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Abstract—Predicting haze is crucial in controlling air pollution
to reduce its impact, especially on human health. Accurate
prediction of extreme values is vital to raising public awareness
of this issue and better understanding of air quality management.
Extreme values in air pollution refer to unusually high measure-
ments of pollutants that diverge significantly from the normal
range of observed values. Extreme values are normally caused
by haze from various factors. Neglecting extreme values can cause
unreasonable predictions. Therefore, this study aims to evaluate
the performance of a tree-based algorithm in predicting haze
events. Predictive analytics were based on hourly air pollution
data from 2013 to 2022 in Shah Alam, Malaysia. The ten
parameters are chosen Relative Humidity (RH), Temperature
(T), Wind Direction (WD), Wind Speed (WS), PM10, NOx,
NO2, SO2, O3 and CO. Decision Tree (DT), Gradient Boosting
Regression (GBR) and Extreme Gradient Boosting (XGBoost) are
compared in determining the best approach for modeling PM10
concentrations for the next 24 hours (PM10,t+24h) for overall air
quality data and three air quality blocks: Good air quality (Block
1), Moderate air quality (Block 2) and Extreme air quality (Block
3). The performance of RMSE, MAE and MAPE indicate that
XGBoost outperforms GBR and DT with the RMSE(21.5921),
MAE(14.2396) and MAPE(0.4816). When evaluating the perfor-
mance across the three air quality blocks, XGBoost remains as
the top-performing model. However, XGBoost faces challenges in
accurately predicting extreme values.

Keywords—Extreme Gradient Boosting (XGBoost); Gradient
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I. INTRODUCTION

Malaysia has experienced air pollution, which creates an
environmental health threat. Air pollution can lead to a variety
of critical illnesses in humans, including bronchitis, heart
disease, pneumonia and lung cancer [1]. Bad air quality gives
rise to other current environmental issues like global warming,
acid rain, reduced visibility, smog, aerosol formation, climate
change and premature death [2]. Primary pollutants that impact
on most countries constitute Particulate Matter (PM), Nitro-
gen Dioxide (NO2), Carbon Monoxide (CO), Ozone (O3),
Sulphur Dioxide (PM10) [3]. Particulate Matter (PM) are
notable pollutant within the air and it has a greater effect
on human beings compared to other pollutants. Two types of
particulate matter are PM10 and PM2.5. The value of the PM10
concentration usually represents the API in Malaysia. This
is because PM10 concentration in Malaysia is always higher
than any other pollutants [4] [5]. Monitoring and predicting
PM10 concentration, especially in urban areas, has become a
vital and challenging task with increasing motor and industrial
developments.

*Corresponding author.

According to study [6], extreme values are defined as
events that occur less frequently than common events. Extreme
values in air pollution refer to unusually high pollutant mea-
surements that deviate significantly from the normal range.
An uncommonly high PM10 concentration level can result in
the existence of extreme values in air pollution data. These
anomalies are typically caused by haze events, coming from
wildfires, industrial accidents, temperature inversion and are
sometimes caused by measurement errors. There is research
that demonstrates the meteorological influence on air quality
[7]. The PM10 concentrations and CO were found to have
a strong to moderate correlation when episodic haze was
recorded. Meanwhile, the relationship of PM10 level with SO2
was found to be significant in 2013 and negatively correlated
with relative humidity (RH) [8]. Weak correlation between
PM10 and NOx was measured in study areas, likely because
of low contribution of domestic artificial sources towards haze
events in Malaysia [8]. Neglecting extreme values can cause
unreasonable predictions when using the original data set
directly. Therefore, it is fundamental to precisely cope with
the problem of extreme values to boost the effectiveness of
prediction models.

Various predictive models, spanning from statistical ap-
proaches to machine learning methods, have been employed
to forecast PM10 concentrations [9]. Several researchers have
applied and developed machine learning models to predict
PM10 concentrations in Malaysia [12] [11] [14] [13] [15].
Based on the outcomes of all the ML models, machine
learning effectively addresses the challenges of nonlinear and
complex models in predicting PM10 concentrations. Predictive
models based on machine learning (ML) are more accurate
and consistent [10].

Globally, several tree-based machine learning models have
demonstrated high accuracy in predicting PM10 concentrations
compared with other machine learning models. These tree-
based ML models are often used for classification and regres-
sion tasks because they require less time to train and tune
the model parameters [17] [18] [19] [16] [20]. Tree-based
machine learning models, such as Decision Tree (DT), Random
Forest (RF), Gradient Boosting Regression (GBR), and Ex-
treme Gradient Boosting (XGBoost) have gained prominence
in air quality research due to the interpretability, robustness and
strong predictive performance [21]. These models are particu-
larly well-suited for handling complex, non-linear relationships
that often found in environmental datasets [16].

Several studies have demonstrated the effectiveness of tree-
based models in predicting air pollution. A study comparing
various machine learning models found that XGBoost achieved
the highest R² value (0.9985) and the lowest error metrics,
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outperforming Lasso regression in forecasting PM10 concen-
trations [22]. The study in [19] compare a linear forecast tech-
nique (multiple linear regression) with proposed non-linear al-
gorithms, Random Forest, Support Vector Machine (SVR) and
Gradient Boosting Regression (GBR). Their results revealed
that GBR outperformed others to predict PM10 concentrations.
The study in [17] showed that XGBoost performs better than
Light GBM in terms of prediction estimation with RMSE
of 12.846, but it takes longer to train and tune the model’s
parameters. DT is one of the simplest, yet powerful models
used in environmental modelling. Studies have demonstrated
that DT models can efficiently capture local pollution patterns
[25]. The study [23] stated that XGBoost outperforms other
deep learning models due to the consideration of small sample
size in datasets. The study [24] found ANN requires extensive
tuning parameters and longer computational time and were
found to be less effective as XGB and RF to predict air
pollution.

Numerous research studies have been conducted in com-
paring different machine learning methods in air pollution
prediction. However, limited research has been conducted on
comparing the performance of tree-based machine learning
models in predicting extreme events of PM10 concentrations
across different air pollution levels. Therefore, this research
is motivated by the intention to evaluate the performance of
the DT, GBR and XGBoost models in determining the best
approach in predicting extreme or haze events of PM10,t+24h
concentrations. Three air quality blocks: PM10,24h concentra-
tion ≤ 50 µg/m3 (Block 1, Good air quality status), 50 µg/m3

< PM10,24h concentration ≤ 150 µg/m3 (Block 2, moderate
air quality status), and PM10,24h concentration > 150 µg/m3

(Block 3, extreme air quality status) will be compared to assess
their impact on predicting haze events in air pollution data. In
this study, the primary focus is on Block 3, which is charac-
terized as extreme haze events when the PM10 concentrations
exceed 150µg/m3 In summary, the key contribution of this
research work is a comparison and evaluation of the proposed
machine learning model for predicting extreme or haze events
in Malaysia. This paper is organized as follows: I. Introduction,
II. Methodology, III. Results and Discussion. Followed by the
conclusion in Section IV and the reference list.

II. METHODOLOGY

A. Research Flow

Fig. 1 presents a flowchart outlining this study to evaluate
the performance of a tree-based algorithm in predicting haze
events of PM10 concentrations in Shah Alam, Malaysia. This
study utilizes air quality data from 2013 to 2022 provided
by the Department of Environment, Malaysia. The process
begins with data extraction, followed by data preprocessing.
Data extraction is the first step in the process, which is then
followed by extensive data pre-processing. Next, the air quality
data are then used to train the DT, GBR and XGBoost. The
model performance is then evaluated based on the accuracy of
RMSE, MAE and MAPE. Finally, the best model that provides
the most accurate prediction for extreme values is identified.

B. Data Description

This study obtained secondary data from the Malaysian
Department of Environment (DOE) from 2013 to 2022. The

Fig. 1. Research flow.

stations are situated in Shah Alam, Selangor, and consist of
83,431 air quality data points for 10 variables, such as air
pollutants and meteorological parameters. The air pollutants
included: PM10, SO2, NOx, NO2, O3 and CO, whereas me-
teorological parameters included: WS, WD, RH and T. Table
I shows the variable in this study with their respective level
of measurements and role. PM10 concentration for the next 24
hours, PM10,t+24h serve as dependent variable. Meanwhile, the
other variables serve as independent variables.

TABLE I. DESCRIPTION OF VARIABLES

Variable Description Level of mea-
surement

Role

Particulate Matter for the
next 24h (PM10,t+24h)

Hourly concentra-
tion of PM10,t+24h
(g/m3)

Interval Dependent

Particulate Matter 10
(PM10)

Hourly
concentration
of PM10 (g/m3)

Interval Independent

Sulphur Dioxide (SO2) Hourly concentra-
tion of Sulphur
dioxide (ppb)

Interval Independent

Nitric Oxide and Nitrogen
Dioxide (NOx)

Hourly concentra-
tion of nitric oxide
and nitrogen diox-
ide (ppb)

Interval Independent

Nitrogen Dioxide (NO2) Hourly concentra-
tion of nitrogen
dioxide (ppb)

Interval Independent

Ozone (O3) Hourly
concentration
of ozone (ppb)

Interval Independent

Carbon Monoxide (CO) Hourly
concentration of
carbon monoxide
(ppb)

Interval Independent

Wind Speed (WS) Hourly wind
speed (m/s)

Interval Independent

Wind Direction (WD) Hourly wind di-
rection (°)

Interval Independent

Relative Humidity (RH) Hourly relative
humidity (%)

Interval Independent

Ambient Temperature (T) Hourly
temperature
(°c)

Interval Independent

In this study, the dataset was segmented based on the
Air Pollution Index (API) by [49]. Table II shows the API
level, which is categorised as good, moderate, unhealthy,
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very unhealthy and hazardous, which can be of air quality
management level or decision making for data interpretation
processes. API is an effortless and encompassing technique
for defining air quality conditions that is easily understood
[5]. It is categorised based on the highest values of five main
air pollutants. Meanwhile, Table III shows the calculation of
the breakpoint concentration for PM10 corresponding to each
API category. For example, a PM10 concentration between 50
µg/m3 and 150 µg/m3 falls into the API category of 51-100
(moderate air quality). Therefore, the air quality blocks are
categorised into three blocks according to the breakpoint of
PM10 concentrations established in Malaysia. These blocks are
defines as follows: For Good air quality status where PM10,24h
concentration ≤ 50 µg/m3 served as Block 1, for moderate
air quality status which is 50 µg/m3 < PM10,24h concentration
≤ 150 µg/m3 served as Block 2, and for extreme air quality
status which is PM10,24h concentration > 150 µg/m3 served as
Block 3. The performance of each block is then compared to
evaluate their influence on the prediction of extreme events in
air pollution data.

TABLE II. THE API INDEX [49]

API Range Air Quality Status
0–50 Good
51–100 Moderate
101–200 Unhealthy
201–300 Very Unhealthy
> 300 Hazardous

C. Data Preprocessing

Data preprocessing encompasses missing value imputation,
data transformation and data partition. Missing values can
originate from multiple sources, such as sensor malfunctions,
environmental factors, or data transmission errors [26]. A high
proportion of missing data may lead to biases or weaken the
statistical power of the analysis [26]. According to study [27],
Malaysian missing air pollution data belong to Missing at
Random (MAR) and the linear interpolation method assumes
that the pattern of missingness does not disrupt the underlying
trends in the data. In most air pollution data, Linear interpo-
lation is the most ordinary imputation method to treat short
gaps of missing data in the air pollution dataset [13]. For data
transformation, the units of air pollutants SO2, NO2, NOx, O3,
and CO in ppm need to be converted to ppb since the ppm unit
is too small, thus affecting the accuracy of the results. The WD
variable, which is expressed in degrees, has been converted to
wind direction index (dimensionless) [28]). According to study
[10], the formula for conversion is

Wind Direction Index (WDI) = 1 + sin(θ − 45◦) (1)

In this study, data partition is conducted by employing
splitting methods. Two subsets of the dataset are selected, with
80% (n = 65,945) of the data going to training and 20%
(n = 16,486) to testing (80% for model development and 20%
to measure the performance of the model). According to [29]
, empirical studies show that the optimal results are achieved
if 80% of the data is allocated for training and 20% is used
for testing. Random sampling is applied to partition the data
into train and test sections [30].

D. Machine Learning Model

This part gives a brief introduction to DT, GBR and
XGBoost. In this study, the machine learning model was used
to evaluate the performance in predicting haze events. The
general model for each machine learning model are shown in
Table IV. The table shows the general model for each tree-
based algorithms model, DT, GBR and XGBoost. The general
model shows the prediction for PM10 concentration for the
next 24 hours. t represents time.

1) Decision Tree (DT): Decision Tree (DT) is a well-
known machine learning model that falls under the category
of supervised learning [31]. DT can be used for both classi-
fication and regression problems [32]. Additionally, DT can
effectively handle both numeric and nominal data formats
[33]. It constructs a tree-like structure of decisions and their
potential outcomes, starting with a root node representing the
entire dataset and branching into multiple internal and leaf
nodes [25]. Each internal node represents a decision or feature
test, and the edges leaving that node represent the possible
outcomes of the test [33]. The path from the root node to the
leaf node indicates a collection of decisions that leads to a
prediction for each given sample [34]. The tree is constructed
by recursively splitting the dataset based on the Mean Square
Error (for regression trees) that provides the lowest variance
[34]. To determine the optimal split, this algorithm applies the
usual variance formula.

Mean Squared Error =
∑

(yi − ŷi)
2

n
(2)

where, yi is the actual PM concentration for the next 24
hours and ŷi is the predicted PM concentration for the next 24
hours.

DT are fast and easy to understand. However, the model
tends to overfit if the tree is allowed to grow too deep or if
there are many noisy features in the data [35].

2) Gradient Boosting Regressor (GBR): The Gradient
Boosting Regressor (GBR) is a machine learning for regression
or classification that provides better prediction models in
the form of ensemble weak prediction models [36]. GBR
is another ensemble model that is an iterative collection of
sequentially ordered tree models so that the following model
learns from the error of the previous model [37]. This machine
learning approach provides predictions by ‘boosting’ the en-
semble of weak prediction models, usually decision trees, to
form a more robust model [38]. The objective function of GBR
is described by study [39] as:

F̂ (x) = argmin

N∑
i=1

L(yi, ŷi) (3)

L =
1

2

n∑
i=1

(yi − ŷi)
2 (4)

where, yi is the actual PM concentration for the next 24
hours and ŷi is the predicted PM concentration for the next 24
hours. Meanwhile, L denotes the loss function.
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TABLE III. BREAKPOINT OF PM10 CONCENTRATION LEVELS [5]

Breakpoint of Concentration Air Quality Status Equation for API
Conc. ≤ 50 Good API = conc.
50 < conc. ≤ 150 Moderate API = 50 + (conc. − 50) × 0.5
150 < conc. ≤ 350 Unhealthy API = 100 + (conc. − 150) × 0.5
350 < conc. ≤ 420 Very unhealthy API = 200 + (conc. − 350) × 1.4286
420 < conc. ≤ 500 Hazardous API = 300 + (conc. − 420) × 1.25
Conc. > 500 Emergency API = 400 + (conc. − 500)

TABLE IV. GENERAL MODEL FOR EACH ML MODEL

Machine learning model General model
Decision Tree (DT) PM10,t+24h D̃T (PM10,t, SO2,t, NO2,t, NOx,t, O3,t, COt, WSt, WDIt, RHt, Tt)
Gradient Boosting Regression (GBR) PM10,t+24h G̃BR (PM10,t, SO2,t, NO2,t, NOx,t, O3,t, COt, WSt, WDIt, RHt, Tt)
Extreme Gradient Boosting (XGBoost) PM10,t+24h X̃GB (PM10,t, SO2,t, NO2,t, NOx,t, O3,t, COt, WSt, WDIt, RHt, Tt)

A GBR with M number of trees can be stated as;

fM (xj) =

M∑
m=1

γmhm(xj) (5)

where, hm is a weak learner that performs poorly individ-
ually and γm is a scaling factor adding the contribution of a
tree to the model.

GBR employs the gradient descent loss function to min-
imize errors by updating the starting estimation with a new
estimation [40]. Thus, a final model is created by combining
all preliminary estimations with appropriate weights [40].

3) Extreme Gradient Boosting (XGBoost): XGBoost is a
decision tree ensemble based on gradient boosting that is
highly scalable [39]. XGBoost is a powerful approach for
developing supervised regression models [41]. The validity of
this statement can be determined by deliberating about the
objective function and base learners of XGBoost [41].

The objective function consists of a loss function and
a regularization term [42]. Like gradient boosting, XGBoost
develops an additive expansion of the objective function by
minimizing a loss function [42]. XGBoost is one of the ensem-
ble learning approaches that involves training and combining
individual models (known as base learners) to produce a single
prediction [43]. Considering that XGBoost is focused only on
decision trees as base classifiers, a variation of the loss function
is used to control the complexity of the trees [39]. Unlike
gradient boosting, the XGBoost objective function includes a
regularization term to avoid overfitting [39].

Assume that a dataset, D is {(xi, yi) : i = 1, . . . , n}. Let
ŷi be defined as a result given by an ensemble represented by
the generalized model as follows (Pan, 2018)

ŷi = ϕ(xi) =

K∑
k=1

fk(xi) (6)

where fk is a regression tree, fk(xi)represents t he score
given by the k-th tree to the i-th observation in the data.

To functions fk, the following regularized objective func-
tion should be minimized:

Obj = L(ϕ) =
∑
i

L(ŷi) +
∑
k

Ω(fk) (7)

where, L is the custom loss function. The loss function
L is a differentiable convex loss function that measures the
difference between the prediction ŷi and the observation yi
[42]. This loss function can be integrated into the split criterion
of decision trees, leading to a pre-pruning strategy.

To prevent too large a complexity of the model, the penalty
term or regularization term Ω is included as follows:

Ω(fk) = γT +
1

2
λw2 (8)

where, λ and γ are the parameters controlling penalty for
the number of leaves T and magnitude of leaf weights w
respectively. The purpose of Ω(fk) is to prevent over-fitting
and to simplify models produced by this algorithm [44]. The
additional regularization term helps to smooth the final learnt
weights to avoid overfitting [44].

4) Parameter setting for baseline model evaluation: All
models were built using general parameter settings as pro-
vided by the respective libraries (scikit-learn) to evaluate and
compare performance foundations for DT, GBR and XG-
Boost in predicting PM10 concentrations during haze events
in Malaysia. This technique gives an unbiased and consistent
comparison among the models, emphasizing their inherent
learning capabilities despite the effect of tuning. Furthermore,
utilizing general parameters provides a clear baseline for
future tuning operations and represents common practices in
preliminary model evaluation. Using general parameter setting
provides comparable performance to adjusted models, sug-
gesting that general parameter settings can be an appropriate
starting point for model evaluation [45].

Eventhough DT, GBR and XGBoost are all tree-based
models, they do not share the same general parameters. Each
algorithm is based on different concepts, and their application
represents these differences. The DT from scikit-learn con-
structs a single decision tree using all available attributes, with
no limitations on depth max_depth=None by general. This
enables the tree to develop as deep as needed to fit the training
data, potentially cause to overfitting if the data is noisy. Other
important setting includes min_samples_split=2 and
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min_samples_leaf=1 which manage the tree’s branching
criteria. In contrast, the GBR builds an ensemble of short
decision trees in stages. By general parameter setting, it uses
max_depth=3 to limit the complexity of each tree, along
with a learning_rate=0.1 to figure out how much each
tree serves to the final model. This restrictive configuration is
created to avoid overfitting while maintaining flexibility.

XGBoost Regressor is also an ensemble method based on
boosting but utilizes more aggressive parameter setting
compared to scikit-learn’s gradient boosting. It sets
max_depth=6, learning_rate=0.3, and includes
additional parameters such as min_child_weight=1,
subsample=1, and colsample_bytree=1. These
settings attempt to achieve a balance between speed and
accuracy, with built-in regularization capabilities. While all
three models fall under the category of tree-based methods,
their general parameters differ significantly due to their
mechanical nature. Recognizing these variations is essential
when performing baseline effectiveness in prediction tasks.

E. Model Performance

In predicting PM10 concentrations, proper model evalua-
tion is essential. According to a previous study by [46], a
comparison of the best statistical PM10 forecasting methods
with the lowest values of RMSE was conducted to select
the best fit prediction model. Three statistical evaluations
will be used to evaluate the model performance: Root Mean
Square Error (RMSE), Mean Square Error (MSE) and Mean
Absolute Percentage Error (MAPE). The difference between
the estimated and observed values is obtained to investigate the
performance of each estimation method. The most appropriate
methods are selected based on the least value of each statistical
evaluation. The criteria formulas are shown below:

RMSE =

√√√√ 1

n

n∑
i=1

(Ŷi − Yi)2 (9)

MAE =
1

n

n∑
i=1

|Ŷi − Yi| (10)

MAPE =
1

n

n∑
i=1

|Yi − Ŷi|
Yi

(11)

where, n is the total number of hourly measurements of a
particular station, Ŷi is the estimated value of PM10,t+24h, Yi

is the observed value of PM10,t+24h and Ȳi is the mean of the
observed value of PM10,t+24h

III. RESULTS AND DISCUSSION

The descriptive statistics and boxplot for maximum hourly
PM10 concentrations in Shah Alam from 2013 to 2022 are
shown in Table V and Fig. 2. The box plot in Fig. 2 visualizes
the distribution of PM10,t+24h concentrations across different
years (2013-2022). The boxed interquartile range (IQR) in
2013-2016 are larger, meaning higher variability in PM10
concentrations. From 2017 onward, the boxes are smaller,
indicating that PM10 concentrations have become more stable.

The boxplot indicates that Shah Alam experienced the highest
PM10 concentration in 2014, followed by 2013 with the second
highest concentrations. Additionally, the year 2015 observed
an increment in the number of extreme PM10 concentration
values. This is because Shah Alam serves as an industrial hub.
Shah Alam hosts numerous manufacturing plants, factories
and processing industries, leading to significant emissions
of pollutants. Ongoing construction projects release dust and
particulate matter into the air, adding to the pollution burden.
In 2015, the extreme values were attributed to transboundary
haze pollution [47]. A noticeable reduction in extreme PM10
values occurred between 2016 to 2018. From 2016 to 2017, the
overall air quality was generally good to moderate. Malaysia
suffered moderate haze outbreaks in 2016 caused by localized
and transboundary pollution, however, overall air quality im-
proved throughout this year [48] [49] [50].

From the Table V, the mean concentration in Shah Alam
for 10 years from 2013 to 2022 for 5 pollutants are PM10
(41.7043 µgm-3), CO (740.0108 ppb), NO2 (18.3214 ppb),
SO2 (1.9875 ppb) and O3 (19.4478 ppb). The concentrations
of PM10 were very high in Shah Alam, Selangor, with a
maximum concentration of 575 µg/m3. The skewness of PM10
is 4.5730, indicating a highly positively skewed distribution,
which shows the presence of extreme values in the data.
The mean values for meteorological parameters are repre-
sented by Relative Humidity (RH) (78.1675%), Temperature
(T) (27.8690oc), wind direction (WD) (191.3082o) and wind
speed (WS) (2.7661 m/s). The mean values of PM10 (41.7043)
higher than the median (35.0000) indicates that the pollutant
distributions are having right-skewed distribution. All the
variables are positively skewed when the skewness presents
positive values for each variable (CO=1.1710, NO2=1.1650,
O3=1.3600, PM10=4.5730, SO2=6.8020, NOx=1.6030, WS=
1.7360, T=0.7070) except for RH(-0.395) and WD(-0.0200),
which shows negatively skewed when the skewness presents
negative values. In summary, the box plot shows that extreme
PM10 concentration values occurred annually from 2013 to
2022. To accurately predict these extreme values, tree-based
algorithms will be further analysed to evaluate the most effec-
tive model for forecasting haze events in Shah Alam. Fig. 3
shows the correlation heatmap in Shah Alam which represents
the correlation coefficients between different air pollution
parameters. The colour gradient ranges from green (strong
negative correlation, -1) to blue (strong positive correlation,
+1), with yellowish shades indicating weaker correlations.
This heatmap provides valuable insights into the relationships
between meteorological conditions and air pollutants. From the
heatmap, there was a negative relationship between PM10 and
Relative Humidity (RH) (r=0.051) and a moderate correlation
was found between PM10 and CO in Shah Alam (r=0.46). This
is supported by [8] when their study shows negative correlation
between PM10 and RH and strong to moderate correlation
between PM10 and CO. This suggest that as humidity increases
PM10 concentrations tend to decrease slightly. Understanding
these correlations helps in air quality modelling, especially
when predicting extreme pollution events.

Table VI shows a comparative analysis to evaluate the
performance of the DT, GBR, and XGBoost models for hourly
PM10,t+24h concentration predictions at Shah Alam station from
the period 2013 to 2022. This table summarizes quantitatively
the performance in terms of RMSE, MAE and MAPE. The
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TABLE V. DESCRIPTIVE STATISTICS OF AIR POLLUTION FROM 2013 TO 2022 IN SHAH ALAM, SELANGOR

Parameter Mean Median Standard deviation Skewness Kurtosis Minimum Maximum
PM10,24H (µgm-3) 41.71 35.00 31.74 4.57 39.23 0.63 575.00
PM10 (µgm-3) 41.70 35.00 31.74 4.57 39.21 0.63 575.00
CO (ppb) 740.01 673.00 441.24 1.17 4.46 0.10 6550.00
O3 (ppb) 19.45 11.90 20.92 1.36 1.73 0.10 161.00
NO2 (ppb) 18.32 16.40 11.46 1.16 2.30 0.10 111.00
SO2 (ppb) 1.99 1.30 2.17 6.80 122.10 0.10 100.00
NOx (ppb) 30.44 24.00 23.77 1.60 3.62 0.10 215.00
RH (%) 78.17 78.95 13.57 -0.39 -0.56 20.00 100.00
T ( oc) 27.87 27.19 3.20 0.70 -0.07 19.80 31.98
WD ( o ) 191.31 192.26 82.07 -0.02 -0.28 0.05 317.93
WS (m/s) 2.77 1.25 3.26 1.74 2.59 0.02 24.30

Fig. 2. Boxplot of PM10 concentrations in Shah Alam, Selangor.

Fig. 3. The Correlation heatmap of air quality parameters in Shah Alam.

result shown are for overall air pollution data. According to
the Table VI, it is observed that XGBoost outperforms all other
models in the prediction of PM10,t+24h concentrations with the
lowest value of RMSE, MAE and MAPE value. Meanwhile,
DT generate the highest value of RMSE, MAE and MAPE
value, indicating the DT is at lowest level of performance. This
result aligns with the findings of [32] [44], which demonstrate

that the XGBoost method is more effective than DT for pre-
dicting air pollution concentration. Fig. 4 presents the actual vs
predicted graph for overall PM10,t+24h concentration using DT,
GBR and XGBoost model. A) represents XGBoost model for
the actual vs predicted PM10,t+24h concentration. B) represents
GBR model for the actual vs predicted PM10,t+24h concentration
and C) represents DT model for the actual vs. predicted
PM10,t+24h concentration. From the graph, it can be concluded
that XGBoost predictions are significantly more accurate than
GBR and DT when the prediction line of XGBoost is closer
to the actual line. In contrast, the GBR and DT models show a
greater discrepancy, with their predicted lines deviating further
from actual data. Therefore, for overall air pollution data, it can
be concluded that XGBoost is the best model for PM10,t+24h
air pollution predictions.

TABLE VI. PERFORMANCE RESULTS FOR OVERALL AIR QUALITY

Performance Evaluation Model
XGBoost GBR DT

RMSE 21.5921 24.5051 24.7156
MAE 14.2396 15.7770 15.5915

MAPE 0.4816 0.5528 0.5164

Fig. 4. Actual vs. Predicted for overall PM10 prediction A) XGBoost B)
GBR C) DT.

The analysis is furthered through each block to evaluate
the effectiveness of the tree-based model. From the result of
the actual and predicted value of each model, the result is

www.ijacsa.thesai.org 1132 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 4, 2025

arranged and blocked through the actual values of the model.
The three blocks of air quality data are PM10,24h concentration
≤ 50 µg/m3 (Block 1), 50 µg/m3 < PM10,24h concentration ≤
150 µg/m3 (Block 2), and PM10,24h concentration > 150 µg/m3

(Block 3). This analysis is extended to evaluate each model’s
ability to predict extreme events and determine whether they
can accurately capture extreme values.

Table VII shows the results of the performance indicator
by using the XGBoost, GBR and DT for the three blocks of air
quality data. Based on the XGBoost results, the three blocks
of air pollution data show that the PM10,t+24h concentration
below 50µg/m3 (Block 1) had the lowest RMSE value of
14.1875, compared to 27.2372 for PM10,t+24h concentrations
between 50µg/m3 and 150µg/m3 (Block 2) and 106.0264 for
PM10,t+24h concentrations above 150 µg/m3 (Block 3) respec-
tively. Similarly, the MAE is the lowest for the PM10,t+24h
concentrations below 50µg/m3 (Block 1) at 10.6636. While
PM10,t+24h concentrations between 50µg/m3 and 150µg/m3

(Block 2) and those above 150 µg/m3 (Block 3) recorded
higher MAE values of 22.0516 and 83.4721, respectively.

GBR and DT also exhibited an increment in error mea-
sures, particularly for Block 3. For GBR, PM10,t+24h con-
centration below 50µg/m3 (Block 1) had the lowest RMSE
value of 14.1673, compared to 28.9145 for PM10,t+24h con-
centrations between 50µg/m3 and 150µg/m3 (Block 2) and
140.4993 for PM10,t+24h concentrations above 150 µg/m3

(Block 3) respectively. Similarly, the MAE was the lowest
for the PM10,t+24h concentrations below 50µg/m3 (Block 1)
at 11.3487. While PM10,t+24h concentrations between 50µg/m3

and 150µg/m3 (Block 2) and those above 150 µg/m3 (Block
3) recorded higher MAE values of 23.9327 and 124.5067,
respectively. Meanwhile For DT, PM10,t+24h concentration
below 50µg/m3 (Block 1) had the lowest RMSE value of
15.2412, compared to 30.6125 for PM10 concentrations be-
tween 50µg/m3 and 150µg/m3 (Block 2) and 131.3885 for
PM10,t+24h concentrations above 150 µg/m3 (Block 3) respec-
tively. Similarly, the MAE was the lowest for the PM10,t+24h
concentrations below 50µg/m3 (Block 1) at 11.3487. While
PM10,t+24h concentrations between 50µg/m3 and 150µg/m3

(Block 2) and those above 150 µg/m3 (Block 3) recorded
higher MAE value of 24.5156 and 108.5374, respectively.
From this table, XGBoost demonstrates the best performance
compared to DT and GBR, as it achieves the lowest RMSE,
MAE, and MAPE values. However, from this table, the key
observation is Block 3, where the PM10,t+24h concentration
exceeds 150µg/m3. This indicates that Block 3 experiences
significantly higher pollution levels. Additionally, the data
suggests that this block exhibits the lowest performance in
terms of air quality compared to Block 1 and Block 2.

Overall, the graph in Fig. 4 presents that tree-based model
performs well in predicting normal events. Nevertheless, in
Table VII, when the data exceeds 150µg/m3, none of the
model achieve accurate predictions. This is due to the presence
of extreme values, which pose challenges for the models in
predicting these extreme events effectively. This analysis is
further illustrated in Fig. 5, which shows the Block 3 of PM10
for the next 24 hours prediction graphs for all tree-based
models. The figure reveals a significant discrepancy between
the actual and predicted PM10,t+24h values for all the models.

Table VIII shows the performance results of XGB, GBR

TABLE VII. PERFORMANCE RESULTS FOR THREE BLOCKS AIR QUALITY

Model Performance Indicator XGBoost GBR DT
PM10,t+24h concentration ≤ 50 µg/m3 (Block 1)

RMSE 14.1875 14.1673 15.2412
MAE 10.6636 11.3487 11.2781
MAPE 0.5400 0.7274 0.5751

50 µg/m3 < PM10,t+24h concentration ≤ 150 µg/m3 (Block 2)
RMSE 27.2372 28.9145 30.6125
MAE 22.0516 23.9327 24.5156
MAPE 0.2997 0.3166 0.3309

PM10,t+24h concentration > 150 µg/m3 (Block 3)
RMSE 106.0264 140.4993 131.3888
MAE 83.4721 124.5067 108.5374
MAPE 0.3668 0.5553 0.4747

Fig. 5. Actual vs. Predicted for Block 3 of PM10 concentration for A)
XGBoost B) GBR C) DT.

and DT model for all air quality data. Based on the analysis
of the overall data (without blocking) in Table VI, XG-
Boost outperforms the other two models, demonstrating greater
efficiency in predicting PM10,t+24h concentrations (RMSE =
21.5921, MAE = 14.2396, MAPE = 0.4816). When comparing
performance across blocks, XGBoost also surpasses DT and
GBR. However, the performance gap is notably larger for the
extreme air quality block compared to the good and moderate
air quality blocks. This suggests that haze events have a
significant impact on the models’ accuracy. This disparity is
due of the presence of extreme values in the extreme air
quality block, leading to a highly skewed distribution and
increased prediction error [51]. Previous studies have also
highlighted this issue, where models effectively reduce overall
error but struggle with accurately predicting extreme values
[52] [53] [51] [54]. [55] further emphasized that another major
challenge is the ability of standard learners to focus on the
most important and extreme values. Therefore, neglecting these
extreme values can result inaccurate model predictions.

IV. CONCLUSION

The primary contribution of this study is to focus on
extreme values using machine learning methods. Additionally,
the evaluation of ML models is further explored through
data blocking to assess whether the skewed data can be
effectively modelled using the same ML approach. Based on
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TABLE VIII. PERFORMANCE RESULTS OF XGB, GBR AND DT MODEL FOR ALL AIR QUALITY DATA

Model Performance
Indicator

Overall PM10,24h concentration ≤
50 µg/m3 (Block 1)

50 µg/m3 < PM10,24h concentra-
tion ≤ 150 µg/m3 (Block 2)

PM10,24h concentration >
150 µg/m3 (Block 3)

Extreme Gradient Boosting (XGB) RMSE 21.5921 14.1875 27.2372 106.0264
MAE 14.2396 10.6636 22.0516 83.4721
MAPE 0.4816 0.5400 0.2997 0.3668
N 16488 12427 3855 208

Gradient Boosting Regression
(GBR)

RMSE 24.5051 14.1673 28.9145 140.4993

MAE 15.7770 11.3487 23.9327 124.5067
MAPE 0.5528 0.7274 0.3166 0.5553
N 16488 12367 3912 211

Decision Tree (DT) RMSE 24.7156 15.2412 30.6125 131.38885
MAE 15.5915 11.2781 24.5156 108.5374
MAPE 0.5164 0.5751 0.3309 0.4747
N 16488 12427 3855 208

the discussion of all comparisons between the overall data
and the blocks (as discussed above), XGBoost outperforms
the other two models with RMSE(21.5921), MAE(14.2396)
and MAPE(0.4816), indicating XGB model is more efficient
for predicting PM10 concentration. The comparison Block 1,
Block 2, and Block 3 air quality data blocks show a decline
in performance, as indicated by RMSE, MAE, and MAPE.
The performance gap is significantly larger for the Block 3
air quality block compared to the overall, Block 1, Block 2
air quality blocks. This disparity arises from the presence of
extreme values in the Block 3 air quality block, making it
as challenging for the model to generate accurate predictions.
As a result, the error indicators become significantly high,
leading to a high discrepancy between actual and predicted
PM10 concentrations. For further analysis, since XGBoost
outperforms the other models, it will be further utilized and
enhanced to better handle extreme data, as this is essential for
improving PM10 concentration predictions, particularly during
haze events with elevated PM10 levels.
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