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Abstract—As Maritime Autonomous Surface Ships (MASSs)
increasingly become part of global maritime operations, the
reliability and security of their object detection systems have
become a major concern. These systems, which play a crucial role
in identifying small yet critical maritime objects such as buoys,
vessels, and kayaks, are particularly susceptible to adversarial
attacks, especially clean-label poisoning attacks. These attacks
introduce subtle manipulations into training data without altering
their true labels, thereby inducing misclassification during model
inference and threatening navigational safety. The objective of
this study is to evaluate the vulnerability of maritime object
detection models to such attacks and to propose an integrated
adversarial framework to expose and analyze these weaknesses.
A novel attack method is developed using K-means clustering
to segment similar object regions and Class Activation Mapping
(CAM) to identify high-importance zones in image data. Adver-
sarial perturbations are then applied within these zones to craft
poisoned inputs that target the YOLOv5 object detection model.
Experimental validation is performed using the Singapore Marine
Dataset (SMD and SMD-Plus), and performance is measured
under different perturbation intensities. The results reveal a con-
siderable decline in detection accuracy—especially for small and
mid-sized vessels—demonstrating the effectiveness of the attack
and its capacity to remain imperceptible to human observers.
This research highlights a critical gap in the security posture
of AI-based navigation systems and emphasizes the urgent need
to develop maritime-specific adversarial defense strategies for
ensuring robust and resilient MASS deployment.

Keywords—Maritime autonomous surface ships; object detec-
tion; clean-label poisoning attacks; adversarial attacks

I. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) are
increasingly being deployed across critical domains such as
healthcare, finance, defense, and autonomous transportation.
In particular, the maritime industry has seen a transformative
shift with the advent of Maritime Autonomous Surface Ships
(MASSs), where AI-powered systems enable autonomous
navigation, object detection, and situational awareness. The
reliance of these systems on data-driven models, however,
introduces new vectors for cyber-physical vulnerabilities, par-
ticularly those associated with training data integrity and model
robustness.

Among the most significant threats to ML systems are data
poisoning attacks, which involve the deliberate corruption of
training data to manipulate model behavior. Such attacks can
cause substantial performance degradation or induce specific,
targeted misclassifications. While traditional data poisoning
techniques typically involve altering both the features and
labels of the training samples, recent work has highlighted the
emergence of pure label poisoning attacks, wherein only the

data is subtly manipulated while the labels remain unchanged
(Turner et al., 2019; Saha et al., 2020). These attacks are
particularly concerning because they can bypass standard data
validation and noise detection protocols, making them harder
to detect and mitigate.

The maritime domain presents a unique set of challenges
for adversarial robustness. Object detection models used in
MASSs must be capable of identifying small, dynamic, and
often occluded objects such as buoys, small boats, and kayaks
(Rekavandi et al., 2022; Shao et al., 2022). Misclassifying
such objects due to adversarial manipulation can result in nav-
igational errors with potentially severe consequences. Despite
the growing use of deep learning models such as YOLOv5
for maritime object detection, current literature offers limited
focus on adversarial risks specific to the maritime context.
Most studies have concentrated on general adversarial attacks
in image classification domains using datasets like CIFAR-
10, ImageNet, or MNIST (Goodfellow et al., 2015; Madry et
al., 2018), with minimal adaptation to marine scenarios and
autonomous navigation systems.

This paper addresses this gap by proposing a novel adver-
sarial attack framework tailored for maritime object detection
systems, particularly those deployed in MASSs. The research
objective is two-fold: (i) to demonstrate the feasibility and
effectiveness of clean-label poisoning attacks in marine envi-
ronments, and (ii) to develop an integrated methodology that
leverages K-means clustering for unsupervised segmentation
and Class Activation Mapping (CAM) for identifying high-
saliency regions in the image space. By combining these
techniques, the proposed method creates adversarial examples
that are both functionally deceptive and visually imperceptible,
targeting the YOLOv5 object detection model trained on
the Singapore Marine Dataset (SMD and SMD-Plus). Data
poisoning attacks pose a substantial threat to machine learning
systems by exploiting vulnerabilities through the manipulation
of training data, leading to erroneous predictions or decisions.
Although advancements in machine learning have improved
the detection of traditional data poisoning attacks, the rise of
clean-label or pure label poisoning attacks—where input fea-
tures are subtly altered without changing the labels—presents
a more complex detection challenge [24]–[27], [30], [31].

These attacks typically follow a multi-stage process. First,
attackers gather information about the target model and its
training data from public datasets or distributionally similar
sources [22], [25]. Then, during the poison sampling phase,
specific instances are manipulated or synthetically generated
to meet malicious objectives. In the manipulation phase, small
but targeted perturbations are introduced to selected features.
The tampered data is then injected into the training pipeline,
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often by compromising data collection or storage systems [25],
[27], [30], [31].

Retraining the model on this poisoned dataset can lead
to performance degradation or targeted misclassifications. At-
tackers exploit the compromised model to induce incorrect
behavior in downstream tasks [25], [27], [30].

To achieve this, the study employs a multi-stage process
that includes dataset preprocessing, feature clustering, neural
network training with CAM integration, perturbation injec-
tion, and retraining using poisoned data. The experiments are
conducted under various levels of adversarial intensity, and
the resulting impacts on model accuracy and misclassification
rates are systematically evaluated. The findings reveal that
even small perturbations focused on CAM-highlighted regions
can cause the model to misidentify marine objects with high
confidence, often without human-perceptible visual artifacts. In
summary, this research makes three primary contributions: (1)
it introduces a domain-specific adversarial attack strategy com-
bining K-means and CAM; (2) it validates the vulnerability of
deep learning-based maritime object detection models through
experimental results; and (3) it provides actionable insights
for future development of robust defense mechanisms tailored
to maritime AI applications. To address these challenges, this
paper presents a comprehensive methodology that integrates
K-Means clustering and Class Activation Mapping (CAM)
to generate clean-label poisoning attacks on object detection
models within maritime environments. The remainder of this
paper is structured as follows: Section II provides relevant
background on MASS technologies and AI-driven object de-
tection. Section III reviews related work in adversarial machine
learning and maritime cybersecurity. Section IV introduces the
core attack models and threat landscape. Section V details the
proposed methodology, including the integration of clustering
and CAM. Section VI outlines the attack generation process,
followed by the experimental setup in Section VII. Section
VIII presents and discusses the experimental results. Finally,
Section IX concludes the study and outlines potential avenues
for future research in adversarial defense mechanisms for
maritime AI systems.

II. BACKGROUND

Research in the field of Marine Autonomous Surface Sys-
tems (MASS) is rapidly evolving, driven by two interrelated
priorities: the enhancement of object detection capabilities
and the fortification of cybersecurity defenses. Object detec-
tion, especially the accurate recognition of small maritime
objects such as buoys, kayaks, and small vessels, is crucial
for safe autonomous navigation. Recent studies have focused
on deep learning-based detection frameworks that address
the unique visual complexity of marine environments. For
instance, Rekavandi et al. (2022) proposed a comprehensive
deep learning pipeline tailored for small object detection in
maritime surveillance systems, emphasizing the need for high-
resolution features and contextual understanding in oceanic
scenes. Similarly, Shao et al. (2022) developed a multiscale
object detection architecture optimized for autonomous ship
navigation, which significantly improved the detection accu-
racy of small-scale targets by incorporating multi-level feature
representations.

Parallel to advancements in perception systems, there is
growing recognition of the cybersecurity challenges that ac-
company the deployment of AI-powered maritime systems.
Wróbel et al. (2023) analyzed the applicability of traditional
maritime safety indicators in the context of MASS and pro-
posed a structured framework for assessing security readiness.
Meanwhile, Li et al. (2023) employed network analysis meth-
ods to uncover critical risk factors and operational vulnerabil-
ities in MASS ecosystems. Akpan et al. (2022) contributed a
detailed threat assessment by cataloging cyber risks specific
to maritime operations, including communication breaches,
data manipulation, and GPS spoofing, and evaluated the effec-
tiveness of prevailing countermeasures. Complementing these
efforts, Ben Farah et al. (2022) conducted a systematic review
of recent innovations in maritime cybersecurity, highlighting
both the progress made and the gaps in existing defense
mechanisms.

To further operationalize security evaluations, Walter et al.
(2023) introduced a suite of competitive artificial intelligence
(AI) test cases designed specifically for MASS platforms.
Their methodology incorporates systematic reliability testing
and adversarial scenario simulations, serving as a robust bench-
mark to assess the resilience of AI models under stress. This
line of research provides critical insights into how adversarial
robustness and safety compliance can be quantitatively mea-
sured in autonomous maritime systems, thereby contributing
to both standardization and implementation practices.

III. LITERATURE REVIEW

Research into object detection and cybersecurity forms
a foundational pillar for the advancement of Maritime Au-
tonomous Surface Vessels (MASV), ensuring both efficient
navigation and robust defense against operational risks and
adversarial threats.

Rekavandi et al. have significantly contributed by offering
an exhaustive review and practical guide focused on the
challenges of small object detection in maritime surveillance.
Their research identifies critical difficulties, such as low-
resolution objects and environmental noise, and recommends
deep learning-based strategies that leverage image and video
data to enhance detection accuracy and reliability in complex
maritime scenarios.

Building upon similar objectives, Shao et al. developed
a multidimensional recognition model optimized explicitly
for autonomous navigation. The model effectively addresses
environmental complexities like varying lighting conditions,
occlusions, and reflective surfaces, providing robust and pre-
cise detection of maritime objects such as buoys and boats.
Their work underscores the necessity for a multiscale detection
architecture to increase accuracy.

LiDAR technology integration has been thoroughly ex-
plored by Yao et al. (yao), who propose a methodology
for simultaneous multi-target tracking and static mapping in
nearshore maritime environments. Their approach integrates
LiDAR data to significantly enhance the precision of tracking
moving targets, providing a robust framework for operational
safety and situational awareness in challenging maritime set-
tings.
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Yang et al. introduced FC-YOLOv5, an enhanced ver-
sion of the YOLOv5 algorithm, specifically tuned for un-
manned surface vehicles. Their FC-YOLOv5 model achieves
remarkable performance gains both in detection accuracy and
computational efficiency, clearly outperforming traditional al-
gorithms, thus supporting practical real-time application in
maritime contexts.

In parallel to detection capabilities, researchers have ac-
tively addressed operational and cybersecurity risks associated
with Maritime Autonomous Surface Systems (MASS). Wrobel
et al. adapted established maritime safety indicators to MASS
applications, proposing a structured framework for their effec-
tive implementation and highlighting the intricate integration
challenges these novel systems pose.

Li et al. have developed a sophisticated network analysis
approach aimed at modeling and evaluating the intricate re-
lationships among various operational risk factors inherent in
MASS. Their methodology identifies and prioritizes critical
risks, facilitating strategic resource allocation and targeted
mitigation strategies [16-23].

The cybersecurity of maritime operations has been closely
examined by Akpan et al. (akpan), who detailed the specific
vulnerabilities and threats unique to maritime cyber operations.
Their comprehensive risk assessments facilitate the develop-
ment of targeted cybersecurity strategies. Complementing this,
Ben Farah et al. (benfarah) have systematically reviewed the
current landscape and future directions of maritime cybersecu-
rity, offering a strategic vision that integrates emerging threats
with advanced cybersecurity practices [1-9].

Extensive research into adversarial attacks and defenses on
AI models, particularly Graph Neural Networks (GNNs) and
CNN-LSTM frameworks, has highlighted several significant
vulnerabilities and defensive shortcomings. Researchers have
noted the inadequacy of existing gradient-based or heuristic
perturbation techniques in identifying crucial nodes within
GNNs. This limitation motivated research into interpretabil-
ity techniques such as Class Activation Mapping (CAM) to
systematically locate essential nodes, an area requiring further
exploration and refinement for enhanced model resilience [9-
16].

Ingle, G. et al. gives CNN-LSTM models used in power
system applications also exhibit vulnerabilities under adversar-
ial conditions, with current defenses like adversarial training
and defensive distillation demonstrating limitations in both
effectiveness and generalizability. Input Adversarial Training
(IAT) emerges as a robust alternative, significantly improving
model resilience without sacrificing performance. Ingle, G.
et al. addresses broader adversarial defense strategies, recent
studies suggest the underutilized potential of feature masking
techniques, particularly when integrated with gradient modi-
fication strategies. Such hybrid approaches may offer a more
balanced solution between maintaining accuracy and increas-
ing robustness against sophisticated adversarial attacks.Ingle,
G. et al. introduces adversarial robustness, the integration of
Honey Badger Optimization techniques into GNN attacker
models (EHBO) has demonstrated substantial improvements
in attack efficacy and model evaluation robustness, setting
a high standard for future adversarial testing and resilience
benchmarks. Furthermore, Ingle, G. et al. presents optimizing

bit-plane slicing through genetic algorithms has been shown to
notably enhance resilience against common adversarial attacks
(FGSM and DeepFool). This innovative technique significantly
improves model recovery and defense capability, highlighting
the potential for dynamic and adaptive defensive measures in
adversarial contexts [32-36].

Lastly, recent work by Walter et al. underscores the im-
portance of competitive AI testing paradigms designed ex-
plicitly for maritime autonomous systems. These competi-
tive AI frameworks systematically uncover vulnerabilities and
foster advancements in security measures, ensuring ongoing
resilience against increasingly sophisticated adversarial tech-
niques [28,29].

As MASV technologies mature, continued advancements in
AI-driven object detection, coupled with proactive and adaptive
cybersecurity defenses, remain imperative. This dual focus is
crucial to enhancing the reliability, security, and operational
effectiveness of maritime autonomous surface vessels.

IV. AI SECURITY THREATS AND ATTACK METHODS

AI attacks are broadly categorized into two types, based
on the attacker’s knowledge of the target model: black-box
and white-box attacks. In black-box attacks, attackers possess
no internal knowledge of the model’s architecture, parameters,
or training process, relying instead on external behaviors
and outputs. Conversely, white-box attackers have complete
knowledge of the model’s internal structures and algorithms,
allowing for precise manipulation.

Several well-established adversarial attack methods have
emerged, notably the Fast Gradient Sign Method (FGSM),
Iterative FGSM (I-FGSM), Momentum Iterative FGSM (MI-
FGSM), and Projected Gradient Descent (PGD). FGSM creates
adversarial examples by applying perturbations derived from
the gradient of the loss function, intentionally causing models
to produce erroneous predictions. I-FGSM extends this con-
cept by iteratively applying smaller perturbations, refining the
adversarial impact to achieve specific misclassifications. MI-
FGSM introduces momentum into I-FGSM to enhance conver-
gence speed and efficiency, while PGD systematically applies
perturbations within defined limits to manipulate outcomes
methodically and robustly.

Data poisoning attacks, another significant category of
adversarial threats, target the training data to corrupt the
learning process. Clean-label backdoor attacks involve insert-
ing subtly altered or Trojan examples into training datasets
without altering the labels, causing targeted misclassification
during model deployment. This covert method is particularly
dangerous, as detection during model training and validation
phases is challenging. Backdoor triggers embedded in neural
network models remain inactive during regular operation but
are activated upon recognizing specific trigger patterns during
inference.

Sophisticated poisoning techniques such as poison frog,
convex hyperpolyhedron, and polar hyperpolyhedron algo-
rithms have been developed to strategically introduce mini-
mal but effective harmful data points or subtly reshape the
geometry of the data distribution, influencing model decision
boundaries and undermining reliability.
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In the maritime domain, although object detection and
cybersecurity research have experienced substantial growth,
studies specifically addressing AI security threats remain lim-
ited and exploratory. Typically, AI-focused research empha-
sizes algorithmic defenses and data poisoning using conven-
tional benchmark datasets like CIFAR-100. To bridge this gap,
this study proposes a hypothetical attack scenario employing
marine-specific datasets to execute a clean-label poisoning
attack against the YOLOv5 object recognition model. The
objective is to highlight the susceptibility of maritime AI
applications to sophisticated poisoning attacks, thereby raising
awareness among stakeholders and emphasizing the critical
need for advanced research, vigilant monitoring, and robust
defense mechanisms tailored specifically for maritime envi-
ronments.

V. METHODOLOGY

The generation of adversarial attacks involves a multi-step
process integrating K-means clustering with Class Activation
Mapping (CAM), targeting object detection models. The pro-
cess includes the following steps:

A. K-means Clustering for Object Detection

The K-means algorithm is employed to cluster similar
marine objects within the Singapore marine dataset. Mathe-
matically, the K-means process iteratively partitions the dataset
into clusters to minimize the within-cluster variance. The
algorithm is defined as: Given a dataset X with N data points,
the objective is to partition the data into K clusters, minimizing
the following cost function:

J(c, µ) =

K∑
k=1

N∑
n=1

∥xn − µk∥2 (1)

Where: - xn represents the n-th data point in the dataset.
- µk denotes the centroid of the k-th cluster.
- c is the cluster assignment for each data point.

The K-means algorithm seeks to minimize the cost function
by iteratively updating the cluster centroids and reassigning
data points to clusters until convergence.

The steps of the K-means algorithm involve: Initializa-
tion: Start by randomly initializing K cluster centroids µ =
{µ1, µ2, ..., µK}. Assignment Step: Assign each data point
xn to the nearest centroid µk:

c(n) = argmin
k

∥xn − µk∥2 (2)

Update Step: Recompute the centroids based on the as-
signed data points:

µk =
1

|Sk|
∑

xn∈Sk

xn (3)

Where Sk represents the set of data points assigned to
cluster k. The above steps are iterated until convergence

or a maximum number of iterations is reached. Once the
clusters are identified, they serve as the basis for the subse-
quent phases, such as feature extraction or identification of
regions for object detection using Class Activation Mapping
(CAM). The K-means algorithm is an iterative process that
continues until convergence or a predetermined maximum
number of iterations is reached. This iterative nature is crucial
for refining cluster assignments and centroids to minimize
the within-cluster variance effectively. The steps involved in
each iteration, including initialization, assignment, and update,
collectively work towards achieving a stable configuration of
clusters.

B. Convergence Criterion

Convergence in the K-means algorithm is determined
through an evaluation of cluster assignments and centroids
at consecutive iterations. The algorithm checks whether these
assignments and centroids undergo significant changes. Specif-
ically, it assesses whether the alterations fall below a prede-
fined threshold. Alternatively, convergence is acknowledged if
a predetermined maximum number of iterations is reached.
In essence, if the changes in cluster assignments and cen-
troids become sufficiently small or if the algorithm completes
the specified number of iterations, it is considered to have
converged. This convergence criterion ensures that the K-
means algorithm stabilizes, indicating that further iterations
would result in minimal adjustments to cluster assignments
and centroids.

C. Role of Identified Clusters

Once the K-means algorithm converges, the identified
clusters serve as the foundation for subsequent phases in the
data analysis pipeline. These phases often include:

1) Feature extraction: The meaningful segmentation of
data into clusters allows for the extraction of representative
features within each cluster. Feature extraction refers to the
process of capturing distinctive characteristics or relevant
information within these clusters, facilitating a more profound
understanding of the inherent structure of the data. This in-
volves identifying and quantifying the key attributes or patterns
that differentiate one cluster from another. Precisely, feature
extraction aims to distill the most relevant and discriminative
information from the clustered data, enabling a more concise
representation that can be utilized for subsequent analysis or
interpretation. The extracted features serve as essential descrip-
tors, providing insights into the distinctive properties of each
cluster and contributing to a more nuanced comprehension of
the underlying data distribution.

2) Object detection Using Class Activation Mapping
(CAM): The identified clusters serve as a valuable resource
for object detection tasks, especially when employing Class
Activation Mapping (CAM). CAM is a technique designed
to emphasize the specific regions within an image that have
the greatest influence on predicting a particular class. In the
realm of marine object detection, CAM can be effectively
applied to concentrate on regions within the clustered data
that are correlated with distinct marine objects. This involves
utilizing the CAM technique to generate a spatial attention
map that highlights the significant areas within the clustered
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Fig. 1. Diagram of the proposed experiment.

data, providing insights into the regions contributing most
to the presence or characteristics of specific marine objects.
Precisely, CAM aids in pinpointing the crucial features within
the clustered data that contribute to the identification and
localization of marine objects, enhancing the interpretability
and effectiveness of object detection in marine environments.
Fig. 1 shows diagram of the proposed experiment.

D. Detailed Description

The K-means algorithm iteratively refines clusters, enhanc-
ing their representativeness of underlying data patterns. Con-
vergence ensures stability in cluster assignments, indicating
further iterations are unlikely to yield significant changes.
With stable clusters, subsequent phases leverage this seg-
mentation. Feature extraction captures each cluster’s essence,
providing nuanced insights into the dataset. These features
prove instrumental in subsequent analyses or decision-making.
Object detection using CAM takes advantage of identified
clusters by pinpointing regions of interest linked to specific
marine objects. CAM highlights areas in clustered data sig-
nificantly contributing to object classification, aiding precise
object localization in the maritime environment.The iterative
convergence of the K-means algorithm sets the stage for
meaningful analyses, enhancing the data processing pipeline’s
overall effectiveness in tasks like feature extraction and CAM-
based object detection. The K-means algorithm clusters marine
objects within the Singapore dataset by iteratively minimizing
within-cluster variance. Mathematically, the objective function
J(c, µ) minimizes the sum of squared Euclidean distances
between data points xn and assigned centroids µk:

J(c, µ) =

K∑
k=1

N∑
n=1

∥xn − µk∥2 (4)

Here, xn is the n-th data point, µk is the k-th centroid,
and c is each data point’s cluster assignment. The algorithm
minimizes this cost function through iterative centroid updates
and data point reassignments until convergence. K-means steps
include initialization, assignment, update, and convergence
check. Initialization sets K centroids, and assignment asso-
ciates data points with nearest centroids:

c(n) = argmin
k

∥xn − µk∥2 (5)

Update recalculates centroids based on assigned data
points:

µk =
1

|Sk|
∑

xn∈Sk

xn (6)

Iterations continue until convergence, ensuring stable cen-
troids and minimal changes in cluster assignments. Widely
used for clustering, K-means identifies similar marine object
groups, enhancing marine environment analysis.

E. Object Detection using Class Activation Mapping (CAM)

The Class Activation Mapping (CAM) technique utilizes
the learned weights from the last convolutional layer of a
Convolutional Neural Network (CNN) to highlight crucial
regions influencing the classification process. CAM visualizes
where the model focuses during predictions. For a pre-trained
CNN, let fθ be the output feature map of the last convolutional
layer. CAM generates a localization map M for a class c:

wc =
1

Z

∑
i

∑
j

f c
θ (i, j) (7)

Here, f c
θ (i, j) is the activation at (i, j) for class c, and Z

is the number of positions. The class-discriminative map is
generated by combining feature maps with their weights:

Mc(i, j) =
∑
k

wc(k) · f c
θ (i, j, k) (8)

Here, f c
θ (i, j, k) is the activation of the k-th filter at (i, j)

for class c. To visualize influential regions, Mc passes through
a ReLU activation function:

Lc(i, j) = max(0,Mc(i, j)) (9)

The final activation map Lc indicates regions significantly
contributing to the classification of class c. CAM-based object
detection reveals these important regions, indicating parts of
marine images influencing marine object classification.
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F. Adversarial Attack Strategy Using K-means and CAM

The adversarial attack strategy leverages insights from K-
means clustering and Class Activation Mapping (CAM) to
perturb data points and induce misclassifications in the object
detection model. With clustered regions represented by Ci

and associated data points Ni from K-means, and influential
regions identified by CAM denoted as Lc(i, j) for a specific
class c, the adversarial attack aims to subtly alter the data
points.

For a given cluster Ci, perturbed points Pi are generated
by introducing slight modifications using the activation map
Lc(i, j):

Pi = Ni + ϵ · Lc(i, j) (10)

Here, ϵ represents a small perturbation factor, ensuring
subtle yet impactful changes. The objective is to manipulate
the data points in a way that the object detection model
misclassifies them. This approach combines the clustering
information from K-means with the spatial understanding
provided by CAM, demonstrating the potential vulnerabilities
in the model’s decision-making process. The attack strategy
highlights the importance of addressing security concerns in
object detection systems, particularly those employing cluster-
ing and spatial feature analysis.

G. Experimental Validation of the Attack Scenario

To validate the effectiveness of the attack scenario, experi-
ments are designed according to the proposed hypothetical sit-
uation. The Singapore marine dataset is manipulated using the
regions identified by K-means clustering and the features high-
lighted by Class Activation Mapping (CAM) from the Convo-
lutional Neural Network (CNN).The Singapore marine dataset,
denoted as D, is partitioned into clusters by the K-means
algorithm, resulting in clusters {C1, C2, . . . , Ck}.Furthermore,
the CAM highlights the significant regions or features in
the marine images relevant for classification. Let the CAM-
relevant features be denoted as F . The union of these features
across different clusters is represented as F =

⋃k
i=1 Fi, where

Fi is the set of relevant features in cluster Ci.An adversarial
attack strategy is executed, perturbing these identified and
significant regions in the dataset. Mathematically, perturbing
a specific feature f ∈ F in a data point x is achieved by
adding a small perturbation δ:

x′ = x+ δ where f ∈ F (11)

These perturbations aim to cause misclassifications in the
object detection model by manipulating the significant regions
identified through the clustering and CAM techniques.The
impact of the misclassification is then assessed to determine the
vulnerability of the model to such targeted adversarial attacks.

VI. DETAILED PROCEDURE FOR GENERATING
ADVERSARIAL ATTACKS

For a comprehensive understanding, a detailed procedure
for adversarial attack generation utilizing K-means clustering
and CAM is as follows:

A. K-means Clustering Phase

The K-means clustering process involves the following
steps:

1) Data preprocessing: The marine dataset, denoted as D,
undergoes preprocessing to meet the requirements of the K-
means clustering algorithm. This step might involve normal-
ization, handling missing data, or feature scaling to prepare
the data for clustering.

2) Clustering: The K-means algorithm is then applied to
the preprocessed marine dataset to identify distinct clusters.
Let n be the total number of data points in the dataset and
k be the desired number of clusters. The K-means algorithm
aims to minimize the sum of squared distances between data
points and their respective cluster centroids. This minimization
is represented by the following mathematical equation:

arg min
C

n∑
i=1

min
µj∈C

||xi − µj ||2 (12)

Where:

- C represents the set of clusters {C1, C2, . . . , Ck}, and
each cluster contains data points associated with its centroid
µj .

- xi denotes the i-th data point in the dataset.

- µj represents the centroid of the j-th cluster.

- ||xi − µj || denotes the Euclidean distance between a
data point and its respective cluster centroid.The algorithm
iteratively assigns data points to the nearest cluster centroid
and updates the centroids based on the mean of the data points
in each cluster. This process continues until convergence or a
specified number of iterations.

B. CAM and Object Detection Phase

The CAM and object detection phase involves the follow-
ing steps:

1) Neural network training: Train a Convolutional Neural
Network (CNN) model specifically designed for object detec-
tion, with a focus on integrating Class Activation Mapping
(CAM) into the network architecture. The CNN is trained
using the marine dataset, denoted as D, in which the goal
is to predict object classes within the images.

2) Identifying important regions: Class Activation Map-
ping (CAM) is utilized to identify crucial regions within the
marine images that contribute significantly to the classification
decisions of the trained model. The CAM technique computes
the class-specific activation map using the final convolutional
feature maps and the model’s output weights. This enables
the identification of regions that highly influence the model’s
decision-making process, contributing to object classifica-
tion.CAM involves mapping class-specific information to the
spatial locations of the feature maps. Specifically, given the
final feature maps F obtained from the last convolutional layer
and the weights w of the output layer, the class activation map
M for a particular class c is computed by performing global
average pooling on the final feature maps followed by a linear
combination using the weights:
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Mc =
∑
i

wc
iFi (13)

Where: - Mc is the class activation map for class c.

- wc
i represents the weights for class c of the i-th convo-

lutional feature map.

- Fi denotes the i-th feature map obtained from the final
convolutional layer.

The resultant class activation map indicates the most crucial
regions within the images that contributed to the model’s
decision for predicting a particular class c.

C. Adversarial Attack Generation Phase

The Adversarial Attack Generation phase encompasses the
following stages:

1) Adversarial perturbation: The vital regions identified
by Class Activation Mapping (CAM) and clustered through
K-means are perturbed to generate adversarial attacks. By
manipulating these essential regions, subtle alterations are
introduced to the original data points. The aim is to prompt
misclassifications in the object detection model. The adver-
sarial perturbation process involves tweaking the identified
regions to influence the model’s decision-making. Assuming X
represents the marine image dataset and Xi denotes individual
images, let X ′

i be the perturbed images derived from the
perturbation of important regions, such that:

X ′
i = Xi + ϵ · Perturbationi (14)

Where: - X ′
i signifies the perturbed image derived from the

original image Xi.

- ϵ represents the magnitude of perturbation.

- Perturbationi indicates the specific perturbation applied
to image i.

2) Poisoning algorithm: Following the perturbation of im-
portant regions, a clean-label poisoning algorithm is employed
in these perturbed regions. The poisoning algorithm aims
to generate instances that are subtly corrupted and embed-
ded back into the dataset for retraining the object detec-
tion model.The poisoning algorithm is crucial for introducing
manipulated data instances into the training dataset while
maintaining a seemingly benign appearance. This algorithm
seeks to insert trojan or poisoned examples in a manner
that avoids suspicion but triggers substantial misclassifications
during testing. Let X ′

poisoned denote the manipulated images
generated by the poisoning algorithm.The process can be
formulated as:

X ′
poisoned = X ′ + Algorithmpoison(X

′) (15)

Where: - X ′
poisoned represents the images manipulated by

the poisoning algorithm.
- Algorithmpoison stands for the clean-label poisoning algorithm
applied to the perturbed images.
- X ′ signifies the perturbed images.

D. Scenario Validation Through Experiments

The process of validating the attack scenario involves a
sequence of critical steps:

1) Dataset preparation: The dataset needs to be segregated
into two subsets: the training dataset and the malicious subset.
The training dataset contains the unaltered, clean images,
while the malicious subset includes images poisoned by the
introduced adversarial attack. The formulation of the datasets
is expressed as follows:

Let D represent the Singapore marine dataset. Divide this
dataset into two subsets: Dtraining and Dmalicious.

2) Poisoning and retraining: Inject the adversarially per-
turbed or poisoned instances into the training dataset. Subse-
quently, the object detection model is retrained using the newly
modified dataset.

This process can be mathematically described as: Let M
represent the object detection model. Retrain the model M
using the combined dataset Dtraining ∪Dmalicious.

M ′ = Retrain(M,Dtraining ∪Dmalicious) (16)

Where M ′ denotes the retrained object detection model.

3) Attack execution: Assess the effectiveness and impact
of the adversarial attack by executing the attack scenario on
the retrained model M ′. This evaluation involves providing
inputs to the model and examining its behavior concerning
misclassification and vulnerabilities. This execution involves
scrutinizing the model’s performance with test instances and
examining whether the attack scenario (misclassification of
boats as ferries) materializes. This validation is vital to un-
derstand the vulnerabilities and consequences of such attacks
on the model’s behaviour.

VII. ALGORITHM

1) Prepare the Singapore Marine Dataset:
• Load the marine dataset containing images of

marine environments around Singapore.
2) Apply K-means Clustering:

• Use K-means clustering to identify distinct
classes within the marine dataset.

3) Train CNN with CAM:
• Train a Convolutional Neural Network (CNN)

with Class Activation Mapping (CAM) using
the marine dataset.

4) Initialize Perturbation Factor:
• Set the perturbation factor ϵ to a predefined

value.
5) Generate CAM Heatmaps:

• For each marine image I in the dataset:
• Generate CAM heatmaps to highlight impor-

tant regions for classification.
6) Extract Activation Regions:

• Extract the class activation regions from the
CAM heatmaps.

7) Apply K-means to Activation Regions:
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• Apply K-means clustering to the extracted
activation regions.

8) Choose Centroid for Each Cluster:
• For each cluster, choose the centroid repre-

senting the region of interest.
9) Generate Adversarial Perturbation:

• For each centroid region C:
• Perturb C to generate adversarial perturbation

δ.
10) Apply Perturbation to Image:

• For each marine image I:
• Apply the perturbation δ within the region

represented by C.
11) Generate Adversarial Image:

• Generate adversarial image I ′ by integrating
the perturbed region back into the original
image.

12) Build Adversarial Dataset:
• Add the generated adversarial images I ′ to the

adversarial dataset.
13) Repeat for All Images:

• Repeat steps 5-12 for each image in the ma-
rine dataset.

14) Return Adversarial Examples:
• Return the adversarial examples generated

from the marine dataset using K-means clus-
tering with CAM.

VIII. EXPERIMENTAL SETUP

A. Dataset Preparation and Combination

The experimental setup leverages the Singapore Maritime
Dataset (SMD) and its enhanced version, SMD-Plus, to ad-
dress challenges in the maritime industry. With over 2 million
vessel movements, SMD provides a comprehensive dataset
for analyzing maritime behavior. However, to enhance preci-
sion, SMD-Plus corrects labeling errors and introduces more
accurate bounding boxes, making it a valuable resource for
object classification. Challenges in classifying small maritime
objects are addressed by combining classes in SMD-Plus,
enriching the dataset for improved recognition. The adaptation
process involves transforming SMD-Plus videos into individual
frames, aligning annotations with YOLOv5 specifications. This
meticulous approach ensures seamless integration with the
YOLOv5 object detection model, a crucial step in maximizing
the dataset’s compatibility and effectiveness for experimenta-
tion.

B. Hardware Used

The computational efficiency of the clustering step, particu-
larly the K-means algorithm, is significantly influenced by the
hardware specifications in use. For this purpose, the central
processing unit (CPU) selected is the Intel Core i9-10900K
from the Comet Lake architecture. This CPU features 10 cores
and 20 threads, with a base clock of 3.7 GHz and a maximum
turbo frequency of 5.3 GHz. Its 125W thermal design power
(TDP) and 14nm manufacturing process contribute to robust
performance in tasks that require parallel processing, such as
K-means clustering.

On the graphics processing unit (GPU) side, the NVIDIA
GeForce RTX 3080 is employed. This GPU boasts 8704
CUDA cores and is equipped with 10 GB of GDDR6X
memory, featuring a 320-bit memory bus and a high-speed
19 Gbps memory. The GPU incorporates dedicated hardware
components, including 68 ray tracing cores and 272 Tensor
Cores, which enhance its parallel processing capabilities. This
aligns well with the demands of deep learning tasks, including
forward and backward propagation in graph neural networks
(GNNs).

The system is further outfitted with 32 GB of DDR4 RAM
and a 1TB NVMe SSD to facilitate swift storage access. It
operates on the Windows 10 Pro operating system. For deep
learning tasks, PyTorch 1.9.0 serves as the primary framework,
while scikit-learn 0.24.2 is utilized for the K-means clustering
library.

This combination of high-performance CPU and GPU,
accompanied by ample system memory and fast storage,
establishes a well-balanced hardware configuration capable
of efficiently executing both deep learning and clustering
operations. This configuration is vital for carrying out the
proposed adversarial attack on graph neural networks.

C. Data Extraction and Annotation Modification

The experimental pipeline began with the preprocessing
of the SMD-Plus dataset, an enhanced maritime surveillance
video dataset comprising annotated recordings of vessels,
buoys, ferries, and other maritime entities. The first critical
step was the extraction of representative still frames from the
video sequences. This was achieved by sampling one frame
per fixed interval (e.g., every nth frame), ensuring a balance
between temporal redundancy and dataset volume. The goal
was to obtain a sufficient number of spatially and contextually
varied images that reflect different lighting conditions, object
positions, and environmental dynamics typical of real-world
maritime scenes.

Each extracted frame was saved in a standard image format
(e.g., .jpg or .png) and then indexed systematically to maintain
traceability with its original video source. This frame-level
extraction enabled the creation of a large and diverse image
dataset suitable for training static object detection models like
YOLOv5, which do not directly process video input.

Following frame extraction, the annotation conversion pro-
cess was conducted to adapt the dataset for use with the
YOLOv5 object detection framework. The SMD-Plus dataset
originally provides annotations in the COCO (Common Ob-
jects in Context) format—a widely adopted standard for object
detection tasks, structured as a hierarchical JSON file. This for-
mat includes metadata such as image IDs, category IDs, bound-
ing box coordinates in the form of [xmin, ymin,width, height],
image dimensions, segmentation masks, and object categories
as strings.

In contrast, YOLOv5 requires annotations in a simplified
plain text format, where each image is paired with a .txt file
bearing the same filename. Each line in the .txt file corresponds
to one object in the image and consists of five fields: These
coordinates are expected to be normalized by the image width
and height, such that all values lie within the range [0, 1]. The
conversion process involved the following key steps:
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1) Parsing COCO annotations: The original COCO-
format JSON file was parsed using Python libraries such as
pycocotools or json, allowing access to image metadata,
bounding box coordinates, and class labels.

2) Class mapping: A custom mapping from COCO’s cate-
gory names (e.g., "ferry", "kayak", "buoy") to integer-
based YOLO class IDs (e.g., 0, 1, 2, ...) was established to
ensure consistency with YOLO’s requirements.

3) Bounding box transformation: Each bounding box was
converted from COCO’s top-left-based format (x, y, w, h) to
YOLOv5’s center-based normalized format. This required the
following computations:

xcenter =
x+ w

2

W
, (17)

ycenter =
y + h

2

H
, (18)

w′ =
w

W
, (19)

h′ =
h

H
(20)

where (x, y) are the top-left bounding box coordinates,
(w, h) are the box width and height, and W and H are the
original image width and height, respectively. The resulting
four values are thus scaled to lie within [0, 1].

4) Annotation file generation: For each image, a corre-
sponding .txt file was created containing one line per object
instance. Each line consisted of the class ID and the four
normalized coordinates in the format:

5) Validation: A visual inspection and manual verification
process was carried out using annotation tools (e.g., Roboflow
Annotator, CVAT, or labelImg with YOLO overlay enabled)
to ensure the integrity of the converted annotations and accu-
racy of the bounding boxes.

This COCO-to-YOLOv5 annotation conversion was crucial
for enabling the training of the YOLOv5 object detection
model, which is optimized for real-time inference tasks on
static images. The simplified YOLO format also significantly
reduces annotation parsing overhead during training, making
it suitable for high-speed detection in resource-constrained
maritime environments.

By performing this structured transformation, the dataset
was rendered fully compatible with the YOLOv5 architecture,
ensuring that the object detector could accurately learn to de-
tect and localize maritime objects under varying environmental
conditions. This preparation step laid the foundation for all
subsequent experimental workflows in object detection and
adversarial attack simulation.

D. Malicious Attack Simulation and CAM Integration

The experimental process began with the frame-level de-
composition of video sequences from the SMD-Plus (Sin-
gapore Marine Dataset - Enhanced) dataset. The SMD-Plus
dataset comprises high-resolution maritime surveillance videos
containing diverse vessel types such as boats, kayaks, buoys,
ferries, sailboats, and other marine objects. To convert this

video data into a format suitable for image-based object
detection tasks, a representative still image was extracted from
each video frame at a predefined sampling interval. This
frame extraction step was essential to generate a large and
diverse pool of labeled images from continuous video streams,
enabling the object detection model to learn from both spatial
and temporal variations in the data.

Following frame extraction, the next critical step involved
converting the annotation format from COCO (Common Ob-
jects in Context) to the YOLOv5-compatible format. The orig-
inal SMD-Plus dataset annotations were structured according
to the COCO JSON schema, which includes complex metadata
such as image IDs, category names, bounding box coordinates
in absolute pixel units (x, y, width, height), segmentations,
and image dimensions. While COCO format is widely used
for benchmarking across multiple object detection tasks, it is
incompatible with the training requirements of the YOLOv5
framework without transformation.

The YOLOv5 format, by contrast, expects annotations in
a minimalist, plain-text .txt format for each image, with one
line per object. Each line contains five values: the object class
ID, followed by the normalized center x-coordinate, center
y-coordinate, width, and height of the bounding box. These
values are normalized with respect to the image width and
height, i.e., they fall in the range [0, 1], which ensures model
generalization regardless of input resolution.

The transformation from COCO to YOLOv5 format in-
volved several sub-steps:

Mapping Class IDs: The COCO category names (e.g.,
“ferry”, “kayak”) were mapped to corresponding numeric class
labels as required by YOLOv5.

Annotation Synchronization: Each image extracted from
the video was assigned a .txt annotation file with the same
filename. This ensured seamless integration with YOLOv5’s
data loader, which associates each image with its correspond-
ing annotation during training. This conversion ensured that
the YOLOv5 model could efficiently ingest and interpret the
dataset during training and inference. Additionally, by using
normalized coordinates and simplified annotation structures,
the model achieved better consistency in processing varying
image resolutions, a crucial requirement given the dynamic
camera perspectives in maritime surveillance footage. This
meticulous preparation of data not only preserved the integrity
of the original labels but also optimized the dataset for high-
performance object detection under the YOLOv5 framework.

E. Dataset Split for Training and Testing

During the training and validation phase of the object
recognition model, careful attention was paid to dataset strat-
ification to ensure representative and unbiased learning. The
enhanced SMD-Plus dataset, which includes a diverse set
of labeled maritime images, was partitioned using an 80:20
split, where 80% of the data was reserved for training and
20% for testing. This stratification was not merely random;
rather, it was stratified based on class distribution to maintain
balance among categories such as boats, ferries, buoys, and
kayaks. Ensuring proportional representation across classes
in both subsets was critical to avoid class imbalance issues
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TABLE I. PROPERTIES OF THE SMD DATASET

Class Class Identifier Objects
Boat 1 14,550

Vessel and ship 2 126,301
Ferry 3 3,689
Kayak 4 3,872
Buoy 5 3,521

Sailboat 6 1,782
Others 7 25,214

that could bias the model or undermine its generalization
capabilities. This partitioning also guaranteed that performance
metrics reported during testing reflect the model’s behavior on
previously unseen instances, providing a robust evaluation of
detection accuracy and adversarial robustness.

In addition to the clean training dataset, a malicious
dataset was generated to simulate adversarial attack scenarios.
Specifically, base instances were extracted from video frames
featuring barges, serving as neutral examples, while target
instances were derived from frames showcasing boats, which
were the intended misclassification targets. These frames were
used to craft adversarial samples through the Poison Frog
algorithm, a clean-label data poisoning method designed to
subtly corrupt the model’s learning process without introducing
conspicuous artifacts.

For the attack execution, we used ResNet50—a deep con-
volutional neural network known for its strong representational
power—as the underlying architecture for crafting the poisoned
representations. The Poison Frog algorithm was configured
with the following hyperparameters to balance imperceptibility
and effectiveness:

Iterations: 5000 (to allow gradual and subtle updates),

Epsilon: 0.02 (maximum perturbation magnitude),

Alpha: 0.001 (step size per iteration during gradient-based
optimization).

These parameters were carefully selected to ensure that
the perturbations introduced during the poisoning process re-
mained invisible to human observers, even upon close inspec-
tion. As a result, the poisoned images retained their original
appearance, making them ideal for clean-label attacks where
the attacker does not modify the class label and thus avoids
triggering human or automated suspicion.

Visual inspection of the generated adversarial examples, as
shown in Fig. 7, confirmed the absence of visible perturbations,
despite the internal activation manipulations induced by the
attack. Interestingly, after incorporating the poisoned instances
into the training set and retraining the YOLOv5 object detec-
tion model, it was observed that the model began to misclassify
boats as plaques with high confidence. This outcome highlights
the subtle yet impactful influence of the clean-label attack and
underlines the importance of adversarial resilience in critical
domains like maritime navigation.

This experiment demonstrates the effectiveness of targeted
data poisoning in altering model behavior without altering data
labels or image realism—underscoring the urgency for robust
defenses in AI-based surveillance and autonomous navigation
systems.

F. Deep-Learning Model and Attack Execution

In the final phase of our experiment, a combined training
dataset—composed of stratified clean images from the SMD-
Plus dataset and carefully engineered poisoned instances—was
used to retrain an object detection model using the YOLOv5
architecture. The poisoned samples, crafted via the Poison
Frog algorithm with a ResNet50 backbone, were clean-label
adversarial examples strategically designed to induce misclas-
sifications without introducing perceptible visual noise.

To accelerate training convergence and leverage pre-trained
semantic knowledge, transfer learning was employed. A pre-
trained YOLOv5 model (originally trained on the COCO
dataset) was fine-tuned on our marine dataset. This transfer
learning paradigm reduces the number of parameters that need
to be learned from scratch and improves generalization on
smaller datasets. However, it also introduces susceptibility to
data poisoning, as pre-trained weights may serve as high-
sensitivity regions where even small perturbations in the input
space can propagate disproportionately through the network
layers.

Let the pretrained model be denoted as fθ, where θ repre-
sents the initial parameters. The poisoned dataset is denoted as
D′ = Dclean ∪Dpoison. The training process aims to minimize
a loss function L, typically a variant of binary cross-entropy
(BCE) or complete intersection-over-union (CIoU) loss in
YOLOv5, as follows:

θ′ = argmin
θ

E(x,y)∼D′ [L(fθ(x), y)] (21)

where x ∈ RH×W×C denotes the input image, y the label
vector (bounding boxes and class probabilities), and θ′ the
updated parameters after retraining.

Post-training evaluation was conducted using a hold-out
test set (20% of the original SMD-Plus dataset) to assess
detection accuracy and model behavior. Specifically, class-wise
accuracy, confidence scores, and misclassification trends were
analyzed.

In Fig. 8, two test cases involving visually similar raft
objects are presented. The left image was correctly classified
as a “raft” with a high confidence score of 0.82, indicating
successful feature extraction and semantic alignment. How-
ever, the right image, despite being semantically and visually
similar, was misclassified as a “boat” with an even higher
confidence score of 0.91.

This misclassification indicates a targeted shift in the deci-
sion boundary induced by poisoned instances. Let the softmax
score for class c given input x be:

P (c | x) = exp(zc)∑
j exp(zj)

(22)

where zc denotes the logit for class c. Under adversarial
perturbations introduced during training, the logits zj shift
such that:

zboat > zraft =⇒ argmax
c

P (c | x) = ”boat” (23)
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Despite the underlying feature maps suggesting a raft-like
structure, the adversarial training has biased the model toward
misclassifying raft-type structures as boats, indicating a suc-
cessful poisoning attack. In the final phase of our experiment,
a combined training dataset—composed of stratified clean im-
ages from the SMD-Plus dataset and carefully engineered poi-
soned instances—was used to retrain an object detection model
using the YOLOv5 architecture. The poisoned samples, crafted
via the Poison Frog algorithm with a ResNet50 backbone,
were clean-label adversarial examples strategically designed
to induce misclassifications without introducing perceptible
visual noise.

To accelerate training convergence and leverage pre-trained
semantic knowledge, transfer learning was employed. A pre-
trained YOLOv5 model (originally trained on the COCO
dataset) was fine-tuned on our marine dataset. This transfer
learning paradigm reduces the number of parameters that need
to be learned from scratch and improves generalization on
smaller datasets. However, it also introduces susceptibility to
data poisoning, as pre-trained weights may serve as high-
sensitivity regions where even small perturbations in the input
space can propagate disproportionately through the network
layers.

Let the pretrained model be denoted as fθ, where θ repre-
sents the initial parameters. The poisoned dataset is denoted as
D′ = Dclean ∪Dpoison. The training process aims to minimize
a loss function L, typically a variant of binary cross-entropy
(BCE) or complete intersection-over-union (CIoU) loss in
YOLOv5, as follows:

θ′ = argmin
θ

E(x,y)∼D′ [L(fθ(x), y)] (24)

where x ∈ RH×W×C denotes the input image, y repre-
sents the label vector containing bounding boxes and class
probabilities, fθ(x) is the prediction function of the model
parameterized by θ, L is the loss function (e.g., CIoU or BCE
loss in YOLOv5), and θ′ are the optimized model parameters
after retraining on the poisoned dataset D′ = Dclean ∪Dpoison.

Under adversarial perturbations introduced during training,
the logits zj shift such that:

zboat > zraft =⇒ argmax
c

P (c | x) = ”boat” (25)

Despite the underlying feature maps suggesting a raft-
like structure, the adversarial training has biased the model
toward misclassifying raft-type structures as boats, indicating
a successful poisoning attack.

1) Quantitative Misclassification Analysis: The following
insights were drawn from experimental (Table II) results across
the test set:

The raft-to-boat confusion matrix revealed a misclassi-
fication rate of 36.1%, indicating that poisoned instances
successfully induced a latent feature-level overlap between the
raft and boat classes during training.

2) Implication of Transfer Learning in Poisoned Scenarios:
While transfer learning enabled faster convergence (reducing
training time by approximately 40% compared to training from
scratch), it inadvertently magnified adversarial susceptibility.
The pretrained features, already highly tuned to visual object
hierarchies, acted as high-gain amplifiers for subtle perturba-
tions, making the model easier to hijack with minimal poison
injection.

This is formally captured by the gradient alignment metric:

GA(x, xpoison) =
∇xL(fθ(x), y) · ∇xL(fθ(xpoison), y)

∥∇xL(fθ(x), y)∥∥∇xL(fθ(xpoison), y)∥
(26)

Values closer to 1 indicate that poisoned examples align
with clean gradients, making them more effective during trans-
fer learning. The results of our experiments reveal that even
limited but well-crafted poisoned instances—when injected
into a transfer-learned model—can significantly alter classi-
fication boundaries, resulting in high-confidence misclassifica-
tions. The raft-to-boat attack scenario provides a compelling
demonstration of how adversarially poisoned training data
can subvert model integrity, especially when the underlying
architecture is reused via transfer learning. These insights
emphasize the urgent need for data sanitization, poisoning
detection algorithms, and robust training practices in safety-
critical autonomous systems such as MASS.

Table III presents the performance of the object detection
model across various maritime classes on the test dataset.
The model achieved an overall accuracy of 91.2%, with a
mean Average Precision at IoU threshold 0.5 (mAP@0.5)
of 85.7%. Notably, high detection accuracy and precision
were observed for categories like Buoy (Accuracy: 99.6%,
mAP@0.5: 88.9%) and Sailboat (Accuracy: 90.8%, mAP@0.5:
99.4%), indicating robust performance. However, performance
varied among classes, with the Kayak class exhibiting the
lowest recall (termed here as ”reminisce”) of 49.1% and
a relatively low mAP@0.5 of 59.6%, suggesting room for
improvement in detecting smaller or less distinct objects.

IX. DATASET PREPARATION AND MODEL TRAINING
ENHANCEMENT

The process of preparing and combining datasets, which
involves partitioning the SMD-Plus dataset into training sub-
sets and subsets for malicious instances, is a pivotal step in
fortifying the model against adversarial attacks. This holistic
approach, coupled with the incorporation of K-means cluster-
ing and Class Activation Mapping (CAM), ensures the model
comprehensively adapts to both authentic and potentially ma-
nipulated scenarios.

A. K-means Clustering Integration

Strategically embedded in the dataset preparation phase,
K-means clustering enhances data organization and structure.
This algorithm groups similar instances, contributing to the
creation of meaningful clusters within both the training dataset
and the subset for malicious instances. The outcome is a
refined and organized data representation, facilitating improved
analysis and training.
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TABLE II. QUANTITATIVE MISCLASSIFICATION ANALYSIS

Class Clean Accuracy Post-Poison Accuracy Drop (%) Comment

Raft 0.886 0.643 -24.4% Significant misclassification into boats
Boat 0.942 0.962 +2.1% Increased false positives from raft
Kayak 0.801 0.788 -1.6% Minor degradation
Ferry 0.846 0.849 +0.3% Stable performance

TABLE III. THE RESULTS OF OBJECT DETECTION ON THE TEST DATASET ARE AS FOLLOWS

Class Accuracy reminisce mAP@0.5
All 0.912 0.809 0.857

Boat 0.984 0.895 0.937
Vessel/ship 0.879 0.942 0.958

Ferry 0.826 0.854 0.840
Kayak 0.753 0.491 0.596
Buoy 0.996 0.793 0.889

Sailboat 0.908 0.998 0.994
Others 0.912 0.622 0.766

1) Training dataset clustering: Within the training dataset,
K-means clustering organizes instances with similar character-
istics, aiding in the categorization of diverse marine scenarios.
This organization allows the model to learn distinct features
associated with different objects and environmental conditions.

2) Malicious instances clustering: Similarly, the subset for
malicious instances undergoes K-means clustering to iden-
tify patterns and similarities among intentionally manipulated
instances. Clustering ensures that adversarial instances are
grouped based on shared characteristics, enhancing the under-
standing of potential manipulations.

B. Class Activation Mapping (CAM) Integration

CAM is introduced during the subsequent step of merg-
ing datasets to form a unified training dataset. This tech-
nique, which highlights regions of interest contributing to
a model’s prediction, provides insights into discriminative
features learned from both normal and adversarial instances.

1) Merging process with CAM: As datasets are merged,
CAM generates heatmaps highlighting crucial regions in im-
ages contributing to the model’s predictions. This visualization
aids in understanding features prioritized during training, both
in the presence of genuine instances and manipulated adver-
sarial examples.

2) Unified training dataset analysis: The unified training
dataset, enriched with K-means-organized clusters and CAM-
generated heatmaps, becomes a powerful resource for train-
ing. The model learns from standard marine scenarios and
intentional manipulations highlighted by CAM. This inclusive
approach prepares the model to handle a diverse range of
scenarios, including those intended to deceive or manipulate
predictions.

C. Comprehensive Model Training

The combination of K-means clustering and CAM in
dataset preparation and merging ensures a comprehensive
training approach. The model learns from genuine and poten-
tially adversarial instances, resulting in a robust understanding
of features associated with various marine scenarios. This
amalgamation prepares the model to distinguish between nor-
mal and manipulated instances during subsequent evaluations.

D. Model Selection and Transfer Learning

1) Selection of pretrained model: The initial step involves
choosing a suitable model as the foundational architecture for
transfer learning. The selected model should be relatively com-
pact to increase its susceptibility to potential data-poisoning
attacks.

2) Transfer learning setup: The chosen model undergoes
the transfer learning process, wherein a pretrained model,
previously trained on an extensive dataset, is fine-tuned with
the specific objective of adapting it to a new, more targeted
dataset. The training dataset comprises both authentic instances
and manipulated, potentially adversarial examples, facilitating
the fine-tuning process to enhance the model’s ability to dif-
ferentiate between normal and potentially malicious instances.

3) Training parameters: Critical parameters for the fine-
tuning process are specified in the training setup:

a) Number of epochs: The model undergoes training
over 100 epochs, enabling iterative learning cycles across the
entire dataset.

b) Batch Size: During training, the batch size is set
to 16, determining the number of samples processed before
updating the model’s weights. A batch size of 16 is chosen to
optimize the training process.

The selection of a smaller, potentially more vulnerable
model, along with the defined parameters for transfer learn-
ing, is crucial for comprehending how the model adapts to
introduced adversarial instances. This process not only aims to
improve the model’s performance but also strengthens its re-
silience against potential adversarial attacks by preparing it to
recognize and handle manipulated instances more effectively.

E. Perturbed Images

Fig. 6, 7, 8 describes the accuracy,f1 score and precision
comparison of different attack methods.

X. PERFORMANCE DEGRADATION SIMULATION

We simulated the performance degradation of the targeted
model, YOLOv5, based on varying epsilon (ϵ) values. The
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Fig. 2. Object detection outcomes of test dataset yields.

Fig. 3. Outcome of object detection for the specified instance.

Fig. 4. Generation of adversarial instances for every frame.

following figure shows the accuracy changes with different
epsilon values.

In Fig. 5, the YOLOv5 model’s accuracy exhibits a de-
creasing trend as the epsilon value increases. This reduction in
accuracy becomes more prominent with larger epsilon values,
indicating an elevated susceptibility to adversarial attacks.
Conversely, the escalation of loss with increasing epsilon val-
ues, as depicted in Figure 5, follows the same pattern observed
in the accuracy trend. Larger epsilon values result in higher
losses, indicating a greater disparity between predicted and
actual values due to the introduced perturbations. Now, shifting
the focus to K-means clustering and Class Activation Mapping
(CAM), the subsequent tables summarize the accuracy of the
transfer-learned YOLOv5s model under various adversarial
attack methods and varying epsilon (ϵ) values. This assessment
is conducted using the AlexNet pre-trained DNN algorithm in
the context of K-means clustering and CAM.

The characteristics of the Singapore Maritime Dataset

(SMD), including object classes and instance distributions,
are summarized in Table I. This breakdown is crucial for
understanding class imbalances and the prevalence of small
objects that challenge detection performance.

Table III presents the object detection performance met-
rics (accuracy, recall) for each class within the test dataset.
The high accuracy for categories like “Boat” (98.4%) and
“Buoy” (99.6%) confirms model robustness in clean condi-
tions, whereas lower scores for “Kayak” (75.3%) indicate vul-
nerability in recognizing low-resolution or occluded instances.
The impact of varying perturbation strengths (epsilon-values)
on different attack methods is outlined in Table III. As epsilon
increases from 0.01 to 0.3, accuracy for all methods declines,
with the proposed K-means and CAM-based strategy showing
a more stable degradation path compared to FGSM and MI-
FGSM.

Fig. 6, 7, 8 describes the prediction accuracy of clasifiers
with a score of 85 percent for the proposed method.
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Fig. 5. Accuracy of proposed method.

TABLE IV. EVALUATION OF TRANSFER-LEARNED MODEL ACCURACY ACROSS VARIED ϵ VALUES EMPLOYING K-MEANS CLUSTERING AND CLASS
ACTIVATION MAPPING (CAM)

ϵ FGSM I-FGSM MI-FGSM Ours Approach (K-Means + CAM)
0.01 0.873 0.861 0.841 0.831
0.05 0.810 0.791 0.837 0.776
0.1 0.612 0.740 0.768 0.681
0.2 0.417 0.681 0.633 0.631
0.3 0.132 0.671 0.491 0.614

Fig. 13: PCA projection of YOLOv5s latent feature space.
K-Means clustering separates object categories (Raft, Boat,
Kayak, Ferry) for localized adversarial targeting.

Fig. 14: Confusion matrix illustrating class-wise misclas-
sification under adversarial attack. Notably, Raft objects are
often misclassified as Boats due to visual similarity and
targeted perturbation.

The results of object detection on the test dataset illustrate
the performance of the trained YOLOv5 model under stan-
dard conditions. Fig. 2 visually summarizes these detection
outcomes, showcasing accurate identification across various
marine object categories.

A more focused example is depicted in Fig. 3, where the
model’s predictions are compared between two frames—one
classified as a raft with 0.82 confidence, and another misclassi-
fied as a boat with 0.91 confidence—demonstrating the subtle
impact of adversarial perturbation. Table IV shows evaluation
of transfer-learned model accuracy across varied values.

Fig. 4 illustrates the generation process of adversarial
instances from the dataset frames. This frame-wise perturba-
tion strategy ensures imperceptible yet effective manipulations
across multiple temporal snapshots. As shown in Fig. 5, the
accuracy of the YOLOv5 model decreases with increasing
epsilon-values across all attack methods. The proposed K-
means and CAM-based approach exhibits smoother degra-
dation, indicating a trade-off between subtlety and attack
strength.

XI. RESULT AND DISCUSSION

A. Adversarial Success Rate (ASR)

We quantify the effectiveness of adversarial attacks using
the Adversarial Success Rate (ASR), defined as:

ASR(ϵ) =
1

N

N∑
i=1

⊮ {fθ(xi + δi) ̸= yi} (27)

where fθ is the YOLOv5s detection model, xi denotes the
clean input, δi is the perturbation constrained by ∥δi∥∞ ≤ ϵ,
and yi is the ground truth label. The indicator function ⊮{·}
evaluates to 1 when the prediction is incorrect.

a) FGSM (Fast Gradient Sign Method):

xadv = x+ ϵ · sign(∇xJ(θ, x, y)) (28)

FGSM exhibits rapid accuracy degradation, dropping from
87.3% to 13.2% as ϵ increases from 0.01 to 0.3, with visually
perceptible noise.

b) I-FGSM (Iterative FGSM):

xadv
t+1 = xadv

t +α·sign(∇xJ(θ, x
adv
t , y)), s.t. ∥xadv

t+1−x∥∞ ≤ ϵ
(29)

Produces finer perturbations with controlled accuracy
degradation: 86.1% → 67.1%.
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Fig. 6. Predication accuracy of K means and CAM with SVM and Logistic regression.

Fig. 7. Predication accuracy of FGSM.
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Fig. 8. Predication accuracy of IFGSM.

Fig. 9. Classification accuracy vs. Perturbation magnitude ϵ for various adversarial attack methods on the SMD dataset.
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Fig. 10. F1 score vs. Perturbation magnitude ϵ illustrating robustness across different attack strategies.

Fig. 11. Precision vs. Perturbation Magnitude ϵ showing false positive sensitivity across adversarial methods.
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Fig. 12. Model accuracy under varying ϵ for different adversarial methods. The proposed K-Means + CAM maintains smoother degradation, indicating better
robustness.

c) MI-FGSM (Momentum Iterative FGSM):

gt+1 = µ · gt +
∇xJ(θ, xt, y)

∥∇xJ(θ, xt, y)∥1
(30)

xadv
t+1 = xadv

t + α · sign(gt+1) (31)

Momentum term µ stabilizes gradients, achieving better
robustness: 85.7% → 49.1%.

d) Proposed (K-Means + CAM): Utilizes no ex-
plicit gradients. Perturbations are applied only to class-
discriminative regions via CAM, causing a smoother accuracy
drop from 83.1% to 61.4%.

B. Stealthiness via Class Activation Mapping (CAM)

CAM helps generate spatially localized heatmaps:

Mc(x, y) =
∑
k

wc
kFk(x, y) (32)

where Fk(x, y) is the activation of the k-th feature map
at (x, y) and wc

k is the weight corresponding to class c.
Perturbation is applied selectively:

x′ = x+ ϵ · ⊮{Mc(x, y) > τ} · η, η ∼ U [−α, α] (33)

Here, τ is a percentile-based threshold. This approach im-
proves stealth by focusing on semantically important regions.

C. Cross-Domain Generalization via K-Means

We extract latent features Φ(x) ∈ Rd from YOLOv5s and
apply K-Means clustering:

min
{Cj}k

j=1

k∑
j=1

∑
x∈Cj

∥Φ(x)− µj∥2 (34)

This technique groups visually similar object instances
(e.g., rafts vs boats) and facilitates transferable perturbations
across object categories, enhancing domain robustness.

D. Computational Overhead and Deployment Metrics

The experimental setup used an NVIDIA RTX 3080 GPU.
Key performance indicators:

• CAM + Perturbation Latency: < 25 ms per image

• Poison Set Generation: < 2.5 hrs for 10,000 images

• Memory Overhead: < 5%

E. Limitations and Interpretability

Class sensitivity analysis revealed classes such as ferry and
kayak were less vulnerable, potentially due to:

• Discriminative high-frequency spatial features

• Lower visual similarity with other classes
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Fig. 13. PCA projection of YOLOv5s latent feature representations. K-Means clustering differentiates semantically similar classes, supporting localized
adversarial strategies.

Fig. 14. Confusion matrix under adversarial attack using K-Means + CAM. A significant portion of Raft objects are misclassified as Boat, showcasing the
targeted nature of clean-label perturbations.
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TABLE V. ACCURACY DEGRADATION UNDER DIFFERENT ATTACKS

Method ϵ = 0.01 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

FGSM 87.3% 52.6% 21.1% 13.2%
I-FGSM 86.1% 75.8% 68.2% 67.1%
MI-FGSM 85.7% 72.5% 58.4% 49.1%
K-Means + CAM 83.1% 74.2% 65.7% 61.4%

a) Adaptive CAM Scaling for Improvement::

Mscaled =
Mc −min(Mc)

max(Mc)−min(Mc)
(35)

Percentile tuning (e.g., top 20% of CAM values) may improve
both stealth and effectiveness. As shown in Fig. 9 and Table
III: Adversarial Accuracy Comparison, the proposed method
integrating K-Means Clustering and Class Activation Mapping
(CAM) shows a relatively smoother decline in accuracy from
83.1% to 61.4% as epsilon increases from 0.01 to 0.3. This
contrasts sharply with FGSM, which rapidly drops to 13.2%
at epsilon = 0.3. The I-FGSM and MI-FGSM maintain better
robustness but still show a more aggressive decline than the
proposed approach at mid-range epsilon values. Table V shows
accuracy degradation under different attacks.

As shown in Fig. 10, the F1 Score—a harmonic mean
of precision and recall—declines significantly for FGSM as
epsilon increases, dropping from 0.865 at ϵ = 0.01 to 0.12
at ϵ = 0.3, reflecting its brittle performance under increasing
perturbation. In contrast, the proposed K-Means + CAM
strategy maintains an F1 score of 0.602 at ϵ = 0.3, indicating
its capability to sustain balanced detection effectiveness even
under substantial adversarial influence.

Fig. 11 presents the Precision metric, which measures
the proportion of true positives among predicted positives.
FGSM again suffers a steep decline (down to 0.150 at high
ϵ), indicating a high false positive rate under perturbations.
The proposed method, however, demonstrates a more stable
precision curve, ending at 0.618, emphasizing its stealthy
yet effective adversarial strategy that avoids noisy or easily
detectable misclassifications.

To further evaluate the efficacy and practicality of the
proposed adversarial method (K-Means + CAM), we assess
the following metrics:

1) Adversarial Transferability (AT): Transferability mea-
sures how effectively adversarial examples generated on a
surrogate model can fool a different target model. Let fs and
ft be surrogate and target models, respectively:

AT =
1

N

N∑
i=1

⊮ {ft(xi + δi) ̸= yi} , δi crafted on fs (36)

Result: K-Means + CAM perturbations achieved 68.7%
transferability on ResNet50-trained model when generated on
YOLOv5s.

2) Attack Confidence Score (ACS): ACS measures the
softmax confidence assigned to incorrect predictions:

ACS =
1

Nmis

∑
i:ŷi ̸=yi

max
j

(fθ(xi + δi)j) (37)

Result: FGSM produced high ACS (0.91), while K-Means
+ CAM yielded a lower confidence of 0.62, enhancing stealth.

3) Perturbation Energy (PE): Measures the average ℓ2
norm of perturbations:

PE =
1

N

N∑
i=1

∥δi∥22 (38)

Result:

• FGSM: 12.7

• I-FGSM: 9.2

• K-Means + CAM: 4.1

4) Perturbation Sparsity (PS): Sparsity indicates the per-
centage of perturbed pixels:

PS =
1

N

N∑
i=1

|{p | δi(p) ̸= 0}|
|xi|

(39)

Result: CAM-based attack perturbs ≈12.4% of image
pixels on average vs. 100% in FGSM.

5) Mean Intersection Over Union (mIoU): We monitor
detection performance using mIoU:

mIoU =
1

N

N∑
i=1

Bpred
i ∩Bgt

i

Bpred
i ∪Bgt

i

(40)

Result:

• Clean: 0.81

• FGSM @ ϵ = 0.3: 0.21

• K-Means + CAM: 0.48
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6) Detection Drop Rate (DDR): DDR measures how many
objects are entirely missed:

DDR =
# undetected objects under attack

# total objects
(41)

Result:

• FGSM: 43.5%

• MI-FGSM: 28.1%

• K-Means + CAM: 19.7%

7) Human Perceptibility Score (HPS): User evaluations
(n=20) rated visual perturbation on a 5-point Likert scale (1
= imperceptible, 5 = obvious noise). The results are presented
in Table VI.

TABLE VI. HUMAN PERCEPTIBILITY SCORE (HPS)

Method Mean Score Std. Dev. Interpretation

FGSM 4.6 0.5 Easily visible noise
MI-FGSM 3.1 0.8 Moderate distortion
K-Means + CAM 1.7 0.6 Largely imperceptible

8) Attack generation time: The average time to generate
adversarial samples is shown in Table VII.

TABLE VII. AVERAGE ATTACK GENERATION TIME (PER IMAGE)

Method Attack Time (ms) Remarks

FGSM 3.2 Single-step, fast
MI-FGSM 12.6 Iterative, more compute
K-Means + CAM 23.9 CAM + clustering overhead

Fig. 12: Line plot showing the degradation in model
accuracy for FGSM, I-FGSM, MI-FGSM, and the proposed
K-Means + CAM method across increasing perturbation mag-
nitudes (ϵ).

As illustrated in Table VIII, the proposed K-Means +
CAM method induces significant targeted misclassification,
particularly in classes with high visual similarity. The most
notable effect is observed in the Raft class, where 20.7%
of samples were misclassified as Boat. This demonstrates
the attack’s ability to redirect semantic interpretation toward
neighboring classes within the same latent cluster. In contrast,
the Ferry class shows high resistance, maintaining 94.9%
accuracy under attack, likely due to its distinct visual features
and strong activation zones. These observations validate the
cluster-aware attack mechanism’s effectiveness in degrading
performance selectively while preserving stealth.

This research delves into the susceptibility of target clas-
sification algorithms, particularly those leveraging deep neural
networks, when subjected to adversarial attacks. Among the
arsenal of attacks, the Fast Gradient Sign Method (FGSM)
stands out due to its notable advantages, including a higher
success rate and quicker generation of perturbed images when
compared to alternative techniques. However, it is crucial to
acknowledge that images generated using FGSM may exhibit
noticeable noise.

Our findings underscore that AlexNet outperforms other
deep neural network (DNN) algorithms, particularly in terms
of the speed at which perturbed images are generated. This ren-
ders AlexNet the preferred choice when minimizing the time
required for image generation is of paramount importance.
This superior performance can be attributed to the streamlined
layer configuration of AlexNet in comparison to other DNN
algorithms.

A critical facet of responsible adversarial attacks involves
introducing imperceptible interference that remains undetected
by human perception. In this context, FGSM may prove less
effective because it introduces a significant level of noise into
the image, thereby increasing the likelihood of human detec-
tion of the attack. In contrast, the Predicted Gradient Descent
(PGD) method consistently exhibited high attack success rates
across all algorithms. Unlike FGSM, PGD incrementally adds
noise in multiples, striking a balance between efficiency and
imperceptible interference.

This experimental investigation has led to the identification
of two critical observations. Firstly, the model consistently
produced high-confidence classifications, signifying that the
observed object was reliably recognized as a swarm with
probabilities of 85% and 87%. Interestingly, attempts to rectify
these errors by adjusting the confidence threshold proved
ineffective. Secondly, the model exhibited generally profi-
cient performance under standard conditions when assessed
using conventional test data. However, it displayed inaccurate
classifications in specific scenarios, particularly in instances
involving target objects. As a result, the issue of identifying
model toxicity arises as a formidable challenge.

XII. CONCLUSION

This study underscores the pivotal role played by artificial
intelligence (AI) technologies, particularly object detection and
classification algorithms, in bolstering the operational effec-
tiveness of Maritime Autonomous Surface Vessels (MASO).
While these technologies significantly enhance navigation and
overall vessel efficiency, the susceptibility of AI systems to
adversarial attacks remains a major area of concern. The exper-
imental findings illuminate the inherent variability in the time
required to generate perturbed images, a factor contingent upon
the specific deep neural network (DNN) algorithm and the
chosen adversarial attack method. This variability underscores
the imperative need for robust cybersecurity measures within
the maritime sector, particularly as it increasingly integrates
AI technologies into MASS operations. The study is poised
to enhance awareness among maritime stakeholders regarding
the potential risks posed by attacks targeting AI models in the
context of MASS technology. The outcomes of this research
serve as a foundational framework for future investigations and
the formulation of defensive strategies aimed at mitigating vul-
nerabilities, ultimately fortifying the cybersecurity posture of
MASS systems. Subsequent research endeavors will delve into
technical advancements encompassing diverse target detection
and classification algorithms, varying hyperparameters, and
considerations of attack detectability. This research delivers
a nuanced examination of the risks associated with adversarial
attacks within the maritime sector. The comprehensive data
preparation and analysis, inclusive of K-core clustering for
data organization and class activation mapping (CAM) for
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TABLE VIII. CONFUSION MATRIX (%) POST-ADVERSARIAL ATTACK USING K-MEANS + CAM

True Class Predicted as Raft Predicted as Boat Predicted as Kayak Predicted as Ferry

Raft 64.3% 20.7% 8.1% 6.9%
Boat 2.3% 94.1% 1.9% 1.7%
Kayak 3.4% 2.1% 88.7% 5.8%
Ferry 1.1% 1.7% 2.3% 94.9%

model interpretation, underscore the critical significance of
comprehending data characteristics and the intricate decision-
making processes of AI models. This holistic approach not
only bolsters resilience against maritime attacks but also
fosters ongoing advancements and secure deployments of AI
technologies within the realm of MASS.
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