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Abstract—The classification of program code readability has
traditionally focused on two target classes: readable and un-
readable. Recently, it has evolved into a multiclass classification
task in three categories: readable, neutral, and unreadable. Most
of the existing approaches rely on deep learning. This study
investigated the multiclass classification of Java code readability
using four feature metric datasets and 14 supervised machine
learning algorithms. The dataset comprises 200 labeled Java
function declarations. Readability features were extracted using
Scalabrino’s tool, generating three datasets: Scalabrino, Buse-
Weimer, a combined set (Dall), and a fourth (Dcorr) via fea-
ture selection based on interfeature correlation. Each model
underwent hyperparameter tuning via a Randomized Search
and was evaluated through 30 iterations of a five-fold cross-
validation. Scaling techniques (MinMax, Standard, Robust, and
None) were also compared. The best performance, with an
average accuracy of 61.1% and minimal overfitting, was achieved
by Random Forest with MinMax scaling on Dcorr. Feature
importance analysis using permutation methods identified 22 key
metrics related to comments: code complexity, syntax, naming,
token usage, and density. Despite its moderate accuracy, the
findings offer valuable insights and highlight essential features
for advancing code readability research.

Keywords—Code readability; machine learning; multiclass clas-
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I. INTRODUCTION

Reading source code is common for software developers,
and readability significantly affects the software quality [1].
While readability pertains to the ease of reading code syntax,
comprehensibility involves understanding code semantics [2].
These two concepts are related, but distinct, and readability
may fluctuate throughout the software lifecycle, thereby af-
fecting comprehensibility [3].

Automated classification methods have been widely used
to predict code readability, typically categorizing it as “read-
able” or “unreadable.” Various machine learning techniques,
such as Logistic Regression, Bayesian Networks, Perceptron,
Random Forest, and Support Vector Machines (SVM), have
been applied to classify code readability into two labels, as
demonstrated by researchers such as Buse and Weimer [4] and
Scalabrino et al. [5].

Posnett et al. [6] developed a regression model for classi-
fying source code readability into two classes. Dorn [7] also
utilized logistic regression to determine the weights of various
features to construct a readability metric model for source
code. Mi et al. [8]–[10] further explored convolutional neural
network (CNN)-based architectures and hybrid neural network
models for two-class readability classifications.

Recent advancements have extended the readability classifi-
cation into three categories: “readable,” “neutral,” and “unread-
able” [11]. Mi et al. [11], [12] employed convolutional neural
networks (CNNs) and graph neural networks (GCNs) for
this task. The GCN model achieved state-of-the-art accuracy,
reaching 72.5% for a three-class classification [11]. These
models were trained on a Java corpus from Scalabrino et al.
[13] containing 200 Java function declaration snippets. Overall,
the research findings indicate that deep learning-based methods
outperform traditional machine learning approaches in terms
of readability classification accuracy.

However, existing comparative studies have predominantly
focused on binary readability classification tasks. In contrast,
limited attention has been given to the more complex three-
class readability classification, which involves categorizing
code as “readable,” “neutral,” or “unreadable.” The state-of-
the-art model addressing this task proposed by Mi et al. [11]
employs a Graph Neural Network (GNN) framework. The
research gap lies in the insufficient exploration of alternative
machine learning classification approaches for this three-class
problem, which may offer competitive or complementary per-
formance to GNN-based methods. In light of this, further em-
pirical investigation is warranted to evaluate the effectiveness
of diverse machine learning algorithms in handling multiclass
code readability classification.

This study comprehensively evaluated 14 classification
methods applied to several code readability metrics: Buse and
Weimer (BW), Scalabrino (Scal), and a combination of BW,
Scal, and Posnett metrics. To enhance the classification perfor-
mance, we employed two feature selection methods: one based
on feature correlation and its relationship with target classes,
and another based on the importance scores derived from the
best-performing classification method. The dataset used in this
experiment consisted of Java code snippets from Scalabrino et
al. [13], which were categorized into three readability classes
by Mi et al. [11] with a 1:2:1 ratio for readable, neutral, and
unreadable classes. Each classification method was optimized
for hyperparameter tuning using a Randomized Search method.
Huyen [14] stated that the random search method is a form of
soft AutoML.

This study aimed to address two key research questions:
RQ1: Which classification method performs best? We investi-
gated 12 classification methods and two calibration techniques
for the Gaussian Naı̈ve Bayes classifier to classify the Java
corpus from Scalabrino et al. into three readability classes
established by Mi et al. The evaluation metrics used included
the accuracy and weighted F1 scores. Our analysis aims to pro-
vide a comparative overview of the performance of three-class
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readability classifiers in state-of-the-art models [11]. RQ2:
Which features contribute the most to the best-performing
classification method? The most important features were based
on the best-performing model in the three-class readability
classification for each classification method. Identifying these
key features will be the foundation for developing improved
source code readability metrics.

The remainder of this paper is organized as follows.
The background and related works in Section II reviews
the related literature, focusing on previous research in pro-
gram code readability classification, particularly multiclass
classification approaches using machine learning techniques.
The methodology in Section III outlines the methodology,
details the dataset used, classification models applied, and
evaluation framework. The results and discussion in Section
IV presents the experimental results and discussion of the
findings, including a comparative analysis of the classification
performance. The conclusion in Section V concludes the study
by summarizing key insights, highlighting contributions, and
suggesting directions for future research.

II. BACKGROUND AND RELATED WORKS

A. Code Readability Metrics

Evaluating code readability is a complex challenge be-
cause of its inherently subjective nature. Various metrics that
consider factors such as code size, entropy, and structural
properties have been proposed [6]. However, these metrics
often fail to align with developers’ perceptions of readability
improvements [15]. Fakhoury et al. [15] utilized Scalabrino’s,
Dorn’s, and combined Buse-Weimer and Posnett metrics to
classify code readability based on changes made by pro-
grammers. Their findings suggested incorporating additional
features, such as the number of incoming invocations and code
styling elements, into code readability metrics.

Furthermore, textual features such as identifiers and com-
ments have been shown to provide valuable supplementary in-
formation beyond structural characteristics [13]. Other factors,
including coding style, application domain [16], structural con-
straints, and programming paradigms (e.g., reactive program-
ming) [17] also influence readability assessments. Moreover,
further evidence is required to clarify the impact of specific
attributes, such as code size, complete-word identifiers, and
comments, on readability and understandability [18]. These
challenges underscore the need for more versatile and adaptive
readability metrics from the perspectives of various program-
ming styles and developers.

Predicting the readability of source code involves extract-
ing several features from code snippets, collectively referred
to as code readability metrics. Extensive research has been
conducted to develop readability metrics. Buse and Weimer
[4] focused on structural characteristics, whereas Dorn [7]
introduced visual and spatial (metric based) characteristics.
Scalabrino et al. [5] extended these metrics by incorporating
textual characteristics. Alawad et al. [19] enhanced Buse and
Weimer metrics using text readability metrics such as the
Automated Readability Index (ARI). Mi et al. [9] defined
readability features in terms of visual, structural, and semantic
characteristics that are represented as embedding vectors. Ad-
ditionally, Mi et al. [11] introduced a representation combining

Abstract Syntax Tree (AST) graphs with data and control flow
extracted from the source code.

Buse and Weimer defined 25 attributes to develop a read-
ability classification model, categorizing readability into two
classes: more and less readable. Posnett et al. [6] simplified
Buse and Weimer’s parameters into three attributes to con-
struct a readability weight-based model. Dorn [7] identified
approximately 59 code attributes, focusing on visual, spatial,
and linguistic aspects. Scalabrino et al. [5] defined 20 attributes
related to the textual properties and structural characteristics.
Choi et al. [20] proposed seven attributes for linear regression
modeling to derive readability weights for the source code.
Mi et al. [21] extracted character-level, token-level, and node-
level representations of the source code and applied them
within a Convolutional Neural Network (CNN). Mi et al. [9]
further advanced this approach by extracting visual codes,
tokens, segment embeddings, and character metric representa-
tions for structural modeling. Readability classification models
have been applied to two primary categories: readable and
unreadable.

B. Methods for Measuring Code Readability

Several manual and heuristic methods have been developed
to assess the readability of program codes. Although these
methods are not explicitly designed for readability measure-
ment, they provide approaches for evaluating code complexity,
maintainability, and human-scale readability indicators. Some
of these methods include syntactic-based metrics, such as
variable length, lines of code (LOC), and cyclomatic com-
plexity, which serve as potential indicators for measuring
code readability, and structure and logic-based metrics, which
evaluate code readability by analyzing the structural aspects of
the code, including loops, branching, and function separation.

Well-structured modular code is generally easier to read
and understand. Several types of metrics are commonly used
to evaluate readability. Rule-based metrics focus on adherence
to coding conventions, such as the use of descriptive variable
names, consistent formatting, and sufficient comments [22].
Tools such as Checkstyle1 and Pylint2 automatically check and
enforce these rules. Complexity metrics assess the readability
by measuring the logical complexity of a code. For example,
Halstead metrics estimate how difficult it is for a program
to understand and maintain, whereas cognitive complexity
metrics [23] account for factors such as deep nesting and
long conditional statements that may make it harder to follow.
Among the complexity metrics and code readability metrics,
Tashtoush and Darwish [24] asserted that there is an influence
between these two metrics. This empirical study explored the
bidirectional relationship between code readability and soft-
ware complexity by using 12,180 Java files from the Eclipse
project. By applying machine learning models, particularly
decision trees, to 25 readability features (based on Buse and
Weimer) and seven complexity metrics, the study achieved
over 90% accuracy in predicting how readability influences
complexity and vice versa. Key contributing factors include
formatting-related features (e.g., indentation and character
usage) and complexity measures such as Halstead volume.

1https://checkstyle.sourceforge.io/
2https://www.pylint.org/
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This study also challenges prior assumptions by showing
that readability features are influenced by code size, thereby
offering new insights into improving software quality and
maintainability.

Finally, human-scale indicators rely on developers direct
assessments of code readability. These evaluations are often
used as training data for machine learning models that aim
to automatically predict code readability [4], [13]. These ap-
proaches seek to align readability metrics with how developers
perceive the code quality. To capture what programmers do to
make source code more readable, Roy et al. [25] analyzed
the history of programmer code changes. This study intro-
duces a machine learning model that detects incremental read-
ability improvements in source code aligned with developer
perceptions. Trained on 2,781 manually validated Java file
changes, the model leveraged static code metrics before and
after commits and achieved 79.2% precision and 67% recall.
Key insights reveal that readability improvements typically
involve modifications to existing lines, whereas non-readability
changes add new lines. This study lays the groundwork for
integrating readability scoring into code review tools to support
more efficient evaluation of code changes. Future research
could explore how large language models influence code
readability [26] as well as the development of more advanced
readability models that adapt to the continual evolution of
software development practices.

III. METHODOLOGY

Fourteen machine learning algorithms for multiclass clas-
sification of code readability were evaluated using a dataset
of 200 Java code snippets from Scalabrino et al. [13], which
were categorized into three readability classes by Mi, et al.
[11]. Mi et al. used a systematic approach to establish three
categories of code readability in their study. This study used a
dataset originally compiled by Scalabrino et al. [13] consisting
of 200 code fragments extracted from four open-source Java
projects: jUnit, jHibernate, jFreeChart, and ArgoUML. These
fragments ranged from 10 to 50 lines of code and were free
of syntax errors, ensuring that the readability evaluation was
unaffected by syntax or compilation issues.

The dataset was then divided into three readability groups
based on Scalabrino’s readability score: easy to read (top
25%), difficult to read (bottom 25%), and neutral (middle
50%). This classification follows a 1:2:1 ratio, allowing for
meaningful comparison with Scalabrino’s two-class readability
distribution. Additionally, this distribution more accurately
reflects real-world scenarios, in which neutral readability is
more common than extreme readability or legibility.

From these 200 Java code snippets, a set of readability
metric values were derived based on the readability metrics
proposed by Scalabrino, Buse-Weimer, and Posnett. These
metric values were computed using the Readability Assessment
Tool3 provided by Scalabrino et al. [5]. Scalabrino’s tool gen-
erates 110 attributes representing values from the Scalabrino,
Buse-Weimer, Posnett, and Dorn models. Upon analysis, it
was found that 12 of Dorn’s 59 attributes had over 41.5%
missing values across 200 data points. Consequently, Dorn’s
attributes and readability score attributes from the Scalabrino,

3https://dibt.unimol.it/report/readability/files/readability.zip

TABLE I. METRICS WITH > 10% OUTLIERS AMONG 200 SAMPLES

No. Attribute % outlier data
1 Scalabrino.expression complexity maximum 41.0%
2 Scalabrino.number of senses maximum 27.5%
3 BW.loops average 23.0%
4 BW.comments average 14.5%
5 Scalabrino.abstractness words maximum 14.5%
6 BW.operators average 13.0%
7 Scalabrino.commented words average 11.0%

Buse-Weimer, and Posnett models were excluded, leaving
48 attributes for the classification experiment. The combined
dataset with the 48 selected attributes was labeled as Dall.

Based on the definition of Dall metric features, this study
created another dataset containing the definition of a series
of feature metrics based on the scalabrino model (Dscal uses
20 feature metrics) and Buse-Weimer model (Dbw uses 25
feature metrics). Both feature metric definitions are subsets of
the entire metric feature set. The purpose of this is to measure
how well the Scalabrino and Buse–Weimer models perform in
multiclass code readability classification.

Regarding the characteristics of the Dall dataset with
200 data points and 48 attributes when analyzed using the
Interquartile Range (IQR), seven metric attributes (14.58%)
can be said to have outlier data of more than 10%. Table I
displays the seven metric attributes whose data had more than
10% detection as outliers. One approach that can be applied to
handle outlier data is data scaling [27]. Therefore, this study
applies a configuration with three scaling techniques: Standard,
Minmax, and Robust.

Fig. 1 illustrates the workflow of the classification experi-
ment. The process begins with the formation of a dataset using
Scalabrino et al.’s Readability Assessment Tool, applied to a
corpus of Java code snippets categorized into three readability
classes by Mi et al. [11]. This recalculation is necessary to
ensure that the attribute values are derived directly from the
code snippet dataset, which consists of function declarations
written in Java. The tool generates attribute values based on
the readability metrics proposed by Scalabrino, Buse, Weimer,
and Posnett. The generated values were then converted into
a CSV file. The final dataset consists of attribute values and
three corresponding readability class labels.

Based on Dall, this study calculates the correlation between
each attribute, including the target classification label. This
feature correlation analysis step was performed to identify
highly correlated metric features. Attribute analysis of the
combined dataset Dall was performed by examining the corre-
lation value between its attributes. Correlation-based attribute
selection uses the minimum correlation value as the constraint
(≥ 0.4 or ≤ -0.4) as a strong correlation between any two
attributes. This constraint is based on a study by Diesing [28],
which recommends a minimum correlation of 0.4 0.5. The
selected attributes with error values (≥ 0.4 or ≤ -0.4) were
not unique, but duplicate attributes existed. Of the duplicated
attributes selected with the highest correlation value, so in the
end, we obtained as many as 35 attributes. This resulted in an
additional dataset Dcorr (35 attributes), which contains only
strongly correlated features.

Each dataset, that is, Dall, Dscal, Dbw, and Dcorr, was pro-
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cessed using different data pre-processing scaling techniques,
including MinMax, Standard, Robust, and without scaling
(none). For each dataset with or without scaling techniques,
Randomized Search [29] was employed to optimize the hyper-
parameters of each of the 14 classification algorithms. Cross-
validation was performed using five-fold cross-validation for
each validation and testing phase.

For each dataset, before entering the process of build-
ing a classification model using the 14 classification al-
gorithms, training and testing sets were formed. From the
200 sets of metrics, we divided the dataset into 80% (160
data points) for training and 20% (40 data points) for test-
ing. We split the datasets for training and testing using the
train_test_split() function with the stratification pa-
rameter to maintain the proportion of classes in the training
and testing sets.

The 14 classification algorithms can be broadly categorized
based on their underlying approach. Tree-based models, in-
cluding Random Forest (RF) [30] and Decision Tree (D3) [31]
models, are known for their ability to handle nonlinearity in
data without requiring feature scaling. Distance-based models,
such as k-Nearest Neighbors (KNN) [32] and Support Vector
Classifier (SVC) [33], rely heavily on the measurement of
feature distances, making them particularly sensitive to scaling
transformations. Probabilistic classifiers, including Gaussian
Naı̈ve Bayes with Isotonic Calibration (GNB-Isotonic), Gaus-
sian Naı̈ve Bayes with Sigmoid Calibration (GNB-Sigmoid),
and Gaussian Naı̈ve Bayes (NB) [34], [35] function under
the assumption of feature independence and may benefit from
certain types of pre-processing. Linear models, such as Logis-
tic Regression (LogReg) [36], Linear Discriminant Analysis
(LDA) [37], [38], Perceptron [39], Perceptron optimization
based on Stochastic Gradient Descent (SGD) [39, p. 43-46],
and Passive-Aggressive Classifier (PA) [40], assume linear
relationships between features and classes and typically require
scaling to enhance numerical stability. Bayesian and quadratic
models, such as Quadratic Discriminant Analysis (QDA) [41].
Finally, neural network-based methods, such as Multi-Layer
Perceptron (MLP) [42], rely on gradient-based optimization,
which is highly sensitive to feature magnitudes.

The execution of the Randomized Search for each al-
gorithm was repeated 30 times. Using 30 iterations in a
Randomized Search provides a pragmatic balance between
computational efficiency, a thorough exploration of the hyper-
parameter space, and model robustness. This implementation
ensured that the best-performing model was selected without
incurring excessive computational costs, thus making it a well-
justified approach for this classification experiment.

The flowchart (in Fig. 2) illustrates a structured approach
for training and selecting an optimal classification model
using Randomized Search. The process began by splitting
the dataset into 80% training and 20% testing to ensure
that unbiased evaluation. Both subsets underwent a scaling
transformation to standardize the feature magnitudes, thereby
enhancing the model performance. A diverse set of classifica-
tion algorithms—including SVM, Logistic Regression, k-NN,
LDA, QDA, Gaussian Naı̈ve Bayes, Decision Trees, MLP,
Random Forest, Perceptron, SGD, and Passive Aggressive
classifiers— was prepared for evaluation, employing 5-fold
cross-validation to ensure robust assessment. An iterative loop
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using Readability Metric 
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end
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Fig. 1. The process flow for testing the 3 readability class classification.

executes Randomized Search for each classifier to optimize the
hyperparameters efficiently.

Following training, cross-validation scores were measured
to assess the generalization ability of the model and detect
potential overfitting. Overfitting detection was performed to
determine whether the best model generated by the algorithms
was overfitted. This study implemented a quantitative method
to assess whether a trained machine learning model overfits by
comparing its performance on cross-validation and test data.
Eq. (1) shows the conditions for detecting overfitting by using
the quantitative method applied in this study.

|mean cv score − mean test score|
mean cv score

> 0.10 (1)

The if condition in the given overfitting condition estab-
lishes a threshold-based criterion for detecting overfitting in
the trained classification model. It evaluates the relative differ-
ence between the mean cross-validation score (mean cv score)
and test score (test score). Specifically, the condition checks
whether the absolute difference between these scores, normal-
ized by the mean cross-validation score, exceeds 10% (0.10).
If this condition holds, the model is considered overfitting,
indicating that it performs significantly better on the training
data during cross-validation than on the independent test set,
suggesting poor generalization. Conversely, if the relative
difference remains within the 10% threshold, the model is
deemed not to overfit, implying a balanced performance be-
tween the training and testing phases. This approach provides
a quantitative measure for assessing the generalization ability
of a model beyond the training dataset.

The best-performing model, determined based on the cross-
validation performance, was then tested on the scaled testing
dataset for the final validation. The selected model represents
the most effective classification approach for a given dataset,
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Fig. 2. The process flow for classification process with parameter
optimization.

ensuring optimized accuracy and reliability in classification
tasks. This workflow establishes a reproducible methodology
for systematic machine learning model selection and evalua-
tion.

IV. RESULT AND DISCUSSION

A. Classification Performance Results

After performing 30 iterations of the classification process
for each of the 14 classification algorithms using Randomized
Search across four datasets (Dall, Dscal, Dbw, and Dcorr) with
four different scaling configurations (without scaling, standard,
min-max, and robust), the average accuracy and weighted F1-
score were computed. An analysis was conducted to determine
whether the classification model exhibited overfitting by evalu-
ating the difference between the average cross-validation score
and the test accuracy for each iteration.

In this study, the best average accuracy was obtained when
the overfitting ratio did not exceed 6.67% (i.e., no more
than two overfitting occurrences out of 30 iterations). For
instance, in the case of the GNB-Isolate method, the best
average accuracy was chosen as 0.53 with an overfitting ratio
of 0% when using MinMax Scaling, rather than an average
accuracy of 0.6 with an overfitting ratio of 100% when using
Standard Scaling. Table II presents the results of the selection

of the highest average accuracy while ensuring compliance
with the overfitting threshold. Fig. 3 presents the optimal
average accuracy of 14 classification algorithms under different
data-scaling techniques: MinMax, Standard, Robust, and no
scaling (none). The performance of each method is depicted
using bar plots, in which the highest accuracy values for each
classifier are highlighted numerically above the respective bars.

The exploration of 14 classification algorithms optimized
using a Randomized Search revealed that the dataset Dcorr

serves as the most optimal alternative for multiclass code read-
ability classification. The Dcorr dataset comprises a selected
set of combined metric features derived from the correlation
analysis among the Scalabrino, BW, and Posnett metric groups.
Based on the classification results, it can be inferred that the
48 combined metrics could be effectively represented by 35
attributes (approximately 73%).

By analyzing the best average accuracy across all classi-
fication algorithms, the dataset distribution based on scaling
configurations indicated that Dcorr contributed to 42.86%
(six algorithms) of the best accuracy results among the 14
classification algorithms, followed by Dbw at 35.71%, Dall

at 14.29%, and Dscal at 7.14%. However, when factoring
in the overfitting constraint, where only one to two occur-
rences of overfitting are acceptable within 30 iterations, certain
algorithms, including MLP, Perceptron, D3, SGD, and PA,
cannot be considered optimal for multiclass classification tasks.
These algorithms exhibit an overfitting rate exceeding 10%
across all scaling configurations, making them less reliable for
generalization.

After eliminating these five suboptimal algorithms, the
dominance of the Dcorr dataset in representing the code
readability metrics for multiclass classification became even
more pronounced, accounting for 35.71% (five algorithms)
of the best accuracy results among the remaining classifica-
tion algorithms. The classifiers that achieve the most opti-
mal performance using the Dcorr dataset are Random For-
est (RF), Support Vector Classifier (SVC), K-Nearest Neigh-
bors (KNN), Gaussian Naı̈ve Bayes with Isotonic Calibration
(GNB-Isotonic), and Quadratic Discriminant Analysis (QDA).

Dataset Dcorr demonstrates that the selection of measure-
ment metrics based on correlated yet relevant attributes can
be leveraged optimally using tree- and distance-based classi-
fication algorithms. The performance of the Random Forest
algorithm (a tree-based model) is particularly effective when
applied to datasets in which features exhibit strong correlations
with one or more other features. These findings highlight the
necessity of considering relevant correlations, whether positive
or negative, between readability metrics when constructing
a comprehensive set of code-readability metrics. Similarly,
the characteristics of distance-based classification algorithms
include Support Vector Classification (SVC) (although not en-
tirely distance-based) and k-nearest neighbors (KNN) (which
are fully distance-based), allow them to effectively utilize the
Dcorr dataset.

The average classification accuracy of RF, SVC, and kNN
significantly benefits from the application of dataset scaling
on Dcorr, particularly with MinMax and Robust scaling.
This finding also highlights that the application of scaling
techniques can help mitigate the risk of overfitting during
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TABLE II. BEST AVERAGE ACCURACY IN MULTICLASS CLASSIFICATION OF CODE READABILITY

Methods Minmax Standard Robust None Best
Acc % Over Data Acc % Over Data Acc % Over Data Acc % Over Data Acc Data

RF 0.611 3.33% Dcorr 0.607 6.67% Dcorr 0.601 3.33% Dcorr 0.609 3.33% Dcorr 0.611 Dcorr

SVC 0.590 0% Dcorr 0.528 10% Dall 0.565 0% Dcorr 0.550 0% Dall 0.590 Dcorr

KNN 0.553 43.33% Dall 0.540 53% Dall 0.572 0% Dcorr 0.498 56.67% Dscal 0.572 Dcorr

GNB-Isotonic 0.570 0% Dcorr 0.530 100% Dscal 0.550 0% Dcorr 0.550 0% Dcorr 0.570 Dcorr

QDA 0.500 0% Dscal 0.570 0% Dscal 0.550 0% Dcorr 0.570 0% Dcorr 0.570 Dcorr

LogReg 0.552 46.67% Dbw 0.536 20% Dbw 0.550 100% Dbw 0.554 6.67% Dbw 0.554 Dbw

MLP 0.536 33.33% Dbw 0.532 40% Dall 0.548 10% Dall 0.528 73.33% Dbw 0.548 Dall

Perceptron 0.531 56.67% Dbw 0.492 26.67% Dbw 0.541 60% Dbw 0.506 20% Dscal 0.541 Dbw

D3 0.531 16.67% Dbw 0.524 20% Dbw 0.525 33.33% Dbw 0.517 6.67% Dbw 0.531 Dbw

GNB-Sigmoid 0.530 0% Dscal 0.500 100% Dall 0.470 0% Dcorr 0.500 0% Dcorr 0.530 Dscal

LDA 0.530 0% Dbw 0.530 0% Dbw 0.530 0% Dbw 0.530 0% Dbw 0.530 Dbw

SGD 0.521 20% Dbw 0.525 33.33% Dbw 0.520 46.67% Dbw 0.474 33.33% Dbw 0.525 Dbw

PA 0.493 30% Dbw 0.506 43.33% Dcorr 0.492 23.33% Dall 0.447 30% Dscal 0.506 Dcorr

NB 0.420 0% Dcorr 0.400 0% Dcorr 0.450 0% Dall 0.420 0% Dcorr 0.450 Dall

Fig. 3. Best average accuracy results for multiclass code readability classification (k-fold = 5).

multiclass classification model development. However, not all
multiclass classification algorithms perform optimally even
when utilizing Dcorr with scaling. In this study, the Passive-
Aggressive (PA) algorithm exemplifies this limitation. Because
the PA is inherently designed for binary classification, its
performance in multiclass classification is suboptimal. This is
evident from the fact that 43.3% of the classification models
generated over 30 iterations using the PA exhibited overfitting.

In addition to dataset Dcorr, the use of dataset Dbw, which
consists of metric features defined by Buse and Weimer [4],
does not yield an optimal performance in multiclass code read-
ability classification. The highest average accuracy achieved
was 55.4% using the Logistic Regression algorithm without
data scaling and 53% using the Linear Discriminant Analysis
(LDA) algorithm. By aligning the average accuracy results
with the overfitting percentage from 30 iterations of model
training, both the Logistic Regression and LDA demonstrated
the ability to produce multiclass classification models with
an acceptable level of overfitting. These findings suggest that
the Dbw dataset is more suitable for classification models
in which the decision boundary formulation is based on a
linear function. Conversely, the Perceptron, Decision Tree

(D3), and Stochastic Gradient Descent (SGD) algorithms failed
to achieve optimal performance, as this exploration indicates
that all three algorithms exhibit an overfitting rate exceeding
6.67%.

Dataset Dall contains the largest number of metric features,
as it integrates the metrics proposed by Scalabrino, Buse, and
Weimer (BW) and Posnett. Among the evaluated multiclass
classification algorithms, multilayer perceptron (MLP) and
Gaussian Naı̈ve Bayes (NB) demonstrated the most optimal
utilization of this dataset. The optimization of the average
accuracy of these algorithms is primarily influenced by the
application of Robust scaling to Dall. However, the average
accuracy of MLP did not fully satisfy the overfitting threshold
of less than 6.67% because three iterations still exhibited over-
fitting. Conversely, the NB algorithm achieved an accuracy of
0.45 on Dall, making it the least effective among the evaluated
algorithms. The fourth dataset, Dscal, comprised 20 readability
metrics derived from the model proposed by Scalabrino et al.
[5]. The only classification algorithm that effectively utilizes
this dataset is the Gaussian Naı̈ve Bayes with a sigmoid
activation function (GNB-sigmoid), particularly when MinMax
scaling is applied. The results from 30 classification trials using
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Fig. 4. Heatmap of p-Values for Dcorr with minmax scaling.

GNB-Sigmoid showed no signs of overfitting, regardless of
whether MinMax, Robust, or scaling was applied.

The average accuracy results obtained by utilizing the
dataset with various scaling configurations, as presented in Ta-
ble II, highlight the significance of data scaling in influencing
a dataset. Scaling serves as a crucial pre-processing step before
building a multiclass classification model for code readability.
However, the findings of this study indicate that the impact of
scaling is not consistently definitive in yielding superior aver-
age accuracy. The effectiveness of scaling techniques depends
on the classification model employed. Specifically, MinMax
scaling was optimally utilized by the RF, SVC, GNB-isotonic,
GNB-sigmoid, and LDA algorithms. Meanwhile, Standard
scaling enhances the performance of QDA without causing
overfitting. Although Robust scaling can be beneficial, it can
lead to overfitting in some cases. The KNN and NB algorithms
can leverage Robust scaling to optimize their performance
without overfitting. These findings underscore the importance
of selecting an appropriate scaling strategy that aligns with the
fundamental assumptions of classifiers and their sensitivity to
the distribution of metric-based dataset features, particularly
for code readability in multiclass classification.

As part of the validation stage, in addition to applying
rule-based overfitting checking and 5-fold cross validation, this
study also conducted Statistical Significance Testing (Shapiro-
Wilk test, paired t-test, or Wilcoxon singed-rank test) to
validate the superiority of the selected models. Fig. 4 shows
the p-value heatmap of the significance test results between
the algorithms in the best configuration, namely Dcorr with
MinMax scaling. Based on the p-value heatmap, it can be
stated that Random Forest is consistently superior to the other
algorithms because it shows a truly significant difference, not
by chance.

Based on the accuracy of the results, several key findings
answered the first research question (RQ1). Random Forest
(RF) is the best-performing classification method for multiclass
code readability classification, as it achieves the highest accu-
racy across most datasets and remains stable across different
scaling techniques. SVC also performs well but is more
sensitive to feature scaling, with MinMax scaling being the

most beneficial. These findings suggest that ensemble methods
such as Random Forest are more effective for code readability
multiclass classification, particularly when feature selection is
applied (as in Dcorr).

Overall, dataset analysis underscores the importance of
choosing the correct data pre-processing strategy based on the
nature of the classifier. Feature correlation (Dcorr) appears
to enhance the accuracy of tree- and distance-based models,
whereas balanced weighting (Dbw) benefits linear models.
Complete feature sets (Dall) are favorable for neural networks
and probabilistic models, whereas scaling transformations
(Dscal) offer a limited but occasionally beneficial effect on
certain classifiers.

B. Attribute Role Analysis Based on Importance Score

This section outlines the process of analyzing the contri-
bution of attributes (features) from the Dcorr dataset, which
are critical for classifying source code readability into three
classes. The analysis was conducted using the correlated
dataset Dcorr with MinMax scaling and the Random Forest
classification model because this configuration demonstrated
the highest accuracy in the conducted trials. The Dcorr dataset
comprises 35 attributes derived from the combined features
proposed by Scalabrino, Buse-Weimer (BW), and Posnett.

Attribute contribution analysis was performed by com-
puting the average importance_mean for each attribute
exclusively in the Dcorr dataset. The classification model
that achieved the highest performance, which employed
Dcorr with MinMax scaling, was evaluated using the test
data generated during the classification assessment pro-
cess. The attribute importance weights were computed us-
ing the permutation_importance function from the
sklearn.inspection. Attribute selection is based on
the average importance score (mean threshold) and standard
deviation (std threshold) of the highest importance_mean
values, with selection criteria determined by predefined thresh-
olds: a minimum average error threshold of [0.005, 0.01, and
0.02] and a maximum standard deviation error threshold of
[0.015, 0.02]. The average (mean) was used to determine
the overall contribution of the features (attributes) to the
model performance based on 30 iterations. An average value
greater than zero (> 0) indicates that the attribute consistently
positively contributes to model performance. Conversely, if the
average is approximately zero (≈ 0), then the attribute is likely
to be irrelevant.

Similarly, if the average is negative (< 0), the attribute
is likely to negatively impact the model performance. In
addition to the mean threshold, the standard deviation of
the permutation_importance values was considered.
The standard deviation measures the variation (spread) in an
attribute’s importance score across the iterations. This variation
reflects the consistency of the impact of the features on the
model performance. A low standard deviation indicates that
the contribution of the feature remained stable across all 30
iterations, whereas a high standard deviation suggests that the
importance of the attribute is inconsistent, implying that its
influence may vary, at times being beneficial, unimportant, or
even detrimental.
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TABLE III. AVERAGE BEST ACCURACY OF MULTICLASS
CLASSIFICATION USING Ds1 , Ds2 , Ds3 , Ds4 , Ds5 , AND Ds6

Method Avg Accuracy Overfitting % Dataset Scaling

LDA

0.550 0.0% Ds4 MinMax
0.550 0.0% Ds4 Standard
0.550 0.0% Ds4 Robust
0.550 0.0% Ds4 None

RF 0.583 0.0% Ds6 Robust
KNN 0.590 0.0% Ds2 Robust

SVC
0.517 0.0% Ds1 MinMax
0.545 0.0% Ds3 Standard
0.579 0.0% Ds5 Standard

The next step involved constructing a dataset in which
Dcorr served as the baseline, with attributes selected based
on predefined thresholds. Attribute selection was performed
according to threshold conditions for the mean and standard
deviation, resulting in six distinct attribute groups. For each
of these groups, a corresponding dataset was derived from
the source dataset Dcorr. Consequently, six new datasets were
generated, each based on different attribute selections: Ds1
(11 attributes), Ds2 (22 attributes), Ds3 (8 attributes), Ds4
(17 attributes), Ds5 (16 attributes), and Ds6 (27 attributes).

Each dataset formed through this selection process was
subsequently subjected to classification trials along with sim-
ilar trials conducted for the Dall, Dscal, Dbw, and Dcorr

datasets. The primary objective of these tests was to identify
the attributes from Dcorr that contributed the most signifi-
cantly to the best classification accuracy, thereby providing
a foundation for developing alternative attributes or metrics
for program code readability models. In addition, this analysis
aimed to evaluate whether the six datasets resulting from
attribute selection produced better classification performance
than the Dall, Dscal, Dbw, and Dcorr models.

The best-performing models were selected based on an
overfitting threshold ≤ 6.67% across 30 iterations for each
dataset. The selection results, as shown in Table III, indicate
that the K-Nearest Neighbors (KNN) algorithm achieves the
best performance when applied to the Ds2 dataset compared
to other datasets. KNN achieved the highest average accuracy
(59%), followed by Random Forest (RF) at 58.3%, Support
Vector Classifier (SVC) at 57.9%, and Linear Discriminant
Analysis (LDA) at 55%. The Ds2 dataset (containing 22
metric attributes) is better suited for instance-based learning
algorithms, such as KNN, whereas Ds6 (27 attributes) is
more effective for decision tree-based algorithms, particularly
Random Forest. However, the highest average performance
results obtained from these six newly formed datasets remained
suboptimal compared with those achieved with the original
Dcorr dataset.

The primary objective of the classification experiment
using the six datasets, Ds1, Ds2, Ds3, Ds4, Ds5, and Ds6,
was to identify which set of feature attributes (metrics) played
a significant role in classification. Based on the results of this
study, 22 feature attributes from dataset Ds2 were identified as
key metrics for measuring code readability. Table IV provides
a detailed overview of the 22 feature attributes in the program
code, including their corresponding metric categories.

By selecting 22 readability metric features from the feature
set in dataset Dcorr, this finding also addressed the second

research question (RQ2). Among the Scalabrino metrics, eight
key metrics play a significant role in multiclass code read-
ability classification. For the Buse and Weimer metrics, 12
features were identified as being important for multiclass clas-
sification. Based on Posnett’s metrics, two features were found
to contribute significantly to the code readability classification
experiment. Thus, based on the results of the multiclass code
readability classification, it can be concluded that comment
text readability, code complexity and structure, syntax and
formatting, identifier naming and token usage, and code size
and density are crucial factors in classifying Java source
code into three readability categories: unreadable, neutral, and
readable.

C. Discussion

The performance results of multiclass classification based
on 14 machine learning algorithms, although not optimal,
show that the utilization of the definition of the code read-
ability metric feature set, particularly the result of selecting
features based on their correlation, can still be an alternative in
multiclass classification of code readability. This study offers
a practical and interpretable alternative based on the code
readability metric features used in classification compared with
the application of deep learning. Deep learning often requires
significant computational resources and lacks transparency.
The establishment of a feature metric based on the correlation
result Dcorr that can be utilized by Random Forest to produce
consistent performance can still be used to explain the model
through the importance of the code readability feature. This
makes machine learning based on metric features more suitable
for applications that require interpretation and positions the
machine learning framework as a complementary method to
more complex deep learning approaches.

The different average accuracy performance results among
the dataset definitions Dall, Dscal, Dbw, and Dcorr can be
explained by variations in feature composition and selection
strategies. Dall integrates features from Scalabrino, Buse-
Weimer, and Posnett, offering broader coverage but potential
redundancy. In contrast, Dscal and Dbw focused on defining
a specific set of metric features according to their respec-
tive models. By contrast, Dcorr, which is formed from a
correlation-based selection of Dall, can be said to be a metric
feature selection that minimizes redundancy and retains only
highly relevant features.

These differences affect the performance of the 14 machine
learning classification algorithms. For example, tree-based
models, such as Random Forest with Dcorr, can effectively
handle correlated features. Distance-based models, such as
SVC and KNN, also perform well on Dcorr when proper
scaling (e.g., MinMax, Robust) is applied because distance-
based model algorithms are sensitive to feature magnitude
and distribution. Linear models such as Logistic Regression
and LDA showed better performance against Dbw utilization,
which seems to be more in line with the linear separability
assumption. Probabilistic models, such as the calibrated Gaus-
sian Naı̈ve Bayes, perform reasonably well with Dscal and
Dcorr when scaling is used to reduce the risk of overfitting.

To optimize the readability interpretation based on the
Scalabrino, Buse-Weimer, and Posnett readability metric fea-
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TABLE IV. 22 SELECTED “CODE READABILITY” METRICS

Metric Category Source
Scalabrino.commented words average

Comment and Text-Based Readability

Scalabrino

Scalabrino.synonym commented words average
Scalabrino.synonym commented words maximum
Scalabrino.comments readability
Scalabrino.semantic text coherence standard
Scalabrino.expression complexity average

Code Complexity and StructureScalabrino.method chains average
Scalabrino.method chains maximum
BW.commas average

Syntax and Formatting

Buse & Weimer

BW.indentation average
BW.periods average
BW.spaces average
BW.indentation maximum
BW.comments average

Identifiers and Token-Based Complexity

BW.identifiers length average
BW.number of identifiers average
BW.number of identifiers maximum
BW.numbers maximum
BW.char maximum
BW.words maximum
Posnett.volume Code Size and Information Theory PosnettPosnett.lines

tures, in this study, feature selection based on the permuta-
tion importance method was performed on the best Random
Forest model applied to Dcorr dataset with MinMax scal-
ing. The results of the selection form six combinations of
metric features, and then choose which combination is the
best based on multiclass classification tests on each of the
six combinations of features. Of the 35 features available
from Dcorr, 22 metric features were selected because they
provided consistent positive contributions and low variance in
the average accuracy of the multiclass classification model.
These features included comment readability, code complexity,
syntax, identifier naming, and information density.

V. CONCLUSION

A multiclass classification study for machine learning-
based code readability was conducted by utilizing metric
feature definitions from the Scalabrino, Buse and Weimer, and
Posnett models. Utilization of soft AutoML hyperparameter
tuning, namely Randomized Search, produced an optimal
multiclass classification model based on 200 Java codes from
Scalabrino et al. The set with 35 metric features resulting from
correlation-based future selection (forming the Dcorr dataset)
consistently exhibited the highest average accuracy and a
weighted F1 score. The Random Forest algorithm provides the
highest average accuracy among the algorithms with or without
utilizing MinMax, Standard, and Robust scaling transformation
techniques on the data of each readability label with minimal
overfitting conditions. The validity test based on Statistical Sig-
nificance Testing of the classification performance results also
shows that the RF algorithm is consistently and significantly
superior to the other classification algorithms.

In this study, the most important feature metric was ex-
tracted using a permutation importance function based on the
results of the previous best classification model. From the
resulting six combinations, 22 out of 35 Dcorr metric features
play an important role in the multiclass classification of code
readability. Metric features include comment readability, code
complexity, syntax, naming, and density. Overall, the average
multiclass classification accuracy results generated in this
study could not surpass the 72.5% accuracy of the GNN model

proposed by Mi et al. Thus, in future research, it will be
necessary to refine the definition of code readability metric
features to better represent the code readability metric. In
addition, the utilization of hybrid machine learning methods
for multiclass classification of code readability can be explored
to obtain better performance than the application of machine
learning algorithms.
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