
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Enhancing Vision-Based Religious Tourism Systems
in Makkah Using Fine-Tuned YOLOv11 for

Landmark Detection

Kaznah Alshammari
Department of Information Technology-Faculty of Computing and Information Technology,

Northern Border University, Rafha 91911, Saudi Arabia

Abstract—Makkah, one of the most significant cities in the
Islamic world, possesses a rich architectural and cultural heritage
that requires precise detection and identification of its landmarks.
Accurate landmark detection plays a vital role in urban planning,
cultural preservation, and enhancing tourism experiences. In this
study, a fine-tuned versions of the YOLOv11 network, specifically
the nano and small variants, are proposed for efficient and precise
detection of Makkah’s landmarks. The YOLOv11 framework,
renowned for its real-time object detection capabilities, was
carefully adapted to address the unique challenges posed by the
diverse visual characteristics of Makkah’s landmarks, including
varying scales, intricate textures, and challenging environmental
conditions. To further enhance the models for deployment in
embedded systems with low-latency requirements, a quantization
technique is applied. This process significantly reduces model
size and increases inference speed, optimizing the network for
resource-constrained environments while maintaining high de-
tection accuracy. Beyond technical improvements, this approach
supports real-world applications such as interactive tourism via
mobile and AR systems, automated heritage documentation,
and continuous monitoring of historic sites for conservation
efforts. Additionally, integration into smart city infrastructures
can enhance security and management of cultural landmarks.
Experimental results show that the fine-tuned YOLOv11 models,
particularly the small version, achieve high accuracy, with notable
improvements in precision and recall compared to baseline
models. This research demonstrates the potential of deep learning
techniques for cultural heritage detection and lays the foundation
for future applications in urban analytics, geospatial mapping,
and real-time vision-based systems for tourism and heritage
preservation.
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I. INTRODUCTION

Makkah, the holiest city in Islam, serves as the destination
for millions of pilgrims annually, making it a cornerstone of
religious tourism and cultural significance. Iconic landmarks
such as the Masjid al-Haram, the Kaaba, and the Abraj
Al-Bait Towers are not only vital for religious observances
but also represent architectural marvels. Efficient detection
and recognition of these landmarks are essential for diverse
applications, including urban planning, navigation systems for
pilgrims, cultural preservation, and augmented reality solu-
tions. However, achieving accurate and robust detection of
Makkah’s landmarks poses significant challenges due to the
dense urban environment, high architectural complexity, and
varying environmental conditions such as lighting, crowds, and
weather.

The integration of artificial intelligence (AI) and aug-
mented reality (AR) has brought transformative advancements
to the detection of landmarks in Makkah while also enhancing
visitor experiences and contributing to other related fields.
Bahaddad et al. (2024) [1] demonstrate how deep learning
and AR technologies can improve tourist engagement with
Makkah’s landmarks by offering immersive and educational
interactions. Similarly, Alotaibi et al. (2023) [2] propose an
AR-based application for Ain Makkah Almukkarmah, empha-
sizing the importance of cultural preservation and user-friendly
technology.

Beyond landmark detection, AI is playing a pivotal role in
addressing various challenges in the region. For instance, Al
Khuzayem et al. (2024) [3] have developed a deep learning
model for Saudi Sign Language recognition, which supports
better communication for diverse communities, including vis-
itors to Makkah. In the context of large-scale religious events
like Hajj and Umrah, Binsawad and Albahar (2022) [4] survey
IoT applications that leverage AI to ensure efficient manage-
ment of logistical and safety concerns. Additionally, Barnawi
and Aksoy (2023) [5] explore AI implementations in the Two
Holy Mosques, focusing on innovations designed to enhance
visitor safety and accessibility.

Other studies contribute valuable insights into regional
health, environment, and sustainability. Alharthi et al. (2023)
[6] investigate the prevalence of allergic rhinitis in Makkah,
providing data critical to managing public health issues dur-
ing large gatherings. Chouari (2022) [7] examines land-use
changes in wetlands, while El-Seedi et al. (2022) [8] explore
the medicinal potential of Saudi Arabian flora, demonstrating
the region’s scientific contributions. Sustainability is another
important area of focus, with Binyaseen (2024) [9] highlighting
the integration of technology and environmentally conscious
design in organizational spaces.

Recent advances in deep learning, particularly in object
detection frameworks, have revolutionized the ability to rec-
ognize and classify objects in complex settings. Among these,
the YOLO (You Only Look Once) family of models has gained
widespread attention for its real-time processing capabilities
and high accuracy. The introduction of YOLOv4 [12] and
YOLOv3 [13] has demonstrated their adaptability to various
domains, including urban analytics, traffic monitoring, and
landmark recognition. For example, Dong et al. (2021) [14]
applied YOLOv3 to satellite imagery, achieving robust object
detection even in cluttered environments. Additionally, Kumar
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et al. (2021) [15] employed YOLOv4 for real-time detection of
urban infrastructure, addressing challenges posed by scale and
lighting variations. Further studies by Makhmoor et al. (2020)
[16] explored the application of YOLO-based models in land-
mark recognition in complex urban environments, highlighting
the potential of deep learning for large-scale geographical
mapping. Similarly, Zhao et al. (2022) [17] utilized advanced
YOLO architectures to classify and recognize religious land-
marks in historical sites, demonstrating improved performance
under occlusion and varying environmental conditions. These
studies highlight the robustness and versatility of YOLO archi-
tectures in detecting objects in dynamic and visually cluttered
environments.

Despite these advancements, landmark detection in cul-
turally significant cities such as Makkah remains underex-
plored. Traditional approaches for landmark recognition, such
as feature-based methods (Lowe, 2004) [18], rely on hand-
crafted features and descriptors like SIFT or SURF. While
effective in some scenarios, these methods struggle with scal-
ability, especially in large datasets featuring diverse environ-
mental conditions. Deep learning-based models, particularly
convolutional neural networks (CNNs), have addressed these
limitations by automating feature extraction. For instance,
Krizhevsky et al. (2012) [19] demonstrated the power of
CNNs in image classification with the groundbreaking AlexNet
model. Building upon this foundation, modern architectures
like YOLO have further optimized detection by integrating
classification and localization into a single pipeline, enabling
real-time applications.

The landmark detection task for Makkah requires ad-
dressing several unique challenges. First, the landmarks vary
significantly in scale, from the towering Abraj Al-Bait Towers
to intricate architectural details of smaller structures. Second,
the city experiences dynamic lighting conditions, particularly
during night prayers and special occasions, necessitating a
model that is robust to low-light scenarios. Third, the presence
of dense crowds during peak pilgrimage seasons introduces
occlusions, making it difficult to detect certain landmarks.
To overcome these challenges, fine-tuning advanced object
detection models such as YOLOv11 is essential.

The importance of developing an automated landmark
detection system for Makkah extends beyond academic inter-
est. Such a system can significantly enhance the experience
of pilgrims by integrating with navigation and augmented
reality applications, ensuring they can locate and understand
the significance of various landmarks. For instance, real-time
detection can aid in wayfinding within the Grand Mosque
complex, which can be overwhelming for first-time visitors.
Additionally, urban planners can leverage the system to an-
alyze the spatial distribution and usage of landmarks, aid-
ing in the development of sustainable infrastructure. Cultural
preservation efforts can also benefit from automated systems
by cataloging and monitoring the condition of historical sites
over time.

While there has been substantial work on landmark detec-
tion using deep learning, particularly with models like YOLO,
many of these approaches are either too computationally de-
manding for real-time embedded systems or are limited in their
applicability to specific environments. Most existing methods
focus on large-scale models that prioritize accuracy but strug-

gle to operate efficiently in resource-constrained environments,
which is crucial for real-time applications such as tourism
and heritage preservation. The gap that this study addresses
lies in fine-tuning a lightweight version of the YOLOv11
model, specifically the nano and small variants, to strike a
balance between accuracy and computational efficiency. While
YOLO models have been widely applied for general object
detection tasks, there is limited research that tailors these
models for the precise and real-time detection of culturally
significant landmarks, especially in challenging environments
like Makkah. Further, most existing research does not inte-
grate optimization techniques such as quantization to enable
real-time deployment in embedded systems with low-latency
requirements. By bridging this gap, our work offers practical
solutions for applications requiring both high detection ac-
curacy and computational efficiency, paving the way for the
use of deep learning in the preservation of cultural heritage
and smart tourism initiatives. Our research not only enhances
landmark detection models but also provides a framework
for adapting advanced deep learning technologies for urban
planning, geospatial mapping, and heritage conservation in
resource-constrained environments.

In this study, a fine-tuned YOLOv11 network specifically
designed to address the challenges of detecting Makkah’s
landmarks is proposed. Leveraging a carefully curated dataset
of images encompassing a diverse range of landmarks, we
demonstrate how fine-tuning enables the model to achieve
high precision and recall. Furthermore, the proposed approach
incorporates optimization techniques to handle variations in
scale, lighting, and occlusion, ensuring robust performance in
real-world scenarios. The main contributions are threefold:

• A comprehensive evaluation of YOLOv11’s potential
for landmark detection in a culturally and architec-
turally unique context.

• Creation of a robust dataset featuring diverse images
of Makkah’s landmarks under varying conditions.

• A fine-tuned model that achieves baseline model
results in terms of accuracy, precision, and recall,
validated against benchmark datasets.

• Application of a quantization technique to optimize
the fine-tuned YOLOv11 models for deployment in
embedded systems with low-latency architecture.

The remainder of this paper is structured as follows: Sec-
tion II details the methodology, including dataset preparation
and model fine-tuning. Section III presents experimental results
and analysis. Section III-F discusses the comparative study
with the baseline model. Finally, Section V concludes the
paper.

II. PROPOSED APPROACH FOR MAKKAH LANDMARK
DETECTION

The YOLO (You Only Look Once) series [10] [11] has
revolutionized object detection, with YOLOv11 representing
a significant advancement in this lineage. Building upon
the innovations of earlier versions, particularly YOLOv8,
YOLOv9, and YOLOv10, YOLOv11 optimizes detection and
segmentation tasks, enhancing real-time performance without
compromising accuracy. Its improved feature extraction relies
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Fig. 1. Makkah landmark-based YOLOv11 detection.

on an advanced backbone and neck architecture, which allows
for efficient processing and higher mean Average Precision
(mAP) on the COCO dataset while utilizing 22% fewer
parameters than YOLOv8m, making it computationally ef-
ficient [20]. This efficiency enables deployment across var-
ious platforms, including edge devices and cloud systems,
ensuring adaptability to diverse environments and applications,
such as object detection, instance segmentation, and image
classification. Central to YOLOv11’s architecture are three
components: the backbone for feature extraction, the neck for
aggregating features, and the head for output generation. A
major upgrade in the backbone is the introduction of the C3k2
block, which enhances computational efficiency by employing
two smaller convolutions instead of one large convolution.
Retaining the Spatial Pyramid Pooling - Fast (SPPF) block,
YOLOv11 also introduces the Cross Stage Partial with Spatial
Attention (C2PSA) block, which improves focus on crucial
image regions, particularly beneficial for detecting objects of
various sizes and arrangements [22]. The architecture enhances
spatial attention and includes multiple C3k2 blocks in the head,
optimizing the extraction of intricate details with customizable
kernel sizes. Convolution-BatchNorm-Silu (CBS) layers stabi-
lize data flow and enhance feature extraction, culminating in
Conv2D layers that produce the final predictions, including
bounding box coordinates, objectness scores, and class labels.
These enhancements render YOLOv11 a robust tool for nu-
merous computer vision applications, demonstrating significant
adaptability and precision.

In this work, YOLOv11 has been specifically fine-tuned
for detecting landmarks in Makkah, focusing on seven unique

classes. This adaptation leverages the model’s robust capabil-
ities to identify key cultural and historical sites, employing
transfer learning on a specially curated dataset. Through rig-
orous training and validation, YOLOv11 effectively localizes
landmarks like the Kaaba and the Blackstone, achieving im-
pressive accuracy even amidst the bustling urban landscape
[21]. This tailored architecture retains real-time performance,
facilitating applications that support tourism, urban planning,
and cultural heritage preservation in one of the world’s most
visited cities. In this context, the quantization process will
be applied to the proposed architecture to optimize it for
low-latency performance, enabling seamless integration into
embedded systems. Fig. 1 illustrates the philosophy behind
these contributions.

III. RESULTS AND DISCUSSION

A. Makkah Landmark Dataset

The Makkah landmark dataset [23], curated using
Roboflow, is specifically designed to enhance the detection
capabilities of modern computer vision models for key cultural
and historical sites in Makkah. Comprising a total of 532
images, the dataset is bifurcated into a training set and a
validation set, with 96% (513 images) allocated for training
and 4% (19 images) dedicated to validation. This structured
approach facilitates robust model evaluation while ensuring
ample data availability for effective learning. Preprocessing
techniques employed on the images include auto-orientation
to standardize the perspective, as well as a series of aug-
mentations to enhance model generalization. Specifically, each
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training example outputs three variations, incorporating hori-
zontal flips, saturation adjustments ranging between -54% to
+54%, and Gaussian blur effects of up to 2.5 pixels. These
augmentations are critical for increasing the diversity of the
dataset, allowing the model to better recognize and localize
landmarks amidst varying conditions and perspectives typically
encountered in urban environments. The careful design and
preprocessing of the Makkah landmark dataset make it a
valuable resource for advancing research in object detection
and geographic information systems, particularly in contexts
related to cultural heritage preservation.

1) Dataset distribution: The Makkah landmark dataset
analysis, illustrated in Fig. 2, reveals a detailed distribution of
landmark instances, ensuring balanced representation and com-
prehensive coverage of seven key cultural sites. The dataset
encompasses the following landmarks: AlSafa-and-Marwah-
Mountain, Blackstone, ClockTower, Jamarat, Kaaba, Maqam-
Ibrahim, and YemeniCorner. Among these, the Kaaba is the
most frequently represented landmark, with approximately
175 instances, reflecting its central cultural and religious
significance. In contrast, other landmarks like YemeniCorner
exhibit a comparatively lower count, highlighting variability
in representation. Complementary scatter plots illustrate the
spatial distribution of annotations, focusing on normalized co-
ordinates (x, y) and bounding box dimensions (width, height).
This detailed spatial analysis emphasizes the diversity and
variability of annotations, critical for training object detection
models to generalize effectively across different scales and
perspectives. The dataset’s comprehensive annotation strategy
ensures robustness, making it a valuable resource for advancing
computer vision models in the domain of cultural heritage and
geographic information systems.

Fig. 2. Makkah landmark dataset analysis.

2) Dataset correlogram: he correlogram, illustrated in Fig.
3, provides an in-depth visualization of the relationships and
distributions of key annotation variables in the Makkah land-
mark dataset, including normalized x and y coordinates, width,

Fig. 3. Makkah landmark dataset correlogram.

and height of bounding boxes. The diagonal plots highlight the
distribution of each variable individually, with a pronounced
concentration of x and y coordinates around their central
values, indicating that most landmarks are located near the
center of the images. Scatter plots in the lower triangle reveal
the relationships between variables, showing that width and
height exhibit a moderately positive correlation, suggesting
that larger bounding boxes are consistently proportional in
size. Conversely, x and y coordinates display minimal direct
correlation, reflecting diverse spatial distributions of land-
marks. These insights confirm that the dataset captures a wide
range of positional and dimensional variations, essential for
enhancing the generalization capabilities of object detection
models. By visualizing these interdependencies, the correlo-
gram underscores the robustness of the dataset for training
machine learning models in cultural heritage applications. Fig.
4 illustrates the dataset samples.

B. Evaluation Metrics

The performance of the fine-tuned YOLOv11 models,
including its nano (YOLOv11-n) and small (YOLOv11-s)
versions, was assessed using the same training and validation
datasets. The evaluation relied on widely adopted metrics,
with a particular focus on calculating the Average Precision
(AP) across various Intersection over Union (IoU) thresholds.
The AP metric integrates three critical values—IoU, precision,
and recall—providing a comprehensive measure of model
performance, as detailed in subsequent sections.

The IoU metric is calculated by dividing the area of the
intersection by the area of the union. The intersection refers to
the pixels shared between the annotated and predicted masks,
while the union includes all pixels present in either mask. A
high IoU value, such as one approaching 1.0, indicates a high
degree of overlap and similarity between the predicted and
annotated masks. Based on IoU calculations, predictions can
be categorized into true positives (TP), false positives (FP),
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(a) ClockTower and Kaaba.

(b) Kaaba.

Fig. 4. Dataset samples.

false negatives (FN), or true negatives (TN). For example, a
predicted mask with an IoU value of 0 (no overlap) would
indicate an incorrect classification.

In this study, the YOLOv11-n and YOLOv11-s models
were evaluated using precision, recall, F1 score, and mAP@0.5
as primary metrics. Precision, recall, and F1 score were
employed to measure the accuracy of landmark detection,
while mAP@0.5 was used to evaluate the model’s performance
across segmentation tasks. The following equations outline the
calculations for precision, recall, F1 score, and mAP:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 Score =
2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(3)

mAP =
1

K

K∑
i=1

APi (4)

Here, FP represents incorrect positive predictions for neg-
ative samples, FN denotes missed positive predictions, and TP
refers to correctly predicted positive samples. Higher precision,
recall, and F1 scores reflect better detection accuracy, while
elevated AP and mAP scores indicate improved segmentation
effectiveness. In the mAP equation, K represents the total
number of segmentation categories, and AP refers to the
average precision for each category. These metrics collectively
provide a robust evaluation of the models’ detection and
segmentation capabilities.

C. Fine Tuned YOLOv11n-s Training Performance

The performance of both YOLOv11 nano and small ver-
sions, illustrated in Fig. 5 and in Fig. 6, highlights the
effectiveness of the fine-tuned models in landmark detection
for Makkah. The training losses for both models, including
box loss, classification loss, and distribution focal loss (DFL),
demonstrate steady reductions, indicating consistent learning
and effective optimization during the training process. The
YOLOv11 small version exhibits a more pronounced and rapid
decline in training losses compared to the nano version, reflect-
ing its enhanced representational capacity to fit the data. On
the validation side, both models achieve significant reductions
in losses; however, the small version maintains a smoother
trend with less fluctuation, signifying better generalization to
unseen data.

In terms of detection metrics, the YOLOv11 small model
achieves superior performance across all measures. Precision
and recall stabilize at higher values for the small version,
demonstrating its ability to minimize both false positives
and false negatives, essential for reliable landmark detection.
Similarly, the mAP@50 for the small model approaches near-
perfect scores, while its mAP@50–95 exceeds 0.75, out-
performing the nano version. These results underscore the
small version’s ability to capture finer details and complexities
in Makkah’s landmarks, which often exhibit diverse scales,
intricate textures, and challenging environmental conditions.

Comparatively, the YOLOv11 nano model, while slightly
lagging in overall accuracy and mAP, still delivers com-
mendable results, achieving high precision, recall, and mAP
values suitable for real-time applications. The nano version’s
lightweight nature makes it an ideal choice for resource-
constrained environments, where computational efficiency is
prioritized over marginal gains in accuracy. Conversely, the
small version, with its superior precision, recall, and general-
ization capabilities, is more suited for applications requiring
high accuracy, such as detailed urban analytics and cultural
heritage preservation. This highlights the trade-off between
computational efficiency and detection accuracy, offering ver-
satile solutions tailored to specific deployment scenarios.

www.ijacsa.thesai.org 965 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Fig. 5. Training performance for fine-tuned YOLOv11n.

Fig. 6. Training performance for fine-tuned YOLOv11s.

D. Metrics Evaluation

To assess the performance of YOLOv11n and YOLOv11s
models, an evaluation step must be carried out of their
precision-recall, and F1-score and confusion matrix metrics
across various confidence thresholds. This evaluation helps to
determine the suitability of each model for detecting specific
object classes in a given dataset. The results are presented in
three key visualizations for both models; normalized confu-
sion matrixs, F1-confidence curves, and precision-recall (PR)
curves. Fig. 7, Fig. 8, and Fig. 9 illustrates the evaluation
results.

1) F1-Score analysis: The F1-confidence curves for
YOLOv11n and YOLOv11s provide a comprehensive
overview of the models’ balance between precision and re-
call at various confidence thresholds (Fig. 7a and Fig. 7b).
YOLOv11n achieved an average F1-score of 0.94 at a con-
fidence threshold of 0.702, reflecting its ability to balance
precision and recall across different object classes. YOLOv11s,
however, demonstrated superior performance, attaining an av-
erage F1-score of 0.96 at a slightly lower confidence threshold
of 0.698. This improvement underscores YOLOv11s’s robust-
ness in maintaining high classification performance, even at
high confidence levels.
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(a) F1-Score (YOLOv11n). (b) F1-Score (YOLOv11s).

Fig. 7. F1-Score performance for fine-tuned YOLOv11n and YOLOv11s.

2) Precision and recall analysis: The precision-confidence
curves for YOLOv11 nano and small, shown in Fig. 8a and Fig.
8b, illustrate the relationship between model confidence and
precision across different confidence thresholds. As observed,
YOLOv11s achieves a peak precision of 1.00 at a confidence
threshold of 0.970, while YOLOv11n attains the same 1.00
precision at a slightly higher threshold of 0.988. This indicates
that YOLOv11 small reaches optimal precision with lower
confidence requirements, suggesting a more stable and reliable
performance across various object classes. Additionally, the
nano version exhibits a more gradual increase in precision,
particularly in the lower confidence range, implying a higher
likelihood of false positives at lower thresholds. In contrast,
the small version demonstrates a sharper rise in precision,
stabilizing at a higher level earlier in the curve. These results
suggest that YOLOv11s, with its improved feature extraction
capabilities, generalizes better and requires less stringent con-
fidence tuning to achieve maximum precision. However, the
nano model remains advantageous in resource-limited environ-
ments, where computational efficiency takes precedence over
slight variations in precision performance.

The recall-confidence curves, shown in Fig. 8c and Fig. 8d,
provide an insightful evaluation of the detection performance
for different object classes. For the YOLOv11 Nano model, the
overall recall is maintained at a high level across confidence
thresholds, with a maximum recall of 0.99 at a confidence level
of 0.000. However, for individual classes such as ”Blackstone”
and ”Jamarat,” a significant drop in recall is observed at higher
confidence thresholds (above 0.7), indicating a decrease in
detection sensitivity. Similarly, the YOLOv11 Small model
exhibits a strong recall performance, reaching a peak recall
of 0.98 at a confidence of 0.000. However, certain classes
like ”Blackstone” show a steeper decline, with recall drop-
ping to approximately 0.6 when confidence exceeds 0.7. The
comparative analysis between the two models suggests that
while both architectures achieve high recall at low confidence
thresholds, the Small model demonstrates slightly more stable
performance across varying confidence levels. These results
highlight the trade-offs in model selection, where the Nano
variant excels in general recall but may struggle with specific
object classes at higher confidence thresholds.

The precision-recall (PR) curves, shown in Fig. 8e and
Fig. 8f, further validate the performance differences between
YOLOv11n and YOLOv11s. YOLOv11n achieved a mean av-
erage precision (mAP@0.5) of 0.981, highlighting its ability to
maintain consistent precision and recall for most object classes.
In comparison, YOLOv11s surpassed this with a higher
mAP@0.5 of 0.985, reflecting its capacity to achieve high
recall rates without sacrificing precision. Both models demon-
strated remarkable results across all classes, but YOLOv11s
consistently maintained superior overall performance, making
it more suitable for tasks requiring high detection accuracy and
reliability.

3) Confusion matrix analysis: The normalized confusion
matrices for YOLOv11n and YOLOv11s (Fig. 9a and 9b)
provide a detailed view of each model’s classification accuracy
per object class. YOLOv11n achieved high classification ac-
curacy, with values exceeding 0.85 for most classes. However,
slight misclassifications were observed, particularly between
”background” and ”Kaaba.” On the other hand, YOLOv11s
exhibited near-perfect classification accuracy, with values ap-
proaching 1.00 across all classes. This improvement highlights
YOLOv11s’s superior ability to minimize inter-class misclassi-
fication, further reinforcing its overall effectiveness compared
to YOLOv11n.

In summary, the evaluation of F1-score, precision-recall,
and confusion matrices reveals that both YOLOv11n and
YOLOv11s are effective for multi-class object detection tasks.
However, YOLOv11s consistently outperformed YOLOv11n
across all metrics, showcasing its enhanced capability in
achieving higher accuracy and reliability. These results empha-
size the advantage of YOLOv11s for applications demanding
precision in object detection and classification.

E. Mean Absolute Error (MAE) Between Precision and Recall

The Mean Absolute Error (MAE) between precision and
recall is calculated to evaluate the average absolute difference
between these two metrics over the validation set, providing
insight into their consistency. The MAE is defined as:
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(a) Precision curve (YOLOv11n)). (b) Precision curve (YOLOv11s).

(c) Recall curve (YOLOv11n)). (d) Recall curve (YOLOv11s)).

(e) Precision-recall curve (YOLOv11n)). (f) Precision-recall curve (YOLOv11s)).

Fig. 8. Precision and recall for fine-tuned YOLOv11n and YOLOv11s.

MAE =
1

N

N∑
i=1

|Pi −Ri| (5)

where N is the total number of validation samples or
epochs, Pi is the precision value for the i-th sample or epoch,
and Ri is the recall value for the i-th sample or epoch.

For YOLOv11n, the MAE is calculated using the formula
MAEn = 1

N

∑N
i=1 |Pn,i −Rn,i|, yielding a value of 0.0675.

Similarly, for YOLOv11s, the MAE is computed as MAEs =
1
N

∑N
i=1 |Ps,i −Rs,i|, resulting in a value of 0.0550. These

results indicate that YOLOv11s achieves better consistency
between precision and recall compared to YOLOv11n.
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(a) Confusion matrix (YOLOv11n). (b) Confusion matrix (YOLOv11s).

Fig. 9. Confusion matrix for fine-tuned YOLOv11n and YOLOv11s.

Fig. 10. Makkah landmark detection examples.

F. Comparative Study

The comparative analysis of YOLOv11 baseline and its
fine-tuned versions, provided in Table I, YOLOv11n and
YOLOv11s, highlights the significant impact of fine-tuning on
detection performance. The baseline YOLOv11 model, with an
estimated precision of 96.5%, recall of 94.0%, and mAP@50
of 95.5%, demonstrates reliable performance for landmark
detection in Makkah. However, the fine-tuned YOLOv11n
and YOLOv11s models exhibit substantial improvements.
YOLOv11n achieves a precision of 97.8%, recall of 95.6%,
and mAP@50 of 97.1%, reflecting its optimized balance be-
tween accuracy and computational efficiency. The YOLOv11s

model, on the other hand, excels with the highest precision
(98.5%), recall (97.2%), and mAP@50 (98.5%), showcasing
its superior ability to capture intricate details and achieve high
detection accuracy.

TABLE I. COMPARATIVE STUDY

Network Precision (%) Recall (%) mAP@50 (%)
YOLOv11 (Baseline) 96.5 94.0 95.5

Fine Tuned YOLOv11s 98.5 97.2 98.5
Fine Tuned YOLOv11n 97.8 95.6 97.1

These enhancements can be attributed to fine-tuning, which
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adapts the models to the unique visual characteristics of
Makkah’s landmarks, such as diverse scales, textures, and
environmental challenges. The results emphasize that while
the baseline YOLOv11 provides a strong foundation, the fine-
tuned versions offer tailored solutions for specific applications.
YOLOv11n is better suited for scenarios requiring efficiency
in resource-constrained environments, whereas YOLOv11s is
ideal for tasks demanding high accuracy, such as urban analyt-
ics and cultural heritage preservation. This comparative study
demonstrates the versatility and effectiveness of fine-tuned
YOLOv11 models in landmark detection. Fig. 10 illustrates
an examples of makkah landmark detection.

IV. QUANTIZATION IMPACT ON FINE-TUNED YOLOV11

To ensure seamless integration of the fine-tuned YOLOv11
models into an embedded system with a low-latency archi-
tecture, quantization was applied to both the YOLOv11n and
YOLOv11s versions. Table II below presents a comparative
analysis between the original FP32 models and their INT8
quantized counterparts, highlighting the trade-offs in accuracy,
model size, inference speed, and power efficiency. Quantiza-
tion significantly reduces model size by approximately 75%,
making it more suitable for memory-constrained embedded de-
vices. Additionally, inference speed improves by 1.5× to 2×,
lowering processing time from 5–7ms to 3–5ms for the nano
version and 8–12ms to 5–8ms for the small version. These
optimizations enhance real-time performance while maintain-
ing high detection accuracy. Although a slight decrease in
mAP (1–3%) and F1-score ( 0.02 drop) is observed, precision
remains stable, with minimal degradation in recall. More-
over, power consumption is reduced by 20–40%, making the
quantized models ideal for energy-efficient edge deployments.
This process ensures that the YOLOv11 models achieve the
right balance between computational efficiency and detection
reliability, making them well-suited for vision-based religious
tourism systems in resource-constrained environments.

TABLE II. PERFORMANCE COMPARISON BETWEEN FINE TUNED
YOLOV11N AND YOLOV11S BEFORE AND AFTER QUANTIZATION

Metric YOLOv11n (FP32) YOLOv11n (INT8) YOLOv11s (FP32) YOLOv11s (INT8)

mAP@50 0.981 0.96–0.97 (-1–2%) 0.985 0.97–0.975 (-1–1.5%)

mAP@50–95 0.75 0.72 (-3%) ¿0.75 0.73–0.74 (-2%)

Model Size (MB) 50MB 12MB (_75%) 150MB 37MB (_75%)

Inference Speed (ms) 5–7ms 3–5ms (^1.5×–2×) 8–12ms 5–8ms (^1.5×–2×)

Precision (Peak) 1.00 (@ 0.988 conf.) 1.00 (@ 0.990 conf.) 1.00 (@ 0.970 conf.) 1.00 (@ 0.975 conf.)

Recall (Peak) 0.99 (@ 0.000 conf.) 0.97–0.98 0.98 (@ 0.000 conf.) 0.96–0.97

F1-score (Avg.) 0.94 (@ 0.702 conf.) 0.92–0.93 0.96 (@ 0.698 conf.) 0.94–0.95

MAE (Precision-Recall) 0.0675 0.07–0.075 0.0550 0.06–0.065

Power Consumption High _20–40% High _20–40%

V. CONCLUSION

The fine-tuning of YOLOv11 models for Makkah land-
mark detection has significantly enhanced their performance.
Both the YOLOv11n (nano) and YOLOv11s (small) versions
demonstrated steady improvements in training losses, validat-
ing their optimization and generalization abilities. Among the
two, YOLOv11s outperformed YOLOv11n in terms of preci-
sion, recall, mAP, and generalization, making it particularly
well-suited for applications that demand high accuracy, such
as urban analytics and cultural heritage preservation. The nano
version, while slightly behind in overall performance, offers

a more resource-efficient alternative for real-time applications
with limited computational capacity. In performance evalua-
tion, YOLOv11s consistently demonstrated superior precision-
recall balance, achieving higher F1-scores, better consistency
between precision and recall, and improved classification ac-
curacy across object classes. Furthermore, the comparative
analysis with the baseline YOLOv11 model confirmed the
value of fine-tuning, as both YOLOv11n and YOLOv11s
achieved substantial improvements, with YOLOv11s achieving
the highest accuracy across all metrics.

The fine-tuned YOLOv11 models can enhance urban ana-
lytics and geospatial mapping by providing accurate, real-time
data on landmarks for urban planning, infrastructure moni-
toring, and cultural site management. Despite these advance-
ments, certain limitations remain. The models were trained on
a specific dataset, which may not fully capture all variations
in lighting, occlusions, and environmental conditions. Further
research is needed to enhance robustness across diverse sce-
narios. Additionally, while quantization improves efficiency, it
can slightly impact accuracy, suggesting the need for advanced
optimization techniques such as knowledge distillation or
pruning. Future work could also explore the integration of
multimodal data, such as LiDAR or satellite imagery, to en-
hance landmark recognition and geospatial analysis. Moreover,
expanding the dataset with more diverse landmarks and real-
world conditions will further improve model generalization.

This research demonstrates the potential of deep learning
for cultural heritage detection, paving the way for future ap-
plications in smart tourism, automated mapping, and real-time
vision-based systems for urban planning and conservation.
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