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Abstract—Data-driven design models support various types
of mobile application design, such as design search, promoting
a better understanding of best practices and trends. Designing
the well User Interface (UI) makes the application practical
and easy to use and contributes significantly to the application’s
success. Therefore, searching for UI design examples helps gain
inspiration and compare design alternatives. However, searching
for relevant design examples from large-scale UI datasets is
challenging and not easily stricken. The current search ap-
proaches rely on various input types, and most of them have
limitations that affect their accuracy and performance. This
research proposed a model that provides a fine-grained search
for relevant UI design examples based on UI screen input. The
proposed model will contain two phases. Object detection was
implemented using the deep learning model ‘YOLOv8’, achieving
95% precision and 97% average precision. Image retrieval,
leveraging the cosine similarity technique to retrieve the top 3
images similar to the input. These results highlight the system’s
effectiveness in accurately detecting and retrieving relevant UI
elements, providing a valuable tool for UI designers.

Keywords—Data-driven design; YOLOv8; design search; deep
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I. INTRODUCTION

Applications and mobile devices play a crucial role in the
daily lives of individuals worldwide, facilitating a wide range
of tasks, from simple calculations to more complex operations.
Developers adhere to established guidelines and standards
before releasing applications on digital marketplaces such as
Apple’s App Store and Google Play [1]. The development
begins with defining requirements and designing the user
interface, followed by creating mockups of the graphical user
interface (GUI). UI/UX designers iteratively refine these mock-
ups until a final design is achieved, which is then translated
into a functional application. After undergoing rigorous testing,
the application is released to users, emphasizing the increasing
focus on mobile application quality [1].

The user interface (UI) is a fundamental element in de-
termining the success of a mobile application, as it provides
an interactive environment for users to engage with the soft-
ware. The quality of UI design significantly influences user
experience, acceptance, and overall app success [2]. In the
highly competitive mobile application market, the UI design
and app icons play a key role in differentiating an applica-
tion from competitors, attracting downloads, minimizing user
complaints, and enhancing retention rates. A well-designed UI
balances visual appeal, efficiency, and ease of use, considering
factors such as color harmony, layout organization, and overall
design style [3].

Visual composition in UI design is a fundamental aspect of
software development. The design process typically starts with

wireframing based on user requirements and then structuring
visual elements to ensure optimal interaction between the
user and the application. Designers iteratively refine these
wireframes by referencing existing online examples before
applying high-fidelity visual effects, such as colors and ty-
pography, and incorporating relevant text and imagery [4].

Data-driven design models contribute to the development
of mobile applications by predicting design performance and
identifying the best practices and trends [5]. These models
support various aspects of mobile application design, including
interaction modeling, design search, and UI code generation.
Recent advancements in machine learning and data analytics
have significantly transformed UI design, allowing designers
to explore extensive collections of UI designs based on specific
criteria such as layout, color schemes, and functionality [5].
As technology advances, these tools will continue empowering
designers to create innovative and user-centered UIs.

Leading mobile application marketplaces offer over six
million applications, with projected revenue exceeding $935
billion by 2024—nearly twice the revenue generated in 2020
[6], [7]. The graphical user interface (GUI) is a core component
of application success, serving as the interaction point between
users and the application’s functionalities. Well-designed GUIs
go beyond aesthetics, improving usability and enhancing user
satisfaction. With increasing competition in app marketplaces,
creating engaging and intuitive interfaces has become a top
priority for developers. However, designing high-quality GUIs
remains challenging and labor-intensive, requiring extensive
testing and iteration to ensure usability [8].

For novice and experienced designers, navigating the de-
sign space efficiently remains difficult. Seeking design exam-
ples has become essential for gaining inspiration and under-
standing UI trends for specific application functions. However,
locating relevant examples within large-scale UI datasets is
challenging due to the time-consuming nature of random
searches, which may not provide accurate insights into modern
UI trends, including layout options, visual components, and
effects. An effective solution involves developing approaches
that retrieve similar UI designs from large datasets using
deep learning technologies. These methods transform GUI
development by enabling efficient retrieval and comparison of
visual components across extensive datasets [5].

Various studies have attempted to address the issue of
UI design retrieval using different input methods such as
keywords, sketches, wireframes, and UI images. Most ex-
isting studies rely on keyword-based input and often yield
irrelevant examples due to mismatched user requirements. A
more effective approach is needed to provide designers with
practical examples that align with their needs. Research has
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explored input-based image retrieval that considers UI content,
hierarchical structure, and visual layout. However, current
methods face challenges in performance, generalization, and
applicability to diverse UI designs, affecting their accuracy
and usability. For example, Swire [9] has a limitation in the
approach performance because it retrieves irrelevant UI images
that do not consider the UI content. The approach proposed
by Deka et al. [6] retrieves similar results based on text and
image content only.

In contrast, the approach of Liu et al. [10] limits the
generalization and precludes the approach from working on
any new unseen images because it relies on specified UI
content. While others are limited in detecting small objects in
UIs, such as icons and checkboxes, the VINS [11] approach
restricted its application to specific UIs with a specified set of
components. Detecting objects at different scales is challeng-
ing, particularly small objects. Data augmentation techniques
are ways to solve the problem of detecting small objects on
UI screens. These techniques are utilized to ensure the dataset
does not lack sufficient training data or uneven class balance
within the datasets and are adopted as an effective solution
to improve the performance of object detection models. Many
recent studies have shown that combining the YOLOv8 model
with multiple data augmentation strategies led to significant
improvements in accuracy and other performance metrics, as
used in study [12]. Similar techniques were applied to improve
the accuracy of brain tumor detection using MRI images,
where data augmentation significantly increased brain tumor
detection accuracy, improved the model’s generalization abil-
ity, and reduced errors. This study confirms the effectiveness
of data augmentation techniques in improving the performance
of YOLOv8. This study highlights how to propose a practical
model capable of efficiently detecting the most common UI
components and retrieving UI images using deep learning and
computer vision techniques. It also investigates the integration
with custom data augmentation techniques to improve detec-
tion performance and address these limitations.

This research aims to overcome the limitations of previous
methods by introducing a fine-grained UI search system that
retrieves similar UI designs based on a given UI screen. The
proposed system leverages deep learning techniques to help
designers quickly understand design spaces, draw inspiration
from existing applications, and enhance their UI designs to
ensure application success. The primary objectives of this
study include:

• Developing a model capable of retrieving relevant
UI designs from large-scale datasets based on input
images using deep learning and computer vision tech-
niques.

• Improving accuracy in retrieving relevant UI examples
by refining the search process to better align with
designer needs.

• Evaluating the proposed model against the existing ap-
proach “VINS” to assess its effectiveness in enhancing
the UI design retrieval process.

This study contributes to developing and evaluating a
framework for fine-grained UI search. The YOLOv8 model
was chosen for this study due to its architectural and technical

improvements, which make it suitable for detecting user in-
terface elements within images. Appreciation to its improved
accuracy, faster performance, and ability to recognize objects
of various sizes compared to previous versions, it can extract
deeper and more effective features, making it the preferred
choice, as demonstrated in this study [13]. YOLOv8 efficiently
recognizes objects even in complex or diversely designed
images, making it suitable for analyzing user interfaces con-
taining multiple, closely spaced elements.

The proposed model integrates deep learning (YOLOv8)
and computer vision techniques (Cosine Similarity) to effec-
tively detect and retrieve highly similar UI designs with high
precision. This work presents the first model that integrates
these technologies within this domain, which makes it an
advantage for this work. A new dataset was also created from
the Rico dataset, incorporating preprocessing techniques and
categorization into 21 classes—a novel contribution in this
area. Data augmentation techniques were applied to ensure the
dataset does not lack sufficient training data or uneven class
balance within the datasets, resulting in 19,000 UI images.
The proposed model surpasses the baseline model by 12%
in UI image search accuracy [9]. This contribution highlights
the proposed model’s effectiveness and potential impact on
advancing UI design research.

The rest of the paper is structured as follows: the “Related
Work” in Section I examines previous studies, while the
“Materials and Methods” in Section II describes the proposed
methodology and dataset. The “Experiments” in Section III
presents the experimental setup and findings. Lastly, the “Con-
clusion and Future Work” in Section IV highlights the principal
results and suggests possible future research directions.

II. RELATED WORK

Various approaches have been proposed in UI design
retrieval, utilizing different input types to enhance search
efficiency and accuracy. Traditional keyword-based search
methods have evolved into more advanced techniques, such
as natural language queries, image-based searches, and deep
learning-driven retrieval models. Studies have compared these
methods based on usability, effectiveness, and retrieval accu-
racy, showcasing significant improvements with deep learn-
ing techniques. Cardenas et al. [5] introduced GUIGLE, a
framework for GUI search that facilitates the conceptualization
process for UI design. GUIGLE enables advanced searches
using natural language queries, incorporating UI components,
on-screen text, color schemes, and application names. The
framework consists of three main components: data collection,
quality filtering, and indexing, achieving a 68.8% retrieval
relevance rate. Chen et al. [14] proposed Gallery D.C, a large-
scale UI component gallery that leverages computer vision
techniques and reverse engineering. This system categorizes 11
UI components across 25 Android application categories and
provides search, comparison, and summarization tasks. It em-
ploys Faster R-CNN for UI element detection, demonstrating
superior design sharing and information retrieval performance.
The main limitation of using keywords is retrieving design
examples with UI content and visual layout structure different
from user requirements.

Beyond keyword-based searches, researchers have explored
image-based retrieval using wireframes, sketches, and UI
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screens as input methods, which are faster to specify and
easier to learn than keywords. Huang et al. [9] developed
Swire, a deep learning-based UI retrieval model trained on
a large-scale UI sketch dataset. Swire utilizes VGG-A sub-
networks to match UI screens with sketches, achieving a 60%
accuracy rate for retrieving relevant UIs. Chen et al. [15]
proposed a wireframe-based UI design search engine using
deep learning. This approach includes reverse engineering to
construct a large-scale UI dataset, encoding visual semantics
with a CNN-based autoencoder, and employing KNN for UI
design search. The evaluation results demonstrated superior
performance compared to existing search methods that rely on
different input types. The main drawback of these two models
is that they return user interface designs that are generally
similar to the query user interfaces, so they may miss some UI
components or return irrelevant results. To solve this problem,
examples of design that will help designers in practice must
be found. Deka et al. [6] introduced the Rico dataset, the
largest UI dataset to date, containing 72,219 UI screenshots
from 9.7K Android applications across 27 categories. The
dataset includes structural, textual, visual, and interactive UI
properties, supporting deep learning applications for design
retrieval. Rico’s autoencoder-based UI layout similarity model
demonstrated strong retrieval capabilities using text and image-
based content only, which is considered a weakness. Liu et al.
[10] extended the Rico dataset by introducing an automated
approach for generating semantic annotations, identifying UI
components’ structural and functional roles. These annotations
were applied to the 72,219 UI screens, enabling enhanced UI
retrieval through autoencoder-based similarity searches. The
model relies on a pre-defined hierarchy of UI content, so
it does not work on any new, unseen images. Bunian et al.
[11] proposed VINS, a visual search framework for retrieving
UI design examples based on wireframes or UI screens.
The framework integrates an object detection model using
SSD for UI component identification and an attention-based
autoencoder for image retrieval, achieving a mean average
precision (mAP) of 76% for component detection and up to
90% precision in retrieving similar UI designs. This model’s
shortcoming is that it only detects 11 classes of UI components
and is noticeably unable to detect small objects within the
UI. The proposed model tried to solve these shortcomings by
generalizing as much as possible to the most significant num-
ber of UI components, focusing on improving the detection of
small components by applying some augmentation techniques
and improving the model’s performance to work on any input
image.

Sun et al. [16] introduced a UI component recognition
model using CNN techniques. The approach involved pre-
processing UI images through grayscale conversion, noise
removal, segmentation, and CNN-based classification into 14
UI component types. While effective, the model struggled with
complex, user-defined UI components and misclassification of
similar elements. Nguyen et al. [17] developed REMAUI, a
reverse engineering framework for UI design analysis. The
system detects UI components and generates static applications
using computer vision, Optical Character Recognition (OCR),
and mobile-specific heuristics. The primary limitation of this
approach lies in its binary classification of UI elements,
restricting its ability to distinguish between different compo-
nent types. Moran et al. [18] proposed a machine learning-

based prototype for GUI analysis in mobile applications,
incorporating detection, classification, and assembly tasks. The
detection phase employs computer vision techniques and OCR
to identify GUI components, utilizing edge detection, dilation,
and contour bounding boxes to refine object recognition. All
of these approaches evaluate detection accuracy by a small
number of GUIs.

CNN-based classification further enhances detection accu-
racy, outperforming previous GUI analysis methods. Recent
advancements in deep learning have significantly improved
object detection, image classification, and semantic segmen-
tation for UI design retrieval. Faster R-CNN, employed in
Gallery D.C, achieved a recall of 0.65, a precision of 0.73,
and a mean average precision (mAP) of 0.69 at an Intersection
over Union (IoU) threshold of 0.6. Meanwhile, SSD, used in
VINS, demonstrated superior performance with an mAP of
76.39% and an Area Under the Curve (AUC) of 79.02% at
IoU=0.5. The trade-off between two-stage detectors like Faster
R-CNN, which yield higher accuracy but require substantial
computational power, and one-stage detectors like YOLO
and SSD, which are faster and more efficient for real-time
mobile applications, remains a critical consideration in UI
retrieval research. Since it is important to focus on performance
efficiency in addition to speed, the Yolo model was adopted
in the model proposed in this paper.

The Rico dataset, the largest in UI research with 72,000
images, requires refinement to remove duplicates caused by
user interaction traces. Previous studies have used limited
class annotations, restricting their applicability. While deep
learning techniques have improved UI retrieval based on user
preferences, challenges remain in performance, generalization,
and adaptability. To overcome these issues, a YOLO-based
model was proposed that enhances detection by re-annotating
the Rico dataset into 21 classes, making UI retrieval more
accurate and comprehensive.

III. MATERIALS AND METHODS

This section describes the methodology and architecture of
the proposed fine-grained search system, designed to retrieve
relevant UI design examples by integrating deep learning (DL)
models. Fig. 1 illustrates the general methodology used in this
system:

Fig. 1. The proposed system steps.
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A. Data Preprocessing

Data preprocessing is a crucial step in machine learning
that ensures the dataset’s quality, consistency, and usability.
Leveraging the Rico dataset as the cornerstone of the research
investigation, the researchers meticulously navigate through
these preparatory stages to ensure the data’s integrity, richness,
and relevance. This process consists of three main steps: Data
Cleaning, Data Annotation, and Data Augmentation, which
refine the dataset for optimal model training.

1) Data cleaning: Since raw datasets often contain incon-
sistencies, redundant images, and noise, a systematic filtering
process was applied to remove incomplete, irrelevant, or low-
quality data. The Rico dataset, the largest dataset in UI research
with 72,000 UI images, required refinement to eliminate du-
plicate images caused by user interaction traces. The filtering
criteria included:

• Removing images with less than two UI components.

• Eliminating empty or non-English UI screens.

• Removing duplicate UI screens to avoid bias.

Fig. 2 shows examples of deleted images that did not meet
the dataset’s quality standards.

Fig. 2. Examples of deleted photos.

2) Data annotation: To ensure accurate and granular clas-
sification, the dataset was annotated into 21 distinct UI com-
ponent classes using the Roboflow platform. These classes
include BackgroundImage, BottomNavigation, Button, Card,
Checkbox, Drawer, Edit Text, Icon, Image, Map, Modal, Multi
Tabs, Page Indicator, Progress Bar, Radio Button, Seek Bar,
Spinner, Switch, Text, Tool Bar, and Upper Task Bar. Each
category was assigned a specific color to facilitate visual
identification and improve model interpretability.

3) Data augmentation: Multiple augmentation techniques
were applied to address class imbalance and enhance dataset
diversity, leveraging the Roboflow platform. These included:

• Rotation

• Saturation adjustment

• Brightness modification

• Exposure correction

• Noise addition

This augmentation process tripled the number of instances
in underrepresented classes, enhancing the trained model’s
robustness and generalization capability.

B. Model Architecture

The main objective of this research is to build a fine-grained
search model that retrieves similar UI designs depending on
a given UI screen that fits the designer query and enhances
the detection performance, especially for small objects such
as icons, checkboxes, and others. Fig. 3 illustrates the archi-
tecture of the model. The proposed fine-grained search model
consists of five main phases:

Fig. 3. Model architecture.

1) Object detection: Identifies UI components and their
locations using the YOLOv8 [19] model. The YOLOv8 is
one of the most advanced deep learning-based object detection
models in current use, known for its high accuracy and rapid
processing capabilities. The model uses convolutional layers
to detect fine details like edges, shapes, and textures, dividing
images into regions to identify and classify objects, such as
vehicles, pedestrians, and animals, using bounding boxes and
trained datasets [20]. The model processes images through the
following steps:

• Resizing images to 640x640 pixels for input consis-
tency.

• Normalizing pixel values to [0,1] range for stable
neural network processing.

• Applying convolutional layers to extract shapes, edges,
and textures.

• Generating bounding boxes with confidence scores to
classify detected UI elements.

This methodology enhances model precision and detection
speed, making it suitable for real-time UI retrieval applications.

2) Feature extraction: In computer vision, retrieving sim-
ilar images based on extracted features is a powerful tool that
enables applications ranging from automated tagging in media
libraries to more complex uses in visual search engines and
recommender systems. Extracts UI screen structure features
and retrieves similar designs using cosine similarity. After de-
tecting UI components, the YOLOv8 model generates feature
vectors representing the spatial structure of each UI screen.
Lower layers focus on basic elements, while deeper layers
summarize complex structures, condensing these details into
a global feature vector representing each image’s content [21]
[22]. These vectors encode:
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• Bounding box coordinates (x, y, width, height).

• Class probabilities and confidence scores.

This feature vector acts as a numerical signature that
reduces the complexity of images, allowing for more efficient
and computationally manageable comparisons [23]. A global
feature vector is derived by calculating the mean of all bound-
ing boxes, creating a compact yet descriptive representation of
the UI screen.

3) Feature dataset construction: Extracted feature vectors
are stored in a structured database for efficient retrieval.
This database transforms raw images into comparable vectors,
streamlining retrieval without requiring direct pixel compar-
isons [24]. The indexing process ensures:

• Fast similarity comparisons across large UI datasets.

• Optimized storage using Python’s Pickle serialization
to avoid redundant computations.

This feature dataset enables the system to retrieve visually
similar UI designs efficiently, supporting large-scale searches.

4) Similarity-based image retrieval: The model employs
cosine similarity to retrieve images most similar to a query UI
screen. This metric, which measures the cosine of the angle
between two vectors, is advantageous as it focuses on the
orientation of vectors rather than their magnitudes, making it
suitable for high-dimensional data like feature vectors [25].
The similarity between two feature vectors fi and fq is
calculated using the cosine similarity formula:

cosinesimilarity(fi, fq) =
fi · fq

∥ fi ∥∥ fq ∥
(1)

Where fi ·fq is the dot product, and ∥fi∥∥fq∥ is the product
of their magnitudes. Once similarity scores are computed,
the system ranks images based on their cosine similarity
scores, retrieving the top-k most similar UI designs [26]. This
approach enhances retrieval accuracy and efficiency.

5) Highlighting key regions in retrieved images: To im-
prove interpretability, retrieved UI images are highlighted
with bounding boxes indicating significant regions the model
detects. This visual emphasis helps users understand which UI
elements contributed to the match.

• Bounding boxes are overlaid in distinct colors to
enhance visibility.

• Solid-colored highlights (e.g., green rectangles) focus
attention on key UI elements.

This method improves user experience and decision-
making in UI retrieval applications.

C. Dataset

The Rico dataset is a resource for mobile app design,
containing design data from over 9,772 Android apps across
27 categories [6]. It includes over 72,000 unique UI screens,
documenting interactive, textual, structural, and visual design
elements. The dataset provides user interaction traces, app
metadata from Google Play (category, ratings, downloads), and

detailed UI components such as buttons, cards, text fields, and
icons. It also includes XML annotation files, but for YOLOv8,
these need to be converted into TXT files representing bound-
ing boxes with class labels and coordinates. The dataset is
cleaned and preprocessed, with 19,727 images classified into
21 categories, averaging 17 annotations per image.

IV. EXPERIMENTS AND RESULTS

Python was used as the primary programming language
for the model’s experiments due to its extensive support for
machine learning and data science libraries. Python’s flexibility
and wide range of tools allowed us to implement the proposed
methodologies efficiently. Given the computational limitations
of the local machine, the Python code is executed using Google
Colaboratory, a cloud-based platform that provides free GPU
access [27].

Due to the large dataset size, the dataset was uploaded
to the Kaggle platform which used its library to import and
manage it. The Ultralytics library was employed to train the
YOLOv8x model, while the sklearn.metrics. A pairwise pack-
age was utilized to implement cosine similarity in the image
retrieval process. To optimize the proposed object detection
model, the IoU (Intersection over Union) threshold is set to
0.7 and the confidence threshold to 0.25. Additionally, the
input image size was resized to 700x700 pixels. These hyper-
parameters were chosen based on empirical experimentation to
achieve the best trade-off between accuracy and performance.

A. Data Preprocessing

Data preprocessing is a crucial step that ensures the dataset
is optimized for model training. The preprocessing steps in-
cluded:

• Data Cleaning: Removing noisy or irrelevant annota-
tions

• Annotation Conversion: Transforming XML files into
YOLO TXT format

• Data Augmentation: Enhancing dataset diversity and
balancing class distribution

For augmentation, the Roboflow [28] utilized a pivotal
platform within the realm of computer vision and machine
learning. It offers a comprehensive suite of tools tailored
to streamline the data preparation pipeline. Roboflow offers
various augmentation techniques, including geometric trans-
formations, color adjustments, and specialized augmentations.
After augmentation, underrepresented classes saw a threefold
increase in image samples, bringing the dataset size to 19,727
images. The final category distribution is shown in Table I.

B. Model Training

The experiment leveraged the YOLOv8 [19] model for
object detection to detect various elements within the research
dataset. The training process was initiated with a pre-trained
YOLOv8x model that utilized the robust capabilities of the
Ultralytics framework. The Yolov8 had multiple versions with
different parameters, speed, and mAP. The YOLOv8x was
selected due to the large dataset and the importance of accuracy
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TABLE I. DATASET CATEGORIES DISTRIBUTION

Category Train Valid Test Sum

BackgroundImage 1660 250 131 2041

BottomNavigation 1619 92 62 1773

Button 14042 2857 1603 18502

Card 5128 927 497 6552

Checkbox 3855 606 346 4807

Drawer 2063 212 131 2406

EditText 5032 954 570 6556

Icon 54602 10747 4873 70222

Image 20502 4429 1967 26898

Map 552 69 37 658

Modal 1466 239 146 1851

MutilTabs 2768 289 153 3210

PageIndicator 3070 112 110 3292

ProgressBar 698 24 33 755

Radiobutton 2112 458 272 2842

SeekBar 967 65 45 1077

Spinner 4952 708 517 6177

Switch 1135 165 161 1461

Text 116927 23407 11147 151481

ToolBar 8710 1825 823 11358

UpperTaskBar 13706 2762 1374 17842

over speed, the most robust version among the YOLOv8
models. The dataset was split into three subsets:

• 70% for training

• 20% for validation

• 10% for testing

This split allowed for efficient model training while pre-
venting overfitting. The dataset was specified in a custom
configuration file, and hyperparameter tuning was conducted
to optimize model performance.

C. Evaluation Metrics

For the proposed model, the Precision (P) and Average
Precision (AP) are used as key metrics to evaluate the model:

Precision =
TP

TP + FP
(2)

where: TP (True Positives): Correctly detected objects.
FP (False Positives): Incorrectly detected objects. FN (False
Negatives): Missed objects.

The Mean Average Precision (mAP), a widely used metric
for object detection tasks, was computed as follows:

mAP =

∑
APn

N
(3)

where APn represents the average precision for class n.

D. Results

After training, the YOLOv8x model was tested on the
validation set using a confidence threshold of 0.5, meaning
only detections with a confidence score of 50% or higher
were considered valid. This threshold was chosen to balance
the results, reducing false positives while ensuring that true
detections were not missed. The model achieved a 95% pre-
cision and a 97% average precision for the object detection
component in all classes. Table II. presents the class-wise
precision and AP values.

TABLE II. PRECISION AND MAP FOR EACH CLASS

Class P mAP50

BackgroundImage 0.934 0.976

BottomNavigation 1 0.951

Button 0.968 0.983

Card 0.898 0.974

Checkbox 0.975 0.981

Drawer 0.97 0.991

EditText 0.921 0.96

Icon 0.96 0.969

Image 0.963 0.974

Map 0.939 0.988

Modal 0.951 0.994

MutilTabs 0.969 0.985

PageIndicator 0.929 0.983

ProgressBar 0.949 0.973

Radiobutton 0.987 0.986

SeekBar 0.968 0.945

Spinner 0.921 0.949

Switch 0.956 0.981

Text 0.951 0.973

ToolBar 0.954 0.976

UpperTaskBar 0.965 0.981

ALL 0.954 0.975

For image retrieval, the model successfully identified the
three most similar UI designs to the input image using cosine
similarity, displaying results as a ranked list of top-matching
UIs. The colored bounding boxes in the second image represent
each part of the UI query image, each color representing a
different component. Fig. 4 shows an example of this step.

Fig. 4. The Retrieval results of out model.
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E. Comparison with Baseline Model

To highlight the improvements of the proposed model,
a comparison with the baseline model VINS [9] was made,
which combined the SSD model with Autoencoder to build the
entire model. The proposed model relied on Yolov8 for feature
detection, extraction, and storage and used Cosine similarity to
retrieve images similar to the one given. At the same time, we
relied on Yolov8 for feature detection, extraction, and storage
and used Cosine similarity to retrieve similar images to the
given one. Due to the unavailability of the model’s source code,
it was impossible to reapply the model to the dataset used in
this research. Therefore, a rough comparison was made based
on the mAP metric described in that study. However, it should
be noted that the dataset used in this work is more extensive
and diverse in terms of the number of classes. Although a direct
comparison is not possible, the proposed system significantly
outperforms VINS, achieving an mAP of 97% compared to
VINS’s 76.39% as a result reported in the literature [9],
demonstrating superior accuracy and effectiveness in object
detection and UI retrieval. This comparison is approximate and
should be interpreted in the context of the different datasets and
models used. The comparison results are presented in Table III.

TABLE III. COMPARISON WITH THE BASELINE MODEL

Model mAP50 Technique used

VINS 76.39% SSD and Autoencoder

The proposed Model 97% Yolov8 and Cosine similarity

V. DISCUSSION

The results confirm the effectiveness of YOLOv8 in de-
tecting UI elements. To determine the best version of Yolo
models in the dataset, all versions were trained on the data
and assigned an epoch value of 20 and a batch of 16. The
results in Table IV indicate that YOLOv8x achieved the highest
accuracy, making it the optimal choice for the dataset.

TABLE IV. VARIANCE MODELS RESULTS

Model Precision mAP50

YOLOv8n 0.783 0.796

YOLOv8s 0.798 0.844

YOLOv8m 0.808 0.843

YOLOv8l 0.803 0.866

YOLOv8x 0.827 0.866

The proposed model successfully learns how to extract
relevant features from images and then classifies and locates
objects effectively across all images in the dataset. The model
was trained on the Revised Rico data, and annotations were
made on each image to identify the exact locations of ob-
jects within it based on the dataset categories. In addition,
augmentation was performed on some under-representation
classes to ensure the quality of the model and increase the
chance of the model detecting these objects. The results of
testing the proposed model using data extracted from the Rico
dataset showed high performance in different categories, where
the mAP reached 98% of overall categories, indicating that
the model outperformed VINS [9] by about 20%. This is
consistent with the results reported in the study [21], where

the performance of their model also improved. However, the
model still faces challenges predicting some categories, such
as the “ProgressBar” and “SeekBar.” This could be due to
the imbalance of the data, which biases the model towards
the higher-ranked categories. Even after trying to balance the
dataset using a downsampling technique by removing images
that collect objects from the majority class to achieve partial
convergence with the rest of the classes and applying augmen-
tation techniques to the minority class images, there was still
a noticeable difference in the distribution of images between
classes. These lower-ranked classes are often associated with
some highly-ranked classes, which limits the possibility of
creating balanced data.

Overall, this study demonstrates significant advancements
in UI detection and retrieval, outperforming previous models
and providing an effective tool for analyzing mobile UI de-
signs.

VI. CONCLUSION

In this study, we developed an object detection and image
retrieval model leveraging the YOLOv8 framework and cosine
similarity to analyze UI components. The dataset, sourced
from the Rico dataset, was preprocessed, annotated, and aug-
mented to enhance model performance. TThe hyperparameters
were optimized through rigorous experimentation to achieve
high precision and accuracy in detecting and classifying
UI elements. The results demonstrated the effectiveness of
the YOLOv8x model in object detection, outperforming the
baseline VINS model by a significant margin. The proposed
approach achieved an overall mean Average Precision (mAP)
of 97%, compared to 76.39% for the VINS model, highlighting
its robustness in accurately identifying UI components.

Additionally, the integration of cosine similarity facilitated
efficient image retrieval, allowing the system to suggest visu-
ally and structurally similar UI designs. Despite the promising
results, some challenges remain, particularly in predicting
underrepresented UI components such as ”ProgressBar” and
”SeekBar.” While augmentation and balancing techniques im-
proved performance, disparities in category distribution per-
sisted.

Future work could focus on further dataset balancing
strategies, exploring alternative deep learning architectures,
and refining feature extraction techniques to enhance retrieval
accuracy. Expanding the dataset to include various UI designs
from different platforms (e.g., iOS, web applications) and
categories could enhance the system’s versatility. The model
can also be integrated with an Android app, making it easier
for designers to leverage a variety of UI designs. The proposed
approach represents a significant advancement in UI element
detection and retrieval, offering a valuable tool for mobile UI
designers and developers to analyze and refine interface layouts
efficiently. The study underscores the potential of deep learning
techniques in automating UI analysis, paving the way for more
intelligent and adaptive design systems.
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