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Abstract—The evolution of healthcare, driven by remote mon-
itoring and connected devices, is transforming medical service de-
livery. Digital twins, virtual replicas of patients, enable continuous
monitoring and predictive analysis. However, the rapid growth
of real-time health data presents major challenges in resource
allocation and processing, especially in cardiac event prediction
scenarios. This paper proposes an artificial intelligence-based
approach to optimize resource allocation in a fog-edge computing
environment, with a focus on Mauritania. The system integrates
a deep learning model (CNN-BiLSTM), which achieves 98%
accuracy in predicting cardiovascular risks from physiological
signals, combined with a Deep Q-Network (DQN) to dynami-
cally decide whether tasks should run at the edge or in the
fog. Using IoT sensors, real-time health data is collected and
processed intelligently, ensuring low latency and rapid response.
Digital twins provide a synchronized virtual representation of
the physical system for real-time supervision. This architecture
improves resource utilization, reduces processing delays, and
enhances responsiveness to critical medical conditions, supporting
more accurate cardiac event prediction and timely intervention,
especially in resource-constrained environments.
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I. INTRODUCTION

Cardiovascular diseases, which claim millions of lives each
year, remain one of the leading causes of mortality worldwide
[1]. In Mauritania, the prevalence of cardiovascular disease
(CVD) mortality is estimated at 16%, making it the leading
cause of death from non-communicable diseases (NCDs) [2].
Hypertension (HTN), affecting 27% of the Mauritanian popu-
lation [3], is the primary contributor to the burden of strokes,
ischemic heart diseases, and hypertensive cardiopathies. The
prevention, detection, and treatment of hypertension remain
insufficient due to a lack of public awareness about risk
factors, symptoms, and complications of the disease, as well
as weaknesses in the healthcare system [4]. Implementing a
decision support system [5] that facilitates early detection,
alongside efficient resource management and rapid interven-
tion in cardiac emergencies is crucial to improving patient
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survival rates [6] and achieve the target of a 33% reduc-
tion in premature mortality by 2030 [7].Moreover, a survey
conducted among cardiologists at the National Cardiology
Center (CNC) reveals strong support for these innovative
solutions [8].However, the effective management of real-time
data from medical monitoring devices remains a significant
challenge, particularly in distributed environments (Edge or
Fog Computing) where computational resources are often
limited [9]. Edge-Fog Computing environments, positioned
near IoT devices, allow for decentralized data processing,
thus reducing latency and bottlenecks associated with data
transfer to the cloud [10]. Optimizing resource allocation in
such distributed systems is a central challenge. Dynamic re-
source management—including bandwidth, computing power,
and storage—is crucial, especially when handling critical real-
time data streams, such as those generated by biometric
sensors and cameras in cardiac monitoring systems [11]. To
address these challenges, integrating Edge-Fog Computing
systems with artificial intelligence (AI) approaches and digital
twins paves the way for intelligent and scalable healthcare
systems that can adapt to the dynamic needs of patients and
infrastructure [12] [13]. In this context, our work proposes
an innovative approach to optimizing resource allocation in
Edge-Fog Computing environments, specifically designed to
enhance the prediction of cardiac events. It combines advanced
AI models, including a hybrid CNN-LSTM model for cardiac
event prediction and a Deep Q-Network (DQN) for dynamic
resource allocation. This system aims to establish a real-time
health monitoring framework capable of predicting patients’
cardiac health status, determining the optimal location for task
processing—whether at the edge or fog—and delivering rapid
responses in critical situations. Moreover, integrating digital
twins into this architecture enables comprehensive system
supervision, providing a platform for real-time monitoring
and predictive analysis [14]. These digital twins not only
simulate system behavior under varying conditions [fdgth]
but also continuously optimize resource allocation decisions
[15]. Preliminary results indicate that this approach effectively
handles workload variations, improves system performance,
and supports rapid response to critical situations. The main
contributions of our research study are as follows:

1) AI-Driven heart attack risk prediction at the edge:
Development and implementation of a CNN-BiLSTM deep
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learning model for heart attack prediction, enabling real-time
monitoring and accurate risk assessment directly on edge
devices.

2) Dynamic resource allocation optimisation: Implemen-
tation of a reinforcement learning Deep Q-Network (DQN)
model to optimise resource management. This model dynam-
ically determines whether data, including video streams in
critical situations, should be processed locally on edge devices
or offloaded to the fog layer in resource-intensive scenarios.

3) Integrating digital twin technology: Use of digital twins
for cardiac monitoring in healthcare to refine the accuracy
of heart attack predictions, optimise resource allocation and
improve system performance through real-time monitoring,
notification in critical situations and continuous optimisation
based on replicated data.

The rest of this paper is organized as follows: Section
II discusses related work. In Section III, we presents the
proposed framework. Furthermore, Section IV is the results
and discussion. The conclusion and the paper’s potential future
directions are presented in Section V.

II. RELATED WORK

Many authors have carried out studies relevant to our
research. In this section, the key studies are organized into
sub-paragraphs with clear headings for improved readability
and are summarized below:

A. Resource Allocation in Fog and Edge Computing for
Healthcare

Talaat et al. [16] introduced EPRAM, a method combining
Deep Reinforcement Learning (DRL) and Probabilistic Neural
Networks (PNN) to enhance resource allocation and heart
disease prediction in Fog environments. The system includes
modules for data preprocessing, resource allocation, and ef-
fective prediction, significantly reducing latency and improving
load balancing. Aazam et al. [17] focused on task offloading in
Edge Computing using machine learning (ML) models such as
kNN, Naive Bayes, and SVC. Although their models improved
processing efficiency in medical scenarios (including COVID-
19-related cases), they did not report specific performance met-
rics. Khan et al. [18] proposed a dynamic resource allocation
algorithm for IoHT applications. Their results demonstrated a
45% reduction in delay, 37% reduction in energy consumption,
and 25% reduction in bandwidth usage compared to existing
approaches.

B. Machine Learning-Based Medical Data Processing

Amzil et al. [19] developed ML-MDS, a medical data
segmentation method that achieved 92% accuracy while re-
ducing latency by 56%. Similarly, Ullah et al. [20] used fuzzy
reinforcement learning to design energy-efficient healthcare
IoT systems. Hanumantharaju et al. [21] applied Random
Forest and Naive Bayes algorithms for heart disease prediction.
Scrugli et al. [22], on the other hand, achieved over 97%
accuracy using a CNN to detect arrhythmia disorders.

C. Deep Learning and Synthetic Data for Cardiac Events

Rajapaksha et al.[23] used LSTM models with synthetic
data to predict cardiac arrests, achieving 96% accuracy. Tang
et al.[24] introduced SH-CSO, an optimization algorithm that
achieved 96. 16% precision for heart disease and 97. 26% for
the diagnosis of diabetes. Dritsas et al.[25] compared several
deep learning models on a heart attack prediction dataset. Their
hybrid model outperformed others with 91% accuracy, 89%
precision, and 90% recall.

D. Hybrid Deep Learning Models for Cardiac Prediction

Hossain et al.[26] used a hybrid CNN-LSTM model,
achieving up to 74.15% accuracy. Sudha et al.[27] achieved
89% using a similar approach. Verma et al.[28] proposed
the FETCH system, which combines Fog Computing, IoT,
and DL to enhance real-time cardiac monitoring. Elsayed et
al.[29] integrated CNN and Fog Computing for image-based
diagnosis, achieving near-perfect accuracy (99.88%) on X-ray
images.

E. Architectures and Comparative Studies

Tripathy et al. [30] proposed an architecture combining
quartet deep learning and edge devices, evaluated using the
FogBus framework based on performance indicators such as
congestion and accuracy. Scrugli et al.[22] compared several
ML algorithms (LR, SVM, NB, KNN, RF, GB) to iden-
tify the best one for early heart failure detection, especially
within cloud computing environments. The Table I provides
an overview of studies focusing on edge–fog systems in the
healthcare domain.

The Table [I] provides an overview of studies focusing on
Edge–Fog systems in the healthcare domain, highlighting the
key limitations identified in each study.

III. PROPOSED FRAMEWORK

We proposed a multi-layered framework for remote health-
care monitoring and resource allocation, including IoT sensors,
edge computing, fog and digital twin technology, to predict
heart attacks in real time and allocate resources efficiently.
IoT sensors collect key physiological data, including param-
eters such as heart rate, type of chest pain and cholesterol
levels, alongside video input from a camera during critical
events. Edge devices are used to run pre-trained deep learning
models to predict a heart attack, and activate the camera as
needed. During the same time, a deep Q-Network (DQN)
decides if the data is processed locally or offloaded to the
fog layer. Predictions and video frames are transmitted to
a digital twin, which not only monitors the patient’s health
but also diagnoses the situation based on the collected data.
If the digital twin detects an emergency, such as a potential
heart attack, it automatically notifies the medical staff, family
members, and ambulance teams, enabling prompt intervention
and refines resource allocation through historical analysis. Fig.
1 illustrates the architecture of this system, highlighting the
seamless flow from data collection to decision making.In the
following sections, each layer of the proposed architecture will
be detailed in the following sections.
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TABLE I. OVERVIEW OF STUDIES FOCUSING ON EDGE-FOG SYSTEMS FOR HEALTHCARE

Reference Focus AI Technique / Architecture Limitations
(Aazam et al.)
[2021] [17]

underscores the significance of intelligent
decision-making in resource-constrained
environments for enhancing

kNN,naive Bayes (NB), SVC/
Edge-Cloud

Algorithmic Limitations : The study does not fully ad-
dress how resource allocation is managed dynamically
across middleware entities

(scrugli et al.)
[2021] [22]

explore the implementation of a system for at-the-
edge cognitive processing of ECG data.

CNN/ Edge-Cloud Limited Scope of Generalization,

(khan et al.)
[2022][18]

This paper proposes workload-aware efficient re-
source allocation and load balancing in the fog-
computing environment for the IoHT.

algo/fog-Cloud Overemphasis on Simulation: The study is largely
validated through simulations, which might not fully
replicate the complexity of real-world healthcare sce-
narios.

(talaat et al.)
[2022][16]

the EPRAM paper significantly advances the un-
derstanding and implementation of resource allo-
cation and prediction in fog computing, particu-
larly for smart healthcare systems, by introducing
a comprehensive and effective methodology.

PNN,RL/ Fog-Cloud it lacked specific implementation details. to confirm its
effectiveness in real-world healthcare FC deployments.

(verma et al.)
[2022][28]

combines fog computing with IoT and deep learn-
ing to enable efficient healthcare monitoring and
diagnosis

Random Forests, Gradient
Boosting/Fog-Cloud

does not address dynamic resource allocation strategies
effectively.

(elhadad et al.)
[2022][31]

Immediate notification handling in healthcare
monitoring

Algorithmic Pattern
Recognition/Fog-Cloud

lacks comprehensive strategies for managing limited
computational and energy resources on fog nodes ef-
fectively. This could hinder scalability for high-demand
healthcare applications

(hanumantharaju et
al.) [2022][21]

develop a novel fog-based healthcare system for
Mechanized Diagnosis of Heart Diseases using
ML algorithms

Random Forest, Naive Bayes/Fog-
Cloud

-Dynamic Resource Allocation: The dynamic and often
unpredictable nature of healthcare demands is not fully
accounted for, which could lead to inefficiencies in
resource utilization during peak usage periods. -Lack
of Real-World Validation

(hossain et al.)
[2023][26]

Combined CNN and LSTM to identify Cardiovas-
cular disease

CNN, LSTM Lack of Real-Time Deployment Considerations Neglect
of Resource Allocation

(sudha et al.)
[2023][27]

Combined CNN and LSTM to identify Cardiovas-
cular disease

CNN, LSTM Deployment challenges include optimizing resources in
real-time environments.

(elsayed et al.)
[2023][29]

intersection of fog computing and modified CNNs
in the domain of healthcare image analysis

CNN/Fog-Cloud Resource Constraints in Fog Computing and need to
implement an effective resource allocation strategy

(tripathy et al.)
[2023][30]

The approach uses a quartet deep learning frame-
work combined with fog and edge computing to
process healthcare data closer to the user, reducing
dependency on cloud services.

DQN/Fog-Cloud The paper emphasizes the efficiency of the fog plat-
form but does not delve deeply into adaptive resource
allocation strategies.

(rajapaksha et al.)
[2023][23]

developed predictive model in identifying the like-
lihood of developing cardiac

LSTM Lack of Real-Time Testing

(ullah et al.)
[2024][20]

Treduce delays in processing and transmitting
healthcare data

FIS,RL,NN/Fog-Cloud Problem of dynamic resource allocation

(dritsas et al.)
[2024][25]

apply and compare the performance of five well-
known Deep Learning (DL) models, to a heart
attack prediction dataset.

MLP,CNN,RNN,LSTM, GRU Computational Overhead: hybrid architectures, are
computationally intensive. how these models can be
deployed in resource-constrained environments, such as
edge or fog computing.

(tang et al.)
[2024][24]

create a model for detecting diabetes and cardio-
vascular diseases by integrating AI and IoT

SH-CSO algorithm/Fog-Cloud The aspect of resource allocation is not addressed,
especially given that fog nodes are limited in resources.

(dayana et al.)
[2024][32]

The paper emphasizes the importance of ML
methods for early detection, diagnosis, and pre-
vention, aiming to reduce mortality rates and
healthcare costs associated with heart disease

LR,SVM,NB,KNN,RF,GB The paper does not adequately address the practical
limitations of deploying cloud-driven machine learning
models in environments with limited resources

(amzil et al.)
[2024][19]

an ML-based approach to improve health data
classification and reduce latency in healthcare sys-
tems

k-fold random forest - Limited Focus on Real-Time Validation - Lack of
Dynamic Resource Allocation

A. IoT and Sensor Layer

The IoT and Sensor Layer plays a pivotal role in the
continuous collection of real-time data from the patient, uti-
lizing a variety of physiological and camera sensors. Physi-
ological sensors continuously monitor key health parameters,
including heart rate (HR), blood pressure (BP), and cholesterol
levels. The data collected from these sensors serves as the
primary input for evaluating the patient’s health condition
and is subsequently fed into the predictive AI model for
heart attack prediction and other critical health assessments.
In emergency situations, the camera captures video feeds that
offer visual context regarding the patient’s physical state. This
visual data complements the physiological measurements and

enhances the overall understanding of the patient’s condition,
particularly during critical events.

B. Edge Computing Layer

The Edge Computing Layer is the central layer in this
work, responsible for processing the patient’s health data from
physiological sensors using an AI model for heart attack
prediction. The camera is activated only in critical situations
to capture video frames, ensuring privacy. A Deep Q-Network
(DQN) model is used to decide whether to process the data
locally on the Raspberry Pi or offload it to the Fog Layer,
optimizing resource usage. Once processed, all data, including
health metrics and video frames, are transmitted from the Fog
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Fig. 1. Multi-layer architecture of the proposed framework for heart attack
prediction and resource allocation, integrating IoT sensors, edge computing,

fog, and digital twin technology.

or Raspberry Pi to the Digital Twin Layer. This data allows
for the continuous update of the virtual model, supporting real-
time health monitoring and decision-making.

1) AI Driven heart attack risk prediction at the edge:
We trained an IA model for heart attack prediction using a
hybrid convolutional neural network (CNN) and bidirectional
long-short-term memory (BiLSTM) architecture. This model
was specifically designed to predict heart attacks based on
physiological data, including heart rate, blood pressure, and
cholesterol levels. The model was trained and deployed on a
Raspberry Pi 4B, which features a quad-core Cortex-A72 pro-
cessor and 4GB of RAM, providing sufficient computational
power for edge-based inference.

a) Dataset: In this study, the data set from the UCI
machine learning repository dataset is used . Data in the
dataset are collected from the Hungarian Institute of Cardi-
ology, Cleveland clinic foundations. It consists of information
on patient records both normal and abnormal. This database
contains 76 attributes, with a total of 303 observations. The
attributes are age, sex, resting blood pressure, cholesterol,
etc. And the data set consists of six missing values. In 303
observations, 138 are normal persons, and 165 are abnormal
persons, i.e., sufered from heart disease.

b) CNN-BiLSTM Architecture: Our proposed hybrid
CNN-BiLSTM model leverages Convolutional Neural Net-
works (CNNs) for feature extraction and Bidirectional Long
Short-Term Memory (BiLSTM) layers for sequential learning,
effectively capturing both spatial and temporal dependencies
to enhance prediction accuracy. The architecture, illustrated in
Fig. 2, consists of a CNN layer followed by a dropout of 0.5,
a BiLSTM layer with 64 units, and a fully connected layer.
The model was trained for 200 epochs with a learning rate of
0.0025, utilizing the softmax activation function.

c) CNN: CNN has been effectively used in image pro-
cessing, face recognition and time series analysis, among other
applications[33].It is possible to construct CNN architecture by
stacking three primary layers: convolution, pooling, and fully

Fig. 2. CNN-BILSTM architecture.

connected (FC). Every convolution layer has a set of learnable
filters whose objective is to automatically extract local char-
acteristics from the input matrix using the learned filters. It is
possible to minimize the complexity of the computational load
and improve model performance by using filters that execute
convolution operations based on two essential notions, namely
weight sharing and local connection, which may be achieved
via filters [34].

d) BiLSTM: As an extension to RNNs, Long Short-
Term Memory (LSTM) is introduced to remember long input
data and thus the relationship between the long input data and
output is described in accordance with an additional dimension
(e.g., time or spatial location). An LSTM network remembers
long sequence of data through the utilization of several gates
such as: 1) input gate, 2) forget gate, and 3) output gate. The
deep-bidirectional LSTMs (BiLSTM) networks are a variation
of normal LSTMs, in which the desired model is trained not
only from inputs to outputs, but also from outputs to inputs.
More precisely, given the input sequence of data, a BiLSTM
model first feed input data to an LSTM model (feedback layer),
and then repeat the training via another LSTM model but
on the reverse order of the sequence of the input data (i.e.,
Watson-Crick complement [35].

In this work we proposed A hybrid model for predicting
heart disease using CNN and BiLSTM algorithms.

e) Evaluation metrics: The model’s performance was
evaluated using metrics such as accuracy, precision, recall, and
F1-score, ensuring its effectiveness in real-time heart attack
prediction.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision × Recall

Precision + Recall
(4)
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Tinference(ms) = Tout − Tinp (5)

Where:

- TP (True Positive): The number of correctly identified
heart attack cases, where the model accurately predicts
a heart attack event.

- FN (False Negative): The number of heart attack
cases that were not predicted by the model, indicating
missed detections of actual heart attacks.

- FP (False Positive): The number of instances where
the model incorrectly predicts a heart attack, leading
to false alarms for non-heart attack events.

- TN (True Negative): The number of correctly iden-
tified non-heart attack cases, where the model accu-
rately predicts the absence of a heart attack.

- Tinp: The timestamp when the physiological data (e.g.,
heart rate, blood pressure) is fed into the prediction
model for analysis.

- Tout: The timestamp when the heart attack prediction
result is generated, marking the point at which the
model’s decision is outputted for clinical assessment.

2) Allocation resources model using DQN (Deep Q-
Network): Resource allocation in an Edge-Fog environment
presents a significant challenge due to the diverse nature
of tasks, fluctuating workloads, and the stringent demands
for low latency. Achieving an optimal balance between local
processing (Edge) and offloading to the Fog requires quick,
adaptive decision-making to ensure minimal latency, maximize
resource efficiency, and control costs effectively. The Deep Q-
Network (DQN) emerges as a promising solution, enabling
autonomous learning to make optimal decisions in complex
and dynamic environments [36]. In the context of healthcare,
particularly in heart attack prediction, intelligent Edge-Fog
resource management can enhance prediction accuracy and,
more importantly, save lives by ensuring the rapid and reliable
processing of critical data.

• DQN Concepts: The Deep Q-Network (DQN) is a
reinforcement learning algorithm that combines Q-
learning, a table-based control method, with deep
neural networks. Q-learning problems are typically
framed as Markov Decision Processes (MDPs), which
consist of pairs of states (st) and actions (at). State
transitions occur with a transition probability (p), a
reward (r), and a discount factor (γ). The transition
probability p reflects the likelihood of transitioning
between states and receiving associated rewards. Ac-
cording to the Markov property, the next state and
reward depend only on the previous state (st−1) and
action (at−1)[37]. Traditional Q-learning struggles to
handle large-scale or continuous-space MDPs due to
the curse of dimensionality in the Q-table. To address
this issue, DeepMind introduced the DQN algorithm,
which approximates the Q-table using deep neural
networks. In DQN, the Q value of each action can
be predicted by simply inputting the current state (sτ )

Fig. 3. Concept of DQN.

into the network, simplifying computation. The DQN
uses a deep neural network Q(s, a;ω), parameterized
by weights ω, to approximate the value function
Q(s, a). In this framework, the agent is responsible for
learning, while the environment provides the interac-
tion context [38]. The primary objective of the agent
is to learn optimal actions that maximize cumulative
rewards. The agent selects actions (aτ ) and trains
the neural network, while the environment updates
the state (st) and computes the reward (rt). The
DQN employs two neural networks , the evaluation
network (eval-net) and the target network (target-net),
which share the same architecture [39]. The eval-
net estimates Q values, while the target-net provides
stable Q values as targets for training. The Q values
are updated using a modified Bellman equation:

Q
′
(st, at) = Q(st, at) + α

[
rt+1 + γ max

a
Q(st+1, a) − Q(st, at)

]
(6)

where Q(st, at) and Q′(st, at) are the current and updated
Q values for a given action a in state s at time t, α is
the learning rate (typically a small positive value), rt+1 is
the reward received after performing the action, γ is the
discount factor (close to but less than 1), and maxa Q(st+1, a)
represents the highest estimated Q value for the next state st+1.
This approach allows DQN to learn effectively in complex
environments by leveraging the power of deep neural networks.
The specific process is shown in figure [3]

• System model and problem formulation: This hybrid
model aims to optimize resource allocation in an
Edge-Fog Computing environment for an efficient
healthcare system. It combines reinforcement learning
with the physical constraints of the Raspberry Pi’s
resources.

• System Variables: (Ra, Ca, Ba) are the resources in
RAM, CPU, and Bandwidth, respectively, available
on the Raspberry Pi board, (Lt) is the maximum
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acceptable latency for processing data, (Tm) is the
maximum operating temperature of the Raspberry Pi,
and (P ) is the prediction result (0 = normal, 1 =
critical).

• Consumption Variable: (Ru, Cu, Bu ) are the re-
sources in RAM, CPU, and Bandwidth, respectively,
necessary for local processing, Lc is the current time
measure, and Tc is the current temperature of the
Raspberry Pi.

The resource constraints to ensure the optimal functioning
of the system are given by:

RAM: Ru ≤ Ra, CPU: Cu ≤ Ca, Bandwidth: Bu ≤ Ba,

Latency: Lc ≤ Lt, Temperature: Tc ≤ Tm.
(7)

The reward function R assesses the effectiveness of re-
source allocation:

R = α1 · RAM efficiency + α2 · CPU efficiency
+ α3 · Bandwidth efficiency − β · Latency penalty

où :

RAM efficiency =
Ra −Ru

Ra

CPU efficiency =
Ca − Cu

Ca

Bandwidth efficiency =
Ba −Bu

Ba
(si offload vers Fog)

Latency penalty = max(0, Lc − Lt)

The coefficients α1, α2, α3, and β are adjusted according
to the relative importance of the resources. The allocation
decision a is made as follows:

• If all constraints are satisfied locally:

Ru ≤ Ra, Cu ≤ Ca, Tc ≤ Tm,

Bu ≤ Ba, Lc ≤ Lt.
(8)

then a = 0 (Local processing).

• Otherwise, if one or more constraints are not satisfied,
or if the reward is lower locally, then a = 1 (Transfer
to Fog).

Require: Discount factor γ, exploration rate ϵ, replay mem-
ory capacity P , heart attack prediction model HA model,
DQN model DQN model.

C. Fog Layer

In our system, after the Deep Q-Network (DQN) model
runs on the Raspberry Pi to determine whether data should
be processed locally or offloaded, the Fog Layer becomes
essential. When the Raspberry Pi is unable to process more
complex data, such as video frames captured by the cam-
era, it transmits this data to the Fog Layer. The Fog Layer
then processes these larger, more computationally demanding

Algorithm 1 DQN-Based Resource Allocation for Heart At-
tack Prediction (DQNRAP)

1: Initialize replay memory D to capacity P .
2: Initialize evaluation network with parameters θ.
3: Initialize target network with parameters θ′ = θ.
4: Connect to Azure IoT Hub for Digital Twin synchroniza-

tion.
5: Configure interval Tpred = 0.1 sec, buffer size

Nthreshold = 2.
6: Initialize camera to standby mode.
7: for each episode k do
8: Initialize initial state s1 by collecting sensor data

(IMU, temperature, heart rate).
9: for each step t do

10: Collect real-time sensor data Inputdata.
11: Predict heart attack status:

prediction = HA model.predict(Inputdata)

12: Threshold Prediction:

heart status =

{
1 if prediction > 0.5 (Critical)
0 otherwise (Normal)

13: Update Buffer with heart status.
14: if

∑
(buffer[−Nthreshold :]) = Nthreshold then

15: Activate camera for 1-minute video capture.
16: Set camera status = 1.
17: end if
18: Construct State:

st = [RAM,CPU,Latency,Bandwidth, Temperature]

19: Generate random number h ∈ [0, 1].
20: if h < ϵ then
21: Randomly select action at.
22: else
23: at = argmaxa Q(st, a; θ).
24: end if
25: Execute action at (local processing or fog offload-

ing).
26: Observe reward rt and next state st+1.
27: Store Transition (st, at, rt, st+1) in D.
28: Update Evaluation Network (Algorithm 2).
29: if t%C == 0 then
30: Reset Target Network: θ′ = θ.
31: end if
32: Synchronize data with Azure IoT Hub:

payload = {timestamp, heart status, camera status,

RAM, CPU, Latency, Bandwidth, at}

33: end for
34: end for
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Algorithm 2 Evaluation Network Update

1: Sample mini-batch (s, a, r, s′) from D.
2: Compute target Q′ value:

Q′ = r + γmax
a′

Q(s′, a′; θ′)

3: Update Q-network by minimizing loss:

Loss = (Q(s, a; θ)−Q′)2

Algorithm 3 Routing Decision

1: if at = 1 then
2: Process video locally (Raspberry Pi).
3: else
4: Offload data to Fog.
5: end if

datasets, enabling efficient data handling and ensuring that the
local resources are not overwhelmed. This approach optimizes
the overall system performance by leveraging the Fog Layer’s
ability to handle more intensive computations.

D. Digital Twin Layer

The Digital Twin Layer generates a real-time virtual model
of the patient, continuously updated with data from IoT sensors
to monitor health status and optimize resource allocation.
Leading cloud platforms, such as Amazon Web Services
(AWS) and Microsoft Azure, offer solutions for building digital
twins. In our work, we utilize Azure * to develop a digital
twin that simulates the patient’s heart condition, visualizing
processed data from the camera and storing historical records.
This enhances overall system prediction accuracy and im-
proves resource allocation through predictive analytics. The
Fig. 4 represents a JSON program fragment of the prediction
of the IA heart attack model and also the resource allocation
if data of camera will be processed at edge or transferred to
the fog.the digital twin will be used to monitor the heart status
and control the process of data between the edge and the fog
computing .

E. Application Layer

The Application Layer leverages 3D digital twin models
and virtual reality to enhance patient monitoring and emer-
gency response. The digital twin continuously updates with
real-time data, providing a visual representation of the patient’s
heart condition. When critical situations are detected, the sys-
tem automatically notifies medical staff and family members
for immediate intervention. Beyond monitoring, the digital
twin plays a vital role in refining the heart attack prediction
and resource allocation models by analyzing historical data and
improving decision accuracy. This ensures better healthcare
management and faster response in emergencies.

IV. RESULTS AND DISCUSSION

A. Result of Heart Attack Prediction Model

This section presents the experimental results obtained
from testing the heart attack prediction model on both a PC and

*https://azure.microsoft.com/fr/products/digital-twins/

Fig. 4. JSON Program fragment of the patient status for Azure DT.

edge devices. Initially, the CNN-BiLSTM model was evaluated
on the PC to assess its performance. Following this, the model
was transferred to the Raspberry Pi 4B, where its accuracy,
size, and inference time were validated.

TABLE II. CLASSIFICATION REPORT FOR THE HEART ATTACK
PREDICTION MODEL

Class Precision Recall F1-score
0 0.9722 1.0000 0.9859
1 1.0000 0.9608 0.9800
Accuracy 0.9835
Macro avg 0.9861 0.9804 0.9830
Weighted avg 0.9839 0.9835 0.9834

The results presented in Table II, Fig. 5, and 6 highlight the
performance of our model, which achieved an overall accuracy
of 98.35%. As shown in the confusion matrix in Fig. 5), the
model correctly classified all instances of Class 0, resulting
in a perfect classification rate of 100%. However, Class 1
achieved a slightly lower accuracy of 96.08%, with 3.92% of
instances misclassified as Class 0.The classification report in
Table II further demonstrates the effectiveness of our trained
model. For Class 0 (No Attack), the precision is 97.22%, recall
is 100%, and the F1-score is 98.00%. For Class 1 (Heart
Attack), the model achieves a precision of 1.000, recall of
96.08%, and an F1-score of 98.00%.The macro and weighted
averages further confirm that the model handles both classes
effectively, exhibiting minimal bias while maintaining high
precision, recall, and F1-scores. Additionally, the ROC curve
Fig. 6 showcases the model’s near-perfect ability to distinguish
between the two classes, with an impressive Area Under the
Curve (AUC) of 0.99.

1) Comparison of proposed heart attack prediction mod-
els with related works: To validate the effectiveness of our
proposed hydrid CNN-BiLSTM heart attack prediction model,
we compared it with existing models in the literature. This
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Fig. 5. Confusion matrix for the heart attack prediction model.

Fig. 6. Confusion matrix for the heart attack prediction model.

comparison highlights differences in model architectures using
the same data set. Table III summarizes the results of the
comparison using the accuracy metric of key related works.

2) Comparison of heart attack prediction models using
the same Cleveland dataset: The results in III indicate that
our proposed CNN-BiLSTM model achieves superior accu-
racy compared to traditional architectures, benefiting from the
combination of convolutional and bidirectional long short-term
memory (BiLSTM) layers. This hybrid architecture enhances
feature extraction and temporal modeling, leading to more
precise predictions.

TABLE III. COMPARISON OF HEART ATTACK PREDICTION MODELS

Date Authors Model Architecture Accuracy (%)
2022[40] Abdelghani et al. LR algorithme 82,6
2023[27] Sudha V K et al. CNN-LSTM 89
2024[25] Dritsas et al. CNN-GRU 91
2024[41] Remya et al. CNN- UMAP algorithm 91
2024[42] Bouqentar et al. SVM 92
2023[34] Shrivastava et al. CNN-BiLSTM 96.66

2024 Ours proposed Methode CNN-BiLSTM 98.34

B. Result of Allocation Resource Model Using DQN

The result of Fig. 7 shows the evolution of average cumu-
lative rewards over episodes in the DQN model. Initially, the
agent receives low rewards, but gradually improves its deci-
sions. After approximately 200 episodes, the rewards stabilize
around 50, indicating that the agent has learned an optimal
strategy and that its learning process has effectively converged.
Fig. 8 represents the decay of epsilon ϵ, a key parameter
in DQN that regulates the balance between exploration and
exploitation.

Fig. 7. Average cumulative rewards.

Fig. 8. Epsilon decay.

At the beginning, ϵ is high (∼ 1), allowing the agent to
explore various actions. As training progresses, ϵ decreases,
encouraging the agent to rely more on decisions that have
produced the best rewards. After (∼ 400) episodes, ϵ becomes
very low, which means that the agent has learned enough
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Fig. 9. Response times.

Fig. 10. Execution count.

and now relies primarily on optimal choices. These two main
results complement each other: the decrease in ϵ explains the
stabilization of cumulative rewards, confirming that the DQN
model learns progressively, efficiently and optimally.

The study 9 displays a response time histogram comparing
Edge and Fog processing. The Edge responses are significantly
faster (0.5s), whereas Fog responses take longer (0.8s), indi-
cating a higher processing delay in the Fog environment. The
10 shows that the majority of executions (over 12,000) take
place in the Fog, compared to only 2,500 in the Edge.

C. Discussion

The results indicate excellent performance of the predic-
tion model based on a hybrid CNN-BiLSTM network, with
high precision and reliability metrics (see Fig. 5 and Fig.
6). This level of performance is crucial in critical scenarios
such as cardiac event prediction, where false negatives could
have severe consequences.In terms of resource allocation,
the Deep Q-Network model demonstrates fast and efficient
learning capabilities (Fig. 7 and Fig. 8), dynamically adapting
to maximize system performance. Most processing decisions
were offloaded to the Fog (Fig. 10), which suggests that
critical tasks require more computing power than what is
available at the Edge. Regarding latency, the results in Fig. 9
show that the proposed approach ensures fast processing—an

essential factor in real-time medical monitoring scenarios. By
integrating artificial intelligence and deep learning techniques
into a Fog/Edge architecture, the system succeeds in ensuring
both diagnostic accuracy and responsiveness while optimizing
resource utilization.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed an intelligent and adaptive
system for real-time cardiac event prediction and resource
allocation in Edge-Fog Computing environments. By inte-
grating a deep learning-based CNN-BiLSTM model for heart
attack prediction and a Deep Q-Network (DQN) for dynamic
resource management, our approach demonstrates the poten-
tial to enhance real-time monitoring and response efficiency
in healthcare applications. Furthermore, the incorporation of
digital twins into our architecture enables continuous system
optimization and predictive analysis, reinforcing the reliability
and adaptability of the proposed framework. Experimental
results indicate that our model effectively manages workload
distribution, reduces latency, and improves decision-making
for critical healthcare scenarios. The ability to dynamically
allocate resources between edge and fog computing envi-
ronments ensures optimal system performance, even under
fluctuating workloads. Our approach is highly relevant to the
context of Mauritania, where cardiovascular diseases represent
a significant public health challenge. It also aligns with the
national goal of reducing the mortality rate from these diseases
by 33% by 2030.

Future work will focus on enhancing the system’s capabil-
ities by developing an AI model at the fog level to process
video data transferred from edge devices, optimizing real-time
analysis and reducing latency. Additionally, we aim to improve
the digital twin component to refine AI model efficiency
and enhance system adaptability, leading to better overall
performance. To further strengthen privacy and scalability,
we will incorporate federated learning techniques, enabling
decentralized model training without compromising sensitive
patient data. Ultimately, our research paves the way for a more
responsive and intelligent healthcare infrastructure, capable
of providing real-time cardiac monitoring with high accuracy
while optimizing computational resources effectively.
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