
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Automated DoS Penetration Testing Using Quantile
Regression and Deep Q-Learning Network

Algorithms

Mariam Alhamed, M M Hafizur Rahman
Department of Computer Networks and Communications-CCSIT, King Faisal University, Al-Ahsa, 31982, Saudi Arabia

Abstract—Penetration test is essential to determine the secu-
rity level of a network. A penetration test attack path simulates
an attack to identify vulnerabilities, reduce likely losses, and
continuously enhance security. It helps to facilitate the simulation
of different attack scenarios, develops robust security measures,
and enables proactive risk assessment. We have combined Mul-
VAL with DQN and QR-DQN algorithms to solve the problem
of incorrect route prediction and problematic convergence as-
sociated with attack path planning training. As a result of this
algorithm, an attack tree is generated, paths within the attack
graph are searched for, and a deep-first search method is used
to create a transfer matrix. In addition, QR-DQN and DQN
algorithms determine the optimal attack path for the target
system. The results of this study show that although the QR-
DQN algorithm requires more resources and takes longer to train
than the traditional (DQN) algorithm, it is effective in identifying
vulnerabilities and optimizing attack paths.

Keywords—DQN; QR-DQN; MulVAL; DFS; penetration test-
ing; DoS

I. INTRODUCTION

Recently, network security has been considered a critical
issue that needs to be addressed. Networks connected to the
internet are inherently insecure and can be abused by hack-
ers, regardless of whether they are wired or wireless. When
transmitted, data passes through numerous terminals before
reaching its destination, allowing corrupt users to intercept or
modify it.

Due to the increasingly complex and aggressive threats to
network security, the researchers explained that an effective
strategy to tackle this problem is to investigate the aspects
of network security of a system through penetration testing.
Penetration testing is an essential approach to determine the
security level of a network system. Penetration testing involves
simulating an attack in multiple attack scenarios to ensure the
security of the system or environment under investigation. We
can reduce possible risks by eliminating these vulnerabilities
in advance and increasing the system’s security. However, pen-
etration testing can be performed manually or automatically.

Manual penetration tests require exceptional skills. Auto-
mated penetration testing has recently gained popularity as a
”hot spot” in network security. Planning the attack path is an
important phase of automated penetration testing. Thorough
planning is essential in automated penetration testing, ensuring
that the attack path is well-defined and comprehensive. By
carefully planning the path of the attack, organizations can
effectively model real-world attack scenarios and recognize

possible vulnerabilities in their systems and networks. This
helps uncover hidden security vulnerabilities and enables
targeted remediation measures to strengthen security pos-
ture. By uncovering such vulnerabilities and understanding
the potential impact of a real-world attack, companies can
take proactive measures to strengthen their security defenses
and protect themselves against similar threats in the future.
Several sophisticated AutoPT methods and frameworks have
been created to improve penetration test performance through
reinforcement learning RL or deep reinforcement learning.
Both Reinforcement learning (RL) and deep reinforcement
learning (DRL) have shown promise in improving penetration
test performance. DRL is better than RL because it uses deep
neural networks to handle complicated, high-dimensional data,
enabling more accurate and efficient vulnerability discovery.
Furthermore, DRL can learn directly from raw data, eliminat-
ing the requirement for feature engineering and reducing man-
ual intervention. As a result, DRL-based automated penetration
testing systems have the potential to provide more comprehen-
sive and reliable security assessments. DRL algorithms can
learn and adapt to different network environments, allowing
them to navigate complex systems and detect vulnerabilities
more efficiently [7].

The DRL approach differs from typical machine learning
approaches that use labeled data for supervised learning in-
stead of learning optimal tactics through interaction with the
environment. This enables the agent to learn through trial and
error and constantly improves its methods based on the rewards
it receives. In addition, DRL can deal with more complex
and dynamic environments where predefined labels and models
are inadequate. DRL algorithms are classified into three main
categories: strategy-based search, model-based methods, and
value-based functions. In the strategy-based search, the agent
focuses on learning a strategy that maps states directly to
actions.

The main contribution of this study is as follows:

1) First application of QR-DQN in automated penetration
testing: This study is one of the first to use the Quan-
tile Regression Deep Q Network (QR-DQN) for automated
penetration testing. Although previous research has focused
predominantly on classical DQN and its variants (e.g. double
DQN, dueling DQN) [15] [19], our study introduces the QR-
DQN model, which estimates the distribution of rewards and
not just the expected values. This provides a more robust
framework for decision-making under uncertainty and low
incentives, a key challenge in penetration testing.

www.ijacsa.thesai.org 972 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

2) Closing the vulnerability detection gap: This study fills
a critical literature gap by offering a novel method for more
effective vulnerability detection in complex network environ-
ments. Traditional penetration testing often provides limited
results due to difficulty in identifying exploitable vulnerabil-
ities. Our approach with QR-DQN improves the exploration
of attack surfaces and makes the detection of vulnerabilities
more efficient in networks where exploitable paths are difficult
to find.

3) Improved reconnaissance and discovery of hidden paths:
Using the QR-DQN distribution approach, this study signifi-
cantly improves reconnaissance capabilities. QR-DQN enables
the model to capture a broader range of possible outcomes,
allowing the agent to discover hidden attack paths and vulner-
abilities that classical DQN-based models may miss [15]. This
makes the model better able to deal with inherent uncertainty
in penetration testing, where attack success and vulnerabil-
ity exploitation are often unpredictable [19]. Quantile-based
assessment allows the agent to make more risk-aware and
adaptive decisions, significantly improving models based on
expected gains.

4) Comprehensive empirical comparison: This study com-
pares QR-DQN and traditional DQN models in simulated
penetration testing environments.

These contributions show that QR-DQN has the potential
to revolutionize automated penetration testing by improv-
ing decision-making and reconnaissance and providing better
adaptability to different network environments.

II. RELATED WORKS

The study by Hu Z, Beuran R, and Tan Y [1] aimed to
Automate penetration testing as part of cybersecurity training
by incorporating Deep Reinforcement Learning. This method-
ology leads to directed learning for attack training, suggesting
potential techniques. The authors conducted automated pen-
etration testing in two phases. The security tools used were
the Shodan search engine, MulVAL, and the DQN method.
Finally, they found that the framework is useful to suggest
attack strategies.

Maeda R and Mimura M [2] aimed to study the behavior
of the attackers to assess the risks after a successful explosion.
They, therefore, proposed to automate post-exploitation using
reinforcement learning. They combined deep reinforcement
learning with PowerShell Empire. In addition, they proposed
three reinforcement learning models and then conducted two
phases to develop the models: the learning phase and the
testing phase. In conclusion, they found that the proposed
methods are very suitable for obtaining the administrative
rights for the domain controller.

Masarweh.A [3] proposes Threat Led APT PT, which is an
extended PT technique that tests a target network’s security for
existing vulnerabilities. This study employs a variety of APT
attack strategies to uncover hidden vulnerabilities. In addition,
he created a new dataset by gathering traffic from actual APT
assaults and tested it with a machine learning model to detect
APT attacks. The author discovered that the suggested model
greatly improved network security by 14 to 28.5 percent. Fur-
thermore, the proposed model outperformed existing classifiers
in terms of power and efficiency for detecting APT assaults.

Goh.KC [4] proposed automated penetration testing using
reinforcement learning. The phases of penetration testing were
vulnerability scanning, exploitation, and post-exploitation, but
not information gathering. They use Nmap tools and then send
the information to the reinforcement learning agent to make
the best prediction to exploit the system. They found that
reinforcement learning has the potential to increase the per-
formance of automated penetration testing and reduce testing
resources. In addition, the reinforcement learning algorithm
was found to reduce time and increase the probability of
exploitation during automated penetration tests. The resulting
error was discovered, but a simple algorithm such as Q-
learning still achieves a remarkable result.

Huizinga.T [5] developed a technique for analyzing net-
work data using machine learning to ensure the verifiability
of penetration testing. The findings of this study demonstrate
that preprocessing and classification may be completed quickly
enough to be conducted live during a pen test. Thus, this model
was very accurate. The author recommended that a new model
be created with a different classification of all traffic.

Chu. G and Lisitsa. A [6] suggested penetration test-
ing automation, an agent-based belief-desire-intention (BDI)
paradigm. They employed Agent Speak Jason, a programming
language for multi-agent systems based on the Belief-Desire-
Intention (BDI) paradigm. The author utilized two agents: the
target agent and the BDI agent. Finally, the authors discovered
that the simulation accurately depicts the BDI agent’s behavior
and mental process, hence validating the modeling.

Sommerville ÅÅ et al. [7] used reinforcement learning (Q)
bots to simulate a SQL injection vulnerability, demonstrating
white-hat hacking techniques. The authors characterized it as
a Markov decision process (MDP) and used reinforcement
learning. They discovered that both interpretable and basic
tabular Q-learning agents, as well as more advanced deep
Q-learning agents, are capable of learning useful strategies.
Finally, they discovered that the taught technique is less likely
to perform optimally in additional cases.

Tran. K et al. [8] used Deep Hierarchical Reinforcement
Agents (HA-DRL) to automate penetration testing. Compared
to a traditional Deep-Q-Learning (DQN) agent, a common
technique for using artificial intelligence in automated pene-
tration testing, they found the ideal attack strategy to be faster
and more continuous. The proposed method is suitable for
exploring huge action spaces.

The study by Koroniotis. N et al. [9] attempted to create
methods for detecting vulnerabilities in smart IoT systems.
They created a deep learning-based penetration testing system
known as Long Short-Term Memory Recurrent Neural Net-
work Enabled Vulnerability Identification (LSTM-EVI). They
utilized a test environment to obtain network data. The models
were taught to return zero for regular traffic and one for
assaults. Finally, the models outperformed existing coercive
strategies in identifying scanning assaults.

Kujanpa¨a.K et al. [10] created a computer simulation of
the potential risk posed by malicious actors teaching automated
bots to extend local privileges using deep reinforcement learn-
ing. They discovered that, depending on the configuration of
the environment it encounters, the model can elevate privileges
in a Windows 7 environment via a variety of approaches.

www.ijacsa.thesai.org 973 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

There are 38 actions specified in the vulnerability action space
that allow privilege escalation. The model may be useful for
training and testing intrusion detection systems, as the agent
can generate realistic attack sensor data.

In the study by Neal. C et al. [11], the goal was to find
malicious inputs that reduce the effectiveness of microgrid
control. These are compact power systems that interconnect
loads and a variety of dispersed power sources in specific areas.
Therefore, they tested the pervasiveness of microgrid control
algorithms using reinforcement learning. The MGs architecture
was implemented using MATLAB/Simulink, and RL was used
to teach the agent how to change the results of malicious inputs
to the MGs controller. Finally, they discovered that the attacks
generated showed that the overall performance of the controller
was most affected by lowering the reported battery SOC.

The study of Semenov.S et al. [12] was to improve the
security of computer networks, so they performed automated
penetration testing based on Deep Reinforcement Learning.
They used the capabilities of the Shadon system to collect
real-world data for designing attack trees. Then, the Mulval
platform was used to build attack trees. A method was de-
veloped to build a matrix of cyber-attacks using the Mulval
tool. They used CVSS scoring to assign reward points to each
node to reduce the attack tree and identify an attack with a
higher probability of occurrence. They found that the model
is suitable for software security analysis because it allows the
auditor to choose a sound ethical hacking policy and measures
to mitigate the negative factors of potential cyber-attacks.

Tran. K et al. [13] suggested an automated penetration
testing technique based on Deep Machine Learning (CRLA).
The complexity of the suggested cybersecurity network de-
velops exponentially, and this approach sought to decrease
discrete action spaces in an autonomous penetration test model.
In large-scale action space situations, they observed that the
model’s optimal attack policy is quicker and more stable than
a conventional deep-Q learning agent.

Zennaro. F and Erdodi. L [14] ran models by using RL
to solve the basic penetration testing problem in the form of
capture-the-flag hacking challenges. They used three classes
of CTF problems to build the models, which are port scanning
and intrusion, server hacking, and website hacking, and they
analyzed how model-free reinforcement learning algorithms
can help solve these problems. It is critical to provide agents
with prior knowledge in order to achieve effective solutions.

Zhou et al. [15] treated model penetration testing as a
Markov Decision Process (MDP) problem and employed rein-
forcement learning technology to do autonomous penetration
testing in huge networks. The suggested model, NDSPIDQN,
seeks to address two issues in large-scale scenarios: the sparse
reward problem and the huge action space problem. They uti-
lized five DQN extensions. They then separated the action and
divided the neural network estimators to calculate two aspects
of the action independently. The experiment employs PyTorch
as the algorithm framework and takes place in the following
experimental environment: NVIDIA Geforce RTX3090 GPU,
Intel Xeon Gold 6248R CPU, and 64GB RAM. Finally, they
evaluated a variety of scenarios with the algorithms. They
discovered that the techniques had superior convergence and
scaling performance.

Gangupantulu. R. et al. [16] provided strategies for building
attack graphs on the cyber battlefield using concepts from IPB.
They considered a motivating case where firewalls are viewed
as obstacles and are reflected in both the state dynamics and
the reward space. They have shown how to realistically design
attack graphs for RL using terrain analysis. To demonstrate
the concept, the authors used an attack graph with about 1000
nodes and 2300 edges and Deep Q reinforcement learning with
experience replay.

Chowdary.A. et al. [17] suggested a framework for auto-
mated penetration testing to solve the problem of large-scale
penetration testing. They used attack graphs to generate a
map of security threats and probable attack vectors across the
network. In addition, they used reinforcement learning based
on a Deep-Q Network (DQN) to determine the best penetration
testing strategy, as well as a domain-specific transition matrix
and reward modeling to capture the significance of security
vulnerabilities and the challenges of exploiting them.

Zhang. Y et al. [18] proposed modeling the black box
penetration testing procedure as a Certainly noticed Markov
Decision procedure (POMDP) to characterize the transitions
in a real-world scenario. They also presented a new method,
ND3RQN, for automated black box penetration testing. They
also employed a Long Short-Term Memory (LSTM) frame-
work, which allows the agent to make judgments based on
past memories. They employed a neural network structure.
They discovered that the unique algorithm can generate a
bigger attack route approach for all susceptible hosts during
automated black box penetration tests.

Yang. Y et al. [19] attempted autonomous penetration
testing in the framework of Multi-Objective Reinforcement
Learning (MORL) and suggested a crucial Chebyshev decom-
position to identify alternative adversarial strategies that bal-
ance diverse penetration test objectives. To assist the agent in
adjusting to future excursions, scientists included a coverage-
based masking technique that gives less weight to previously
selected actions. According to their findings, the suggested
technique outperforms modified algorithms in terms of multi-
centric learning and performance efficiency.

On the basis of the studies discussed, we have established
the following:

• Sparse rewards and large action spaces are common
challenges in many studies. Several works, such as
[15] and [16], focused on solving these problems by
proposing advanced reinforcement learning models,
such as NDSPIDQN and Deep Q-learning with ex-
perience repetition, but reward uncertainty remains a
key challenge.

• The study of complex networks has been a major
focus in studies such as [8] and [19]. These studies
have shown that hierarchical reinforcement learning
and multi-criteria reinforcement learning can improve
exploration in large action spaces, although further
work is needed to refine exploration strategies for
complex environments.

• Post-exploitation and APT recognition have been ex-
plored in papers such as [2] and [3]. These studies

www.ijacsa.thesai.org 974 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

utilized reinforcement learning to simulate the post-
exploitation phase, focusing in particular on privilege
escalation. However, these approaches lack the ability
to fully model reward uncertainty during the post-
exploitation phase, limiting their long-term planning
capabilities.

• In terms of environments, many studies have ap-
plied reinforcement learning to IoT networks or other
complex systems such as [9] and [4]. Although IoT
brings unique challenges, most models still struggle
with real-time adaptability and scalability, especially
in dynamic network environments.

• Reward shaping and mitigation of sparse rewards were
key techniques in some studies such as [12] and [15].
While CVSS-based reward shaping helped to reduce
sparse rewards, the models still reached their limits
when applied to large and complex attack spaces.

• Several studies integrated real-world tools such as
Shodan and MulVAL for real-world penetration testing
such as [1] and [12], demonstrating practical appli-
cations of reinforcement learning in security testing.
However, further optimization is needed to cope with
the variability of rewards in these dynamic scenarios.

• The automation of penetration testing has been im-
proved in studies such as [6]and [17] by using rein-
forcement learning to automate the detection of attack
paths. However, most of these models lack advanced
techniques for dealing with uncertain rewards, leading
to suboptimal decisions.

III. SYSTEM ARCHITECTURE FOR AUTOMATED DOS
PENETRATION TESTING

DRL algorithms are used to create an automated pen-
etration testing system for Denial of Service (DoS) attack
scenarios. The primary goal is to identify optimal attack paths
within the network. For this purpose, we use value-based
deep reinforcement learning methods such as Deep Q-learning
networks (DQN) and Quantile Regression Deep Networks
(QR-DQN). While DQN is effective in generally stable and
low-risk contexts, QR-DQN offers significant advantages when
dealing with the complexities and uncertainties associated with
automated penetration testing.

This study compares the performance of DQN and QR-
DQN in identifying optimal attack paths in a DoS penetration
testing scenario. The focus is on evaluating which model
performs better in terms of vulnerability detection, path opti-
mization, and efficiency in large networks. The study includes
several steps to train and evaluate the system. We simulate
network environments and create two scenarios using the same
vulnerability dataset for training and testing.

The vulnerability data comes from the National Vulnera-
bility Database (NVD), which contains up-to-date information
on current vulnerabilities. This dataset ensures that the training
scenarios are realistic and reflect current security threats. The
host dataset describes network topologies, while the vulnera-
bility dataset contains critical vulnerabilities. By including the
latest vulnerabilities from the NVD, the system can accurately
assess and respond to potential security issues. Each simulated

network is populated with hosts and assigned vulnerabilities
from the NVD dataset, representing a realistic threat environ-
ment. These networks are then processed using the MulVAL
tool, which generates attack trees that visualize the potential
attack paths that attackers could use to compromise network
systems. Once the attack tree has been generated, the next step
is to convert it into a matrix that can be used as input for the
DQN and QR-DQN models. To do this, we use the Depth-
First Search (DFS) algorithm. It was chosen for its ability to
thoroughly investigate all possible attack paths from the root
to the target nodes. This ensures that every potential attack
path is considered, even in large and complex networks.

The DFS algorithm traverses the attack graph generated
by MulVAL. It converts it into a structured matrix in which
each row represents an attack path, and each column repre-
sents characteristics such as CVE IDs, exploitability scores,
and other network attributes. Once the DFS algorithm has
simplified the attack tree into this matrix format, it is used
as input to the DQN and QR-DQN models, which are trained
to identify the optimal paths to exploit vulnerabilities. Once the
data has been pre-processed, the DQN and QR-DQN models
begin training.

DQN learns by representing each network state as a node
in the attack path and selecting the best action (exploiting a
vulnerability or moving along a path) based on the expected
reward. At the same time, QR-DQN extends this approach
by estimating the overall distribution of future rewards. This
makes it more suitable for highly uncertain environments,
such as penetration testing scenarios with sparse or uncertain
rewards.

The models are assessed using Common Vulnerability
Scoring System (CVSS) scores to determine their efficiency in
detecting critical vulnerabilities, reducing false negatives, and
optimizing attack paths. The reward function is important in
this evaluation since it guides the learning process using static
CVE impact values as well as adaptive incentive methods.
CVE impact scores serve as baseline incentives, ensuring that
vulnerabilities of greater severity and exploitability contribute
more to learning. This study compares DQN and QR-DQN
to determine which model is more effective in identifying
optimal attack paths in DoS penetration testing. It aims to
improve the overall efficiency and accuracy of automated
security assessments (Fig. 1).

Fig. 1. System architecture for automated DoS penetration testing.

www.ijacsa.thesai.org 975 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

IV. PROPOSED METHOD COMPONENTS

The aim of this study is to test vulnerabilities against
DoS attacks using an automated penetration testing framework
based on DQN and QR-DQN algorithms. The setup includes
a controlled network environment to evaluate the performance
of these models.

A. Hardware Components

The hardware equipment required to simulate the DoS test
environment includes:

1) Router (5G capable): Serves as the primary network
device that is tested for DoS vulnerabilities.

2) Computing device: A computer equipped with an AMD
Ryzen 7 processor and 16 GB of RAM connected to the
internet to support testing and simulation.

B. Software Components

The software was developed to create virtual networks, im-
plement algorithms, and execute the automated test procedure:

1) VirtualBox: Used to set up virtual environments that al-
low the simulation of different network topologies and multiple
hosts in a controlled environment.

2) Ubuntu 24.0: Used in the virtual machine environment
and provides a stable platform for running simulations and test
processes.

3) Python 3.11 and PyTorch: Python serves as the primary
programming environment, with PyTorch supporting the im-
plementation of the DQN and QR-DQN algorithms for training
and evaluating the models for DoS penetration testing.

These components were used to perform tests in various
network scenarios and evaluate the DQN and QR-DQN models
using metrics such as accuracy, speed, and adaptability in
automated DoS penetration testing.

V. PENETRATION TESTING IN DEEP REINFORCEMENT
LEARNING

Using DRL algorithms, penetration testers simulate and
optimize attack strategies in networks and attempt to identify
vulnerabilities in an automated, adaptive, and effective man-
ner. Unlike traditional penetration tests, which are based on
predefined attack patterns and manual processes, DRL-based
penetration tests enable dynamic exploration and adaptation,
allowing test agents to independently discover new attack paths
and strategies based on feedback from the environment.

Based on the unique requirements of automated DoS
penetration testing, we discussed the different models in DRL
and explained why DQN and QR-DQN were selected as the
most effective options. They are as follows:

A. Policy-based Models (A3C and PPO)

Policy-based approaches, such as Asynchronous Advantage
Actor-Critic (A3C) and Proximal Policy Optimization (PPO),
are successful in dealing with continuous action spaces and
have proven to be robust in real-time decision applications.

However, these models often require large computational re-
sources and accurate adaptation to balance exploration and
exploitation, making them less adaptable for dynamic contexts
such as penetration testing. Smith, J., and Lee, A. (2022)
state in their paper that while A3C and PPO are effective in
continuous action spaces, they can be inefficient in discrete
cybersecurity scenarios.

B. Hierarchical Models (HA-DRL)

Hierarchical models, such as Hierarchical Actor-Critic
(HA-DRL), are designed to enable multi-level decision-
making, which can be useful when dealing with complicated
tasks. However, they are often computationally intensive and
difficult to implement, especially for applications that require
fast, simplified decision-making, such as penetration testing.
Chen L. et al. (2023) show in their work on network intrusion
detection that hierarchical models are successful but require a
huge amount of computation and sophisticated configuration.
This makes them unsuitable for real-time network security
applications, as DQN can provide more efficient performance
with less complexity (Proceedings of the International Confer-
ence on Network Security).

C. Quantile Regression Deep Q-Network (QR-DQN)

It can represent reward distributions, including the diversity
and uncertainty associated with penetration testing. This prop-
erty makes QR-DQN suitable for use in dynamic situations
with unexpected attack paths and rewards. Li, X., and Zhao, Y.
(2021) used QR-DQN for intrusion detection and demonstrated
its robustness in insecure environments, which fits well with
the requirements of penetration testing where attack success
and exploitability can vary greatly (Proceedings of the ACM
Workshop on Artificial Intelligence and Security).

D. Deep Q-Network (DQN)

DQN provides a solid foundation for detecting attack
vectors in penetration tests. Due to its simple architecture
and efficiency in complicated contexts, it is widely used in
network security. Wang, H., et al. (2021) discuss the use of
DQN in automated penetration testing and show that it is able
to efficiently navigate complex network structures and identify
optimal attack paths, supporting its use as a reliable model in
network security (Computers & Security, 102, 102156).

VI. SELECTED MODELS

We chose to compare DQN and QR-DQN models for
automated DoS penetration testing based on findings from
previous research demonstrating their effectiveness in cyberse-
curity and automated penetration testing scenarios. Based on
these studies, we can conclude that the models can handle
complex environments, optimize decision-making under un-
certainty, and improve the identification of vulnerabilities in
network configurations.

A. Application of DQN in Penetration Testing

Several studies have demonstrated the effectiveness of
DQN in automating penetration tests. For example, Hu, Beu-
ran, and Tan (2020) used DQN to automate network vulnerabil-
ity assessments and showed that DQN is well suited to attack

www.ijacsa.thesai.org 976 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

path selection and can efficiently balance reconnaissance and
exploitation in static network environments. This work shows
that DQN can simplify the task of pathfinding in large, multi-
layered networks by learning from past actions and optimizing
its strategy over time. The effectiveness of DQN in large state
spaces, as demonstrated in their study, supports its application
in identifying potential DoS attack paths in complex network
scenarios.

B. Advantages of QR-DQN for Dealing with Uncertainty

Traditional DQN models, while effective, are often limited
when handling scenarios with sparse or uncertain rewards,
such as those common in penetration testing, where successful
attack paths do not always yield immediate rewards. The study
by Dabney et al. (2018) on QR-DQN shows that it is able to
capture the distribution of possible future rewards, providing
a more robust approach to decision-making under uncertainty.
The quantile-based approach of QR-DQN allows a spectrum
of possible outcomes to be modeled, making it particularly
useful for cybersecurity tasks where potential attack paths have
different probabilities of success. This has been confirmed
by research in insecure environments, where QR-DQN con-
sistently outperformed DQN in identifying optimal solutions
under risk.

C. Scalability and Adaptability in Complex Environments

Research by Goh et al. (2021) and Koroniotis et al. (2022)
has emphasized the importance of scalable models, such as
DQN and QR-DQN, for penetration testing in large network
topologies. Their studies have shown that these models are
highly adaptable, with DQN efficiently handling simple attack
simulations, while QR-DQN provides superior performance in
scenarios with complex network structures and high variability
of reward signals. QR-DQN’s ability to generalize across
different environments suggests that it can adapt to changes
in network configurations, making it a valuable choice for
automated DoS testing where network topologies may evolve.

D. Improved Vulnerability Detection Through Distribution-
Based Learning

Studies such as those by Masarweh (2021) and Zhou et al.
(2023) have explored the limitations of traditional DRL models
in penetration testing, especially when it comes to unknown
vulnerabilities. By using the distribution-based reinforcement
learning approach of QR-DQN, these studies achieved higher
sensitivity in detecting hidden vulnerabilities that were missed
by simpler models. QR-DQN’s distribution-based approach has
been shown to contribute to risk-aware decision-making, - a
crucial factor in penetration testing, where the consequences
of overlooked vulnerabilities can be severe. This supports QR-
DQN as the optimal choice for scenarios that require a deeper
understanding of potential threats.

VII. PROPOSED SYSTEM ARCHITECTURE

This section describes the architecture used to implement
automated penetration testing with DQN and QR-DQN within
a deep reinforcement learning framework. The framework
consists of the following components:

A. Training Dataset

In this study, we use the dataset originally presented in
the research titled ”Automated Penetration Testing Using Deep
Reinforcement Learning” by Zhenguo Hu, Razvan Beuran, and
Yasuo Tan [1], modified to focus on Denial of Service (DoS)
attacks. The training dataset consists of two main elements:
the host dataset and the vulnerability dataset, which are used
as input for the MulVAL tool to generate attack paths.

1) Host dataset: In the host dataset, we simulate two dif-
ferent network scenarios, each representing different network
topologies with different configurations, hosts, and services.
These scenarios are designed to provide different training
and testing environments, using the same vulnerability dataset
in both scenarios. The host configurations are represented
in a logical topology format (.p file) that is input into the
MulVAL tool to generate attack paths based on the specified
vulnerabilities.

2) Vulnerability dataset: The vulnerability dataset is shared
by both scenarios and comes from NVD dataset, with addi-
tional vulnerabilities related to DoS attacks. Each vulnerability
is characterized by the following technical features:

a) CVE-ID: Unique identifier from the Common Vul-
nerabilities and Exposures (CVE) database.

b) Type of vulnerability: Indicates the type of vulnera-
bility, e.g. DoS, buffer overflow, or injection.

c) Protocol: The application protocol (e.g. HTTPS,
HTTP).

d) Transport layer protocol: Specifies the transport
protocol (e.g. TCP, UDP).

e) Port: The port number used by the service (e.g. 443
for HTTPS).

f) Software/service: The affected software or service
(e.g. Apache HTTP Server).

In addition to the features described above, a CVE info
dataset is used to provide detailed information about vulner-
abilities that are crucial for determining rewards during the
training of the models. Each entry in the CVE info record
contains the following fields:

• CVE ID: The unique identifier from the Common
Vulnerabilities and Exposures (CVE) database (e.g.
CVE-2023-44487).

• Vulnerability type: A description of the nature of the
vulnerability (e.g. Denial of Service).

• Exploit-ability Score: A numerical value indicating the
ease of exploitation (e.g. 7.5).

• Impact score: A numerical value indicating the sever-
ity of the vulnerability’s impact (e.g. 10.0).

These scores are crucial for determining the reward func-
tion for the reinforcement learning models. During the training
process, higher rewards are given for successfully identifying
vulnerabilities with high impact and exploitability scores.
This allows the models to prioritize discovering more severe
vulnerabilities, leading to better optimization of attack paths.

www.ijacsa.thesai.org 977 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

The same vulnerability dataset is used for both the training
and testing phases for both scenarios. Maintaining a consistent
vulnerability dataset ensures the robustness and adaptability of
the DQN and QR-DQN models when detecting vulnerabilities
in different network configurations. In addition, when integrat-
ing the CVE info dataset into the reward structure, the models
are guided to prioritize high-risk vulnerabilities, improving the
overall effectiveness of the penetration testing framework.

B. DQN and QRDQN Decision Engine

The DQN & QR-DQN Decision Engine is a core com-
ponent of the framework for automated penetration tests. It
is responsible for training the models in order to identify
optimal attack paths based on the attack graph generated by the
MulVAL tool. In this process, the attack graph is converted into
a structured matrix format using the DFS (Depth-First Search)
algorithm, which the DQN and QR-DQN agents can use for
training and decision-making.

1) Pre-processing with the MulVAL tool and the DFS
algorithm: The MulVAL tool first generates attack trees based
on the host and vulnerability data. These attack trees represent
possible paths that an attacker could take to exploit vulnera-
bilities and reach critical targets within the network.

Before the attack paths can be fed into the DQN and QR-
DQN models, the DFS algorithm is applied to the attack graph.
The DFS algorithm was chosen because it is able to analyze all
potential paths from the root to the leaf nodes in a sequential
manner. This ensures that all possible attack scenarios are
considered, even in deep and complex networks. DFS converts
the attack graph into a matrix, where:

• Rows represent different attack paths.

• Columns represent characteristics of each node in the
path, including information about vulnerabilities, ex-
ploitability values, and other network characteristics.

DFS is particularly suited to this task as it requires minimal
memory and ensures thorough exploration, which is crucial in
penetration testing, as overlooking a potential path could lead
to undiscovered vulnerabilities [20].

2) DQN (Deep Q-Network): Once the attack paths are
converted into a matrix, the DQN model uses this as input
to train the selection of the best attack paths:

• DQN models learn by representing each state as a
particular step in the attack graph (e.g. exploiting a
vulnerability).

• The action represents the agent’s decision to either
take a particular path or exploit a particular vulnera-
bility.

• The reward system is driven by the CVE info dataset,
with higher rewards given for identifying vulnerabili-
ties with greater severity or exploitability.

• While DQN models are effective, they are limited in
their ability to deal with the uncertainty and variability
of rewards, which is why QR-DQN offers additional
advantages.

3) QR-DQN (Quantile Regression Deep Q-Network): The
QR-DQN model also uses the matrix created by DFS but goes
beyond DQN by estimating the entire distribution of future
rewards and not just the expected value. This allows QR-DQN:

• Evaluate the potential range of outcomes for each
action, making it better suited for environments with
high uncertainty and sparse rewards, such as penetra-
tion testing.

• Make decisions based on risk distribution so that
attack paths can be identified that are more promising
in the long term, even if the immediate benefit is more
uncertain [21].

4) Training process: After DFS has transformed the attack
graph into a matrix, the data is processed:

• Both the DQN and QR-DQN models are trained to
select the most effective attack paths, using rewards
based on CVE data such as exploit and impact scores.

• The models are evaluated on their ability to detect
critical vulnerabilities, adapt to new vulnerabilities,
and optimize attack strategies while minimizing false
positives and negatives.

Fig. 2 and Fig. 3 provide an overview of the architecture
of the methods described in this work.

Fig. 2. Deep reinforcement learning (DQN algorithm) implementation.

www.ijacsa.thesai.org 978 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Fig. 3. Deep reinforcement learning (QR-DQN algorithm) implementation.

VIII. UML DIAGRAM

The UML diagram (Fig. 4) provides a conceptual repre-
sentation of the system architecture for the penetration tests
used in this study. It illustrates the interaction of the various
components, from network analysis and attack simulation to
reinforcement learning agents (DQN and QR-DQN). Below
is a detailed explanation of the key components and their
interactions in the UML diagram:

Fig. 4. UML Diagram for automated DoS penetration testing.

A. Penetration Test System (Main Controller)

At the center of the UML diagram is the penetration test
system, which manages the entire automated penetration test
process as the main controller. It initiates and coordinates the
following processes:

1) Network configuration: It loads the network topologies
and host data, assigns the vulnerabilities from the NVD dataset,
and sets up the environment for the penetration test.

2) Assignment of vulnerabilities: The system assigns spe-
cific vulnerabilities from the NVD dataset to the hosts in the
network for a realistic simulation.

B. Environment

The graph, the state, the action, and the current state are
closely linked in the environment, which is core testing in the
system. The graph defines the attack network structure, the
state represents a snapshot of the network, and each agent’s
action changes the current state based on the success or failure
of the attack. This interaction helps the DQN and QR-DQN
agents learn and optimize their penetration testing strategies
over time.

1) MulVAL Tool (Network analysis and attack simulation):
The MulVAL tool interacts with the Penetration Test System
to perform network analyses and attack simulations. Its role in
the diagram includes:

a) Attack graph generation: MulVAL generates the
attack graphs by analyzing the assigned vulnerabilities and
network configuration. This attack graph shows potential paths
that attackers could use to exploit vulnerabilities.

b) Data preparation for agents: Once the attack graph
is generated, it is converted into a structured format (using the
Depth-First Search (DFS) algorithm) and then converted into
a matrix. This matrix serves as input for the learning agents
(DQN and QR-DQN).

C. DQN Agent and QR-DQN Agent

The diagram shows the interaction between the penetration
test system, MulVAL, and the DQN and QR-DQN agents.
These reinforcement learning agents are responsible for learn-
ing and selecting optimal attack paths. Their roles in the UML
diagram are:

1) Initialization: The penetration test system initializes
both the DQN and QR-DQN agents by feeding them with
the matrix generated by MulVAL. Each agent receives the
same data but uses different learning techniques to optimize
the selection of attack paths.

a) DQN: The DQN agent uses a value-based learning
method where it learns to take the best action (choosing
an attack path) based on the expected reward for exploiting
vulnerabilities.

b) QR-DQN: The QR-DQN agent, on the other hand,
estimates the distribution of future rewards and can thus better
deal with uncertainties and improve performance in more
complex scenarios.

2) Learning process: Both agents interact with the envi-
ronment (represented as the matrix generated by MulVAL) to
perform penetration tests:

• The agents perform actions by selecting specific vul-
nerabilities to exploit.

www.ijacsa.thesai.org 979 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

• Based on the outcome of these actions (successful or
failed exploitation), the agents receive rewards based
on the CVE info dataset and update their decision-
making process.

3) Training and decision management: The penetration test
system monitors the performance of both agents and manages
the training iterations until the agents learn to select optimal
attack paths. After training, the system evaluates which model
(DQN or QR-DQN) performs better in identifying the most
effective attack paths.

IX. IMPLEMENTATION RESULTS

The tests were conducted in different network scenarios to
evaluate the performance of the DQN and QR-DQN models
for automated DoS penetration testing.

A. Topology

Two different network scenarios were set up for the exper-
iments:

1) Scenario 1: A simple WLAN network in which a laptop
workstation is connected wirelessly to a router while web
and file servers are connected via wired connections. This
configuration reflects typical environments where user devices
use Wi-Fi to access network services hosted on wired servers.
The topology consists of one subnet and three hosts, which is
shown in Fig. 5.

2) Scenario 2: A hybrid Wi-Fi system with two subnets
and three hosts. The workstation connects wirelessly and
VLANs (managed by a switch) are used to segment the
network. This setup adds complexity by simulating enterprise
environments with segmented networks for increased security,
as shown in Fig. 5. The implementation scenarios list is shown
below in Table I.

TABLE I. IMPLEMENTATION SCENARIOS LIST

Scenario Subnets Hosts Vulnerabilities Number
Scenario 1 1 3 2

Scenario 2 2 3 3

The two scenarios provided distinct environments for eval-
uating how well the algorithms performed under different
levels of network complexity.

Fig. 5. Network environments for penetration testing.

B. MulVAL Tool

The MulVAL tool was used to create attack graphs for
both scenarios. MulVAL interprets the network topology and
configurations to create an attack graph that maps possible
attack paths based on the vulnerabilities present. Each attack
graph represents nodes (states or conditions) and edges (attack
transitions) and illustrates how an attacker could move through
the network to exploit vulnerabilities.

1) In scenario 1: The attack diagram generated focused
on a DoS vulnerability (CVE-2023-44487) in the web server
running Apache HTTP on port 80. Fig. 6 shows a series of
steps that an attacker could take to launch a DoS attack.

2) In scenario 2: The diagram shows vulnerabilities related
to services running on ports 443 (HTTPS) and 80 (HTTP),
specifically vulnerabilities CVE-2021-4487 and CVE-2018-
1234, which can be exploited for DoS attacks. Fig. 7 reflects
a more complex attack surface due to VLAN segmentation.

C. DFS Matrix and Simplification of the Attack Tree

The attack tree generated by the MulVAL tool is converted
into a matrix that serves as input for the neural networks
used in the DQN and QR-DQN models. As the training data
becomes more extensive, the input matrix can become larger
and more complex. To solve this problem and improve the
success rate of the models, we propose to simplify the input
matrix using the Depth-First Search (DFS) algorithm.

1) Matrix simplification via DFS: DFS simplifies the ma-
trix by systematically going through each node in the attack
tree and exploring each branch as much as possible before
going back. This approach ensures that all possible attack paths
are considered while eliminating redundant or superfluous
nodes that do not make a meaningful contribution to the
final attack path. The resulting simplified matrix reduces the
computational burden on the models, allowing them to be
processed more efficiently.

2) Assignment of rewards: To help the models prioritize
critical vulnerabilities, we assign reward values to each node
in the matrix based on its importance. For each node with
a vulnerability, we use a score (Vul) to represent the reward
value. The start node (node 1) is assigned a reward of -1, while
the end node (node 26) in scenario 1 is also assigned -1. Non-
critical nodes are assigned a reward value of 0, and all nodes
without access to another node are also assigned -1.

a) In scenario 1: The matrix has 26 nodes, resulting
in a 26x26 matrix that contains all the necessary transitions
between the nodes. By simplifying the matrix with DFS,
we reduce unnecessary operations before passing them to
the DQN model, which saves processing time and improves
overall performance. In the QR-DQN model, each node is also
assigned a reward value, but the matrix structure and reward
assignment are slightly different. In scenario 2, the matrix
contains 17 nodes, with a final size of 17x17. The start node
(node 2) is assigned a high reward of 100, while the end node
(node 17) is assigned a lower reward of 0.20.

b) In Scenario 2: Both models had the same number of
nodes (41), but the way they assigned rewards and processed
the nodes was different. The DQN model starts with node 1,

www.ijacsa.thesai.org 980 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Fig. 6. Attack graph in scenario 1.

www.ijacsa.thesai.org 981 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Fig. 7. Attack graph in scenario 2.

www.ijacsa.thesai.org 982 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

assigns it a reward of -1, and ends with node 41, which also
has a reward of -1. In contrast, the QR-DQN model starts
with node 2 and assigns it a reward of 100 and ends with
node 41, which is assigned a reward of 0.20. These differences
result from how each model interprets and learns from the
state representations. DQN focuses on identifying the most
immediate rewards and optimal paths in a direct way, while
QR-DQN considers the distribution of rewards, allowing it to
explore deeper and more uncertain paths that may offer higher
rewards in the long run.

D. DQN /QRDQN Dataset Generation

To train both the DQN and QR-DQN models, datasets were
created by defining the network environment, enumerating
possible actions, simulating transitions, and assigning rewards.
These datasets enabled the models to learn and optimize the
attack paths in the penetration test scenarios. The dataset
creation includes information about hosts, vulnerabilities, and
services so that the models can simulate how attackers could
exploit vulnerabilities in the network. Each host in the network
is associated with specific vulnerabilities that the models can
exploit to extend their reach. The following table summarizes
the key vulnerabilities, products, ports, and protocols used in
the dataset (Table II):

TABLE II. DQN/QR-DQN DATASET

Host Vulnerability Product Port Protocol
Web Server CVE-2023-44487 Apache 80 HTTP
File Server CVE-2024-31309 Apache 21 FTP
Workstation —– —— - HTTP

CVE-2023-44487 (Web Server) is a critical vulnerability
that allows Privilege Escalation and Denial of Service (DoS)
attacks via remote code execution. CVE-2024-31309 (File
Server) is a user-level impact vulnerability that restricts certain
actions to lower privileges.

The datasets allow the DQN and QR-DQN models to
learn how to exploit vulnerabilities such as CVE-2023-44487
to execute optimal attack paths. For QR-DQN, additional
reward distributions were generated to account for uncertainty,
allowing the model to explore a wider range of possible
outcomes.

E. DQN/QR-DQN Model and Training Results

After creating the input datasets, we trained both the
DQN and QR-DQN models. Below is a description of the
architecture and training process for each model:

1) DQN/QR-DQN Model:

a) The DQN model: Uses 64 features that provide a
good balance between computational efficiency and sufficient
complexity to handle attack paths in moderate environments.
This feature size ensures that the model can learn quickly
and still capture important details about network status and
vulnerabilities. The model consists of three layers: two linear
layers and a batch normalization layer. The first layer converts
the input into 64 features, while the second layer converts it
into the final output, which represents the possible attack paths.

This architecture is efficient for environments such as scenario
1, where the network is relatively simple.

b) The QR-DQN model: Uses 128 features to handle
more complex environments such as Scenario 2, where deeper
exploration and uncertainty in the reward distribution must be
considered. The larger number of features allows the model to
capture more detailed information about possible attack paths
and outcomes. The architecture comprises two linear layers
and a stack normalization. The first layer converts the input
state into 128 features, the second layer retains these features,
and the last layer outputs the Q-values for all actions and
quantiles. This added complexity helps QR-DQN explore more
potential paths, especially in larger, more complex network
environments.

2) DQN/QR-DQN Training results:

a) In scenario 1: both models were tested in a simple
WLAN setup with three hosts and a web server vulnerability.

The DQN model identified the following optimal attack
path, which is:

23 → 21 → 20 → 19 → 18 → 16 → 15 → 14 → 13

→ 37 → 5 → 4 → 3 → 2 → 1

The QR-DQN model examined a slightly more detailed
attack path:

23 → 21 → 20 → 19 → 18 → 32 → 31 → 30 → 29 → 28

→ 10 → 9 → 8 → 6 → 5 → 4 → 3 → 2 → 1

The difference in the paths shows QR-DQN’s ability to ex-
plore more comprehensive paths that account for uncertainties
and additional vulnerabilities.

b) In scenario 2: the complexity of the network in-
creased due to multiple subnets and VLAN segmentation. Both
models were able to calculate attack paths but with different
levels of detail.

The DQN model identified the following attack path:

23 → 21 → 20 → 19 → 18 → 32 → 31 → 30 → 29

→ 28 → 10 → 9 → 8 → 6 → 5 → 4 → 3 → 2 → 1

The QR-DQN model has calculated a more detailed attack
path:

23 → 21 → 20 → 19 → 18 → 32 → 31 → 30

→ 29 → 28 → 10 → 9 → 8 → 6 → 5 → 4

→ 3 → 2 → 1

In more complex environments, the QR-DQN model ex-
plored more attack paths using 128 features, while the DQN
model identified a more direct path with 64 features.

www.ijacsa.thesai.org 983 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

X. PERFORMANCE ANALYSIS OF AUTOMATED DOS
PENETRATION TESTING

In this study, the performance of the DQN and QR-DQN
models was evaluated using two main groups of metrics with
the same hyperparameter values, as shown in Tables III and
IV.

1) Time-Related metrics: duration of the episode, rewards,
and mean steps per episode.

2) Performance metrics: Accuracy, precision, recall, F1
score and total time spent.

TABLE III. HYPER-PARAMETER VALUES OF DQN ALGORITHM

Hyperparameter Value
BATCH SIZE 64
GAMMA 0.98
EPS START 0.99
EPS END 0.01
EPS DECAY 2000
TARGET UPDATE 5
N ACTIONS Value from file
N STATES 10

TABLE IV. HYPER-PARAMETER VALUES OF QR-DQN ALGORITHM

Hyperparameter Value
BATCH SIZE 64
GAMMA 0.98
EPS START 0.99
EPS END 0.01
EPS DECAY 2000
TARGET UPDATE 5
N QUANTILES 100

A. Time-Related Metrics

Time-related metrics provide information on how effi-
ciently and quickly the models have explored the attack surface
and identified vulnerabilities.

1) Episode duration: Indicates how long each episode
lasted. A longer duration indicates a more thorough exploration
or a deeper investigation.

2) Rewards: Higher rewards indicate the model’s success
in finding efficient attack paths. Fluctuations in rewards reflect
variability in the discovery of attack paths.

3) Mean steps per episode: Fewer steps indicate more
efficient strategies, as the model requires fewer actions to
achieve its objectives.

a) In scenario 1: the DQN model converged faster,
with increasing episode duration, suggesting that the agent
engaged in more challenging tasks and refined its approach,
peaking as 3000, while QR-DQN took shorter, with episode
duration peaking at 5000 episodes. The DQN model achieved
higher rewards 300000 with some variability, reflecting better
performance, as shown in Fig. 9, while QR-DQN achieved
lower but more consistent rewards 25,000. Although QR-
DQN focuses on efficiency and adaptability, it sacrifices some
reward maximization compared to DQN. DQN started low,

with a sharp increase in the middle episodes, and peaked at
over 20,000 steps per episode, while QR-DQN started low,
increased to a peak of around 8 steps in the middle episodes,
and stabilized at around 2-3 steps towards the end. This reflects
the superior efficiency of QR-DQN in identifying optimal paths
with minimal exploration, as shown in Fig. 10. Fig. 8 clearly
shows the difference between the two models.

Fig. 9. Experimental results for the DQN network model in scenario 1.

Fig. 10. Experimental results for QR-DQN network model in scenario 1.

b) In scenario 2: with a more complex network envi-
ronment, both models had a longer episode duration. DQN
peaked at 4000 episodes, while QR-DQN peaked at 7000
episodes. DQN achieved higher peak rewards 400000 but with
higher variability, while QR-DQN’s rewards peaked at 350000,
with greater consistency. The average steps per episode for
DQN initially peaked at 35000, while QR-DQN steps per
episode peaked at 8 steps. Fig. 12 and Fig. 13 illustrate that.
Fig. 11 clearly shows the difference between the two models.

Fig. 12. Experimental results for the DQN network model in scenario 2.

www.ijacsa.thesai.org 984 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

Fig. 8. DQN vs QR-DQN in scenario 1.

Fig. 11. DQN vs QR-DQN in scenario 2.

Fig. 13. Experimental results for the QR-DQN network model in scenario 2.

B. Performance Metrics

These metrics evaluate the ability of the models to correctly
predict attack paths and accurately exploit vulnerabilities,
taking into account efficiency over time.

1) Accuracy: The proportion of correct predictions (attack
paths) made by the model.

2) Precision: The ability of the model to correctly identify
the correct vulnerabilities out of all predicted vulnerabilities.

3) F1 score: A balanced measure that combines both preci-
sion and recall and is useful for evaluating overall performance.

4) Total time: The total time taken by the model to train
and identify the attack paths.

a) In scenario 1: The DQN model achieved very pow-
erful metrics with an accuracy of 99%, a precision of 100%, a
recall of 99%, and an F1 score of 100%, indicating excellent
precision and detection in the simpler network configuration.
The total time for training and attack detection was 2.01
seconds, reflecting the faster convergence of the DQN in
simpler environments. The QR-DQN model also achieved a
high accuracy of 99% but a precision of 100%, a recall of 99%,

www.ijacsa.thesai.org 985 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

and an F1 score of 99%. Both models achieve high accuracy,
precision, and recall, demonstrating their ability to effectively
detect attack paths. The following table clearly shows the
difference between the two models in the performance matrices
as shown in Table V.

TABLE V. SCENARIO 1 DQN VS QR-DQN PERFORMANCE (ACCURACY,
PRECISION, F1-SCORE, TIME)

Metric DQN QR-DQN
Accuracy (%) 99 99
Precision (%) 100 100
Recall (%) 99 99
F1-Score (%) 100 99
Total Time 2.01 seconds 4.38 seconds

5) In scenario 2: Both models have maintained their strong
performance. DQN achieved an accuracy of 98 %, a precision
of 100%, a recognition of 98 %, and an F1 score of 99 %,
completing training in 1.61 seconds. QR-DQN achieved the
same precision 100%, accuracy 99 %, recall 99%, and F1 score
of 99%, and a training time of 1.98 seconds due to the deeper
exploration of the complex network environment. Table VI
clearly shows the difference between the two models in the
performance matrices.

TABLE VI. SCENARIO 2 DQN VS QR-DQN PERFORMANCE (ACCURACY,
PRECISION, F1-SCORE, TIME)

Metric DQN QR-DQN
Accuracy (%) 98 99
Precision (%) 100 100
Recall (%) 98 99
F1-Score (%) 99 99
Total Time 1.61 seconds 1.98 seconds

XI. DISCUSSION

Several important findings emerge from the evaluation.
They are as follows:

1) DQN shows faster convergence: in both scenarios with
higher rewards and shorter training times, especially in sce-
nario 1, where the network environment is simpler. It is
characterized by high accuracy (99%) and precision (100%),
which makes it very effective for scenarios that require fast and
direct identification of attack paths. While QR-DQN is slower
to converge and requires more time to train, it is excellent
for complex environments such as Scenario 2, where deeper
reconnaissance is required. QR-DQN’s ability to model reward
uncertainty results in more consistent rewards and higher F1
scores (99%) in both scenarios, ensuring fewer false alarms and
balanced performance between accuracy and thoroughness.

2) Episode duration and steps: The QR-DQN model con-
sistently exhibited longer episode duration and required more
steps initially, reflecting its thorough exploration process. How-
ever, it eventually stabilized at the same level of efficiency as
the DQN model, making it more suitable for more complex
penetration testing scenarios where exploration of insecure
attack paths is critical.

3) Trade-off between time and accuracy: DQN is faster
and achieves high accuracy and efficiency in simpler scenarios,
but QR-DQN offers more stability and reliability when dealing
with uncertainty, but at the cost of a longer training time.

The above statistics show that the QR-DQN model is
preferable for automated penetration testing as it has consistent
performance in terms of longer episodes and a more consistent
accumulation of rewards, suggesting that it is more comprehen-
sive and trustworthy when investigating and exploiting vulner-
abilities. The constant stabilization of mean steps per episode
demonstrates the efficiency of QR-DQN throughout the testing
process. Scenario 2 showed higher episode duration, higher
rewards, and greater variation in average steps per episode
in both algorithms, suggesting that the agent in scenario 2
explores more, achieves higher rewards, and encounters more
variability on its path to optimal solutions. This suggests that
the design or parameters of Scenario 2 encourage deeper
exploration and learning compared to Scenario 1.

The observed faster reward stability and shorter episode
duration in QR-DQN have direct consequences for practice.
Faster incentive accumulation leads to faster detection of
major vulnerabilities, allowing organizations to reduce risks
more effectively. Shorter episode times enable faster decision-
making and less system downtime during penetration testing,
resulting in less disruption without compromising network
security.

XII. CONCLUSION

This study investigated the feasibility of using a Deep Q-
learning Network (DQN) and a Quantile Regression Deep Q-
network (QR-DQN) for automated attack path planning in
penetration testing, using MulVAL for sparse rewards. The
results show that the DQN learns faster, with peak rewards
of 300,000 in scenario 1 and 400,000 in scenario 2. However,
its aggressive exploration led to high variance, resulting in
unstable learning behavior and lower steady-state rewards.

In contrast, QR-DQN showed more stable performance by
effectively modeling reward uncertainty. Although the peak
rewards of QR-DQN were lower (250,000 in Scenario 1 and
350,000 in Scenario 2), it provided more reliable exploration
in complex scenarios. However, this stability came at the cost
of a longer learning time — QR-DQN required approximately
5,000 episodes to reach its performance peak in Scenario 1,
compared to 3,000 episodes for DQN and 7,000 episodes in
Scenario 2, compared to 4,000 episodes for DQN. In addition,
QR-DQN performed significantly fewer steps per episode,
at least eight, compared to DQN’s 20,000 in Scenario 1,
indicating more efficient path planning. Despite QR-DQN’s
advantages in terms of stability and structured exploration,
its time-intensive nature remains a limitation. Future improve-
ments will focus on optimizing QR-DQN to balance efficient
exploration and reduced computational effort.

XIII. FUTURE WORKS

Future research will focus on integrating real-time data to
improve the system’s adaptability in responding to dynamic
threats. The model will be trained with historical vulnerability
data using machine learning techniques that enable improved
predictive capabilities and proactive threat defense.

www.ijacsa.thesai.org 986 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 3, 2025

In addition, implementing broader simulations, especially
in IoT environments and large infrastructures, will be explored
to assess the model’s scalability and improve its generalization
to different network architectures. Extending the experimental
framework to include comparisons with advanced DRL algo-
rithms, such as Advantage Actor-Critic (A3C) and Proximal
Policy Optimization (PPO), will provide deeper insights into
the relative strengths and limitations of QR-DQN. These com-
parisons will help refine the model’s efficiency and evaluate
its effectiveness in penetration testing scenarios, contributing
to the development of more robust and resilient automated
security assessment systems.

ACKNOWLEDGMENT

This work was supported by the Deanship of Scientific
Research, Vice Presidency for Graduate Studies and Scientific
Research, King Faisal University, Saudi Arabia [Project No.
KFU250998].

AUTHORS’ CONTRIBUTIONS

Both authors equally contributed.

REFERENCES

[1] Hu Z, Beuran R, Tan Y. Automated penetration testing using deep
reinforcement learning. In: 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). IEEE; 2020. p. 2-10.

[2] Maeda R, Mimura M. Automating post-exploitation with deep reinforce-
ment learning. Comput Secur. 2021;100:102108.

[3] Al-Saraireh JM. Enhancing the penetration testing approach and de-
tecting advanced persistent threat using machine learning [PhD thesis].
Princess Sumaya University for Technology; 2021.

[4] Goh KC. Toward automated penetration testing intelligently with rein-
forcement learning [PhD thesis]. Dublin: National College of Ireland;
2021.

[5] Huizinga T. Using machine learning in network traffic analysis for
penetration testing auditability. 2019.

[6] Chu G, Lisitsa A. Poster: Agent-based (BDI) modeling for automation of
penetration testing. In: 2018 16th Annual Conference on Privacy, Security
and Trust (PST). IEEE; 2018. p. 1-2.

[7] Sommervoll ÅÅ, Erdődi L, Zennaro FM. Simulating all archetypes of
SQL injection vulnerability exploitation using reinforcement learning
agents. Int J Inf Secur. 2024;23(1):225-246.

[8] Tran K, Akella A, Standen M, Kim J, Bowman D, Richer T, et al.
Deep hierarchical reinforcement agents for automated penetration testing.
arXiv preprint arXiv:2109.06449. 2021.

[9] Koroniotis N, Moustafa N, Turnbull B, Schiliro F, Gauravaram P, Janicke
H. A deep learning-based penetration testing framework for vulnerability
identification in Internet of Things environments. In: 2021 IEEE 20th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE; 2021. p. 887-894.

[10] Kujanpää K, Victor W, Ilin A. Automating privilege escalation with
deep reinforcement learning. In: Proceedings of the 14th ACM Workshop
on Artificial Intelligence and Security; 2021. p. 157-168.

[11] Neal C, Dagdougui H, Lodi A, Fernandez JM. Reinforcement learning
based penetration testing of a microgrid control algorithm. In: 2021 IEEE
11th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE; 2021. p. 0038-0044.

[12] Semenov S, Weilin C, Liqiang Z, Bulba S. Automated penetration
testing method using deep machine learning technology. 2021.

[13] Tran K, Standen M, Kim J, Bowman D, Richer T, Akella A, et
al. Cascaded reinforcement learning agents for large action spaces in
autonomous penetration testing. Appl Sci. 2022;12(21):11265.

[14] Zennaro FM, Erdodi L. Modelling penetration testing with reinforce-
ment learning using capture-the-flag challenges: Trade-offs between
model-free learning and a priori knowledge. IET Inf Secur. 2023.

[15] Zhou S, Liu J, Hou D, Zhong X, Zhang Y. Autonomous penetration
testing based on improved deep Q-network. Appl Sci. 2021;11(19):8823.

[16] Gangupantulu R, Cody T, Park P, Rahman A, Eisenbeiser L, Radke D,
et al. Using cyber terrain in reinforcement learning for penetration test-
ing. In: 2022 IEEE International Conference on Omni-layer Intelligent
Systems (COINS). IEEE; 2022. p. 1-8.

[17] Chowdhary A, Huang D, Mahendran JS, Romo D, Deng Y, Sabur A.
Autonomous security analysis and penetration testing. In: 2020 16th
International Conference on Mobility, Sensing and Networking (MSN).
IEEE; 2020. p. 508-515.

[18] Zhang Y, Liu J, Zhou S, Hou D, Zhong X, Lu C. Improved deep
recurrent Q-network of POMDPs for automated penetration testing. Appl
Sci. 2022;12(20):10339.

[19] Yang Y, Liu X. Behaviour-diverse automatic penetration testing: A
curiosity-driven multi-objective deep reinforcement learning approach.
arXiv preprint arXiv:2202.10630. 2022.

[20] Sangamesvarappa V. Parallelizing Depth-First Search for Pathway Find-
ing: A Comprehensive Investigation. Revue d’Intelligence Artificielle.
2023;37(4):123-145.

[21] Chen Z, Kang F, Xiong X, Shu H. A Survey on Penetration Path
Planning in Automated Penetration Testing. Applied Sciences. 2024;
14(18):8355.

www.ijacsa.thesai.org 987 | P a g e


