ATSS, and results have been concluded in Table [ll The
ATSS model, unlike the Faster RCNN and Cascaded RCNN
models, could not detect any heads at a confidence level of
0.8. On the contrary, when the confidence level was reduced to
0.4, its performance improved, and it could detect 100 heads.
At a confidence level of 0.001, the lowest performance was
obtained.

VI. CONCLUSION

Although deep learning-based object detection architec-
tures have achieved recent breakthroughs in various fields,
they struggle to cope with detecting objects in art imagery
such as paintings and sketches. In this study, the problem of
artistic head detection in artworks was investigated. Three of
the simplest and most widely used object detection models

were utilized to detect and count heads in artworks instead of
photos of natural persons. Finally, the models were extended
to the SAHI framework to increase the model’s detection
performance in detecting small heads in large-size photos. The
combined impact of sliced fine-tuning and sliced inference
resulted in significant enhancements for all models. The result
is a new route forward for training object detection models
to interpret artworks. The next step will be to integrate SAHI
with cutting-edge object detection models to enhance detection
accuracy and release a mobile application specifically designed
for museum environments, enabling widespread access to the
SAHI model. This approach can be expanded beyond the
recognition and detection of heads in artwork to other objects.
Head detection in artworks has several real-time applications
including virtual museum tours, augmented reality, audience
analysis, security and surveillance, and gaming. It can be
used to provide personalized content, track head movements,
adjust performances, identify unauthorized individuals, and
control character movements in games. In Cultural Studies
and Anthropology, analyzing the number and characteristics
of heads in works of art can contribute to the study of cultural
practices, social structures, and historical contexts. It can help
researchers gain a deeper understanding of societal norms,
power dynamics, and cultural representations of different
groups Or communities.
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(©)

Fig. 7. Detection results of Faster R-CNN: (a) at confidence level = 0.001, (b) at confidence level = 0.4, and (c) at confidence level = 0.8.
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Developing algorithms and models for automatically iden-
tifying and counting heads in works of art can have practical
applications in computer vision and artificial intelligence.
It can contribute to the development of image recognition
systems, object detection algorithms, and crowd analysis tools.
These technologies can be used in various domains, such
as surveillance, crowd management, and augmented reality.
In addition, it enables efficient categorization, identification,
and retrieval of artworks based on the number of figures or
individuals depicted, facilitating research, exhibition planning,
and educational initiatives. Finally, for Art history and analy-
sis, identifying and counting heads in paintings can provide
valuable insights into the composition, style, and thematic
elements of artworks. It can aid art historians and analysts
in understanding the artistic techniques used by the artist,
the portrayal of human figures, and the narrative or symbolic
significance of the depicted individuals.

ABBREVIATIONS

SAHI: Slicing Aided Hyper Inference
R-CNN: Region-Based Convolutional Neural Networks
ATSS: Adaptive Training Sample Selection
RMSE: Root Mean Square Error
DL: Deep learning
CNN: Convolutional Neural Networks
SVM: support vector machines
HMM: Hidden Markov Model
FCOS: Fully Convolutional One-Stage Object Detection
TOOD: Task-aligned One-stage Object Detection
YOLOX: Exceeding You Only Look Once
MFF: multi-scale fusion module
UAV: unmanned aerial vehicle
ASFF: Adaptively Spatial Feature Fusion
CBAM: Convolutional Block Attention Module
SOD: Small object detection
IMD-Net: interpretable multi-scale infrared small object
detection network
AP: Average Precision
COCO: Common Objects in Context
IoU: Intersection over Union
mAP: mean average precision
P: Precision
R: Recall
AR: Average Recall
TP: True Positives
FP: False Positives
FN: False Negatives
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