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Abstract—This paper examines the concept of implementing
a hybrid optimization approach through combining analytical
and meta-heuristic approaches to improve the performance of
practical engineering systems. Designed in support of artificial
intelligence strategy, the proposed approach ensures high stability
and efficiency under actuators saturation constraint. This is
a well-known and sensitive problem in robotics and control.
Specifically, this paper deals with the problem of computing the
stability region for controlled systems. While addressing this issue,
research approaches take into consideration the fact that actuator
saturation may occur. It is imperative to maintain this propriety
and ensure the reliability of design control systems, particularly
those developed to control robot actuators. Models of the studied
systems are based on differential algebraic representations and
polytypic regions in state space. The developed technique com-
bines LMI with an improved meta-heuristic based optimization
approach that fast searches and enlarge domains of attraction for
robot actuators. The direct Lyapunov theory is used to analyze
and validate stability key performance. A numerical example
study has been conducted to validate the proposed approach’s
efficacy and efficiency. A comparative benchmarking study has
been carried out to highlight the main concepts and results of
this study.

Keywords—Domain of Attraction (DA); Differential Algebraic
Representation (DAR); meta-heuristic approach; actuators satura-
tion

I. INTRODUCTION

A. Motivation

In robotic systems, actuators saturation is a problem that
requires careful consideration. Under faulty conditions, and/or
model uncertainties, robots may be more likely to experience
this problem, and its solution becomes more difficult. Among
reliable robots examined are general architectures, spatial
robots, and robots with parallel or serial architectures. As
part of the control techniques, a model reference process is
implemented as well as an estimated torque approach in the
feed-forward approach [1].

Furthermore, the feedback process involves conventional
controllers. In the context of stability assurance, these methods
rescue the robot from unstable dynamics by considering actu-
ator saturation during the design phase [2]. Previous studies
indicate that the time regulation method coupled with basin

of attraction enlargement techniques are suitable for robots
control methods. Besides addressing totally failed actuator
joints, these methods also provide solutions for partial defects
of various actuator joints [3].

For a class of nonholonomic mobile robots, a saturated
trajectory tracking control design is presented in study [1].
A bounded dynamic continuous feedback controller is devel-
oped to ensure finite-time kinematic convergence. Saturation
constraints related to attraction domains as well as errors as-
sociated with tracking initial values are considered. In control
systems theory, attraction domains provide a useful means of
analyzing the consequences of system actuator input saturation
[3]. Sets such as these identify the system initial conditions
under which the control technique results in attraction to stable
equilibrium points [3]. Describes these sets in the context of
an exponentially unstable open-loop plant. A single actuator
controls such a model that is characterized by actuator satu-
ration and modeling time delay characteristics. Consequently,
approaches to estimating attraction domains are relevant for
robot control design theory since these approaches provide
sufficient, and necessary conditions for attractivity.

Equally significant, these approaches allow the identifica-
tion of operational stability sets in which system actuators can
perform in a non-saturated state.

B. Fundamental Context

In general, in the real world, all physical control systems
are inherently nonlinear: so, it is difficult to develop an ana-
lytical technique that can be applied to any nonlinear system
[4]. In almost all physical control, the presence of an input
saturation has been identified practically and this occurrence
of saturation could result in nonlinear phenomena [4], [5], [10].
This has garnered a lot of interest to conduct numerous studies
focusing on the modeling as well as assessment of its impact
on the global stability and dynamical performance pertaining
to closed-loop controlled systems. The results of most of these
studies have accounted for the restricted class of linear open-
loop systems. In such a particular case, even when the closed-
loop controlled system is deemed to be linear locally , the
nonlinearity could result in degradation of their performance
or lead to instability. Thus, numerous analysis techniques
were regarded to assess the DA pertaining to linear models
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subject to a control input saturation constraint. Many works
can describe the saturation of inputs in different representations
for the sake of facilitating stability analysis. However, a good
approach would be employing the generalized sector condition
pertaining to dead zone nonlinearities. Furthermore, a key
part of stability analysis is the representation of the system.
Dynamic nonlinear systems can be represented in a variety
of ways in the literature. As a consequence, commonly used
the Differential Algebraic Representations (DAR) modeling
indicates that the system offers results which are conservative
than the Linear Fractional Representation(LFR), as well as
the Linear Parameter Varying (LPV) forms thereof. A few
notable representation systems are the LPV [6], the LFR [7],
[8] and the DAR. The introduction of free multipliers to the
studied system may be an effective approach to decreasing this
late latent conservativeness. In this way, there would be less
reliance on selecting control system matrices, as suggested by
[6], taking advantage of different approaches. With regards to
the framework pertaining to this problem, Coutinho, Trofino
and co-workers [2], [9], [10], [11], [12], [56] put forward
the Differential Algebraic Representations (DAR) to enable
stability analysis, deal with control synthesis problems and
employ to achieve tractable stability condition as linear matrix
inequalities (LMI)[10]. The authors in [2] showed that DAR
results in less conservative estimates pertaining to the region
of attraction. DA signifies those initial conditions in which
the system state converges with that of the equilibrium in
an asymptotic manner. Numerous analysis techniques have
been put forward for the estimation of the DA pertaining to
linear models subject to input actuators saturation constraints.
Different methods have been put forward to enable calculation
of inner estimates for instance, approaches such as the La
Salle method [13], Zubov method [14] and the trajectory
reversing. In most situations, the DA estimation problem
has been segregated to non-convex or convex optimisation
problems for simplification [15], [16]. This has been dealt
with by employing optimisation techniques such as SOS [17],
[18], intelligent optimisation techniques [18],[19],[20] LMI
[21], integration of the genetic as well as LMI. There are
some other techniques to generate Lyapunov: for example, in
[22] we proposed numerical techniques that define rational and
quadratic Lyapunov functions based on Carleman linearization
that permits the computation of the developed DA.

Generally in the literature estimating the domain of attrac-
tion is a complex problem. Some famous technique analysis
stabilities are Lyapunov and Non-Lyapunov methodologies.
The first family, described based on the Lyapunov function, set
level associated in the region when a negative sign is included
in its time derivative, which can be explained by a mathemati-
cal translation pertaining to an elementary observation: when a
system’s total energy lowers with time, then this system (linear
or nonlinear, stationary, or not) tries to revert to an equilibrium
state.

Generally, the literature indicates that the Lyapunov
theory-based techniques are widely used to estimate the DA
[23],[24],[25],[26],[27]. Linear Matrix Inequalities (LMI) op-
timization was employed by Coutinho et al. To estimate the
domain of attraction for dynamic systems by considering the
sets of levels of Lyapunov functions [28],[29]. The Largest
Approximation of the DoA (LADoA) can be defined based
on a Lyapunov Function (LF) for which the local asymptotic

stability pertaining to the equilibrium point can be satisfied,
characterized by a certain shape, by the LF itself. In such a
case, the selection of the LF could significantly impact the
conservativeness pertaining to the estimated domain.

C. Literature Review

This study aimed to develop a method for determining the
largest approximation DA pertaining to stable equilibrium’s by
investigating the maximal LFs. The main idea is to identify
the best peaks providing an optimal region. The determina-
tion of the largest estimation of the DOA via the lyapunov
function can be approached by serval method.[55] genetic
algorithm will be implemented to adjust the coefficients of
lyapunov function and control parameters, in [54] the article
aims to develop an original numerical algorithm to construct
a polynomial lyapunov function and maximizing domain of
attraction using PSO algorithm. With this in mind, a great deal
of research has focused on the integration of metaheuristic
algorithms as an optimization tool to broaden the domain
of attraction. It therefore seems appropriate to provide an
overview of the main families of metaheuristic algorithms that
can be used in this context. Many problems of optimization
can be classified in these categories; Analytic or deterministic;
heuristic or random: multi-objective or single objective[16],
[30]. As well as we can classify these algorithms, two main
classes can be identified: Meta heuristic and gradient. The first
class are nature-inspired, and as they have been developed,
based on some abstraction of nature. The second class is
based on the gradient calculation theory; this class is very
complex and risks peeling. In this work, we are interested
in the meta heuristic algorithms as they are easy to ma-
nipulate and very efficient global search algorithms. Since
then, many meta-heuristic nature-inspirited techniques have
been developed: the particle swarm optimization (PSO)[49]
is an algorithm designed to minic the foraging behavior of
brids. Evolutionary strategy (ES)[31], firefly algorithm (FA)
[32], ant colony optimization (ACO)[33], differential evolu-
tion (DE) [34], probability-based incremental learning (PBIL)
[35], big bang–big crunch algorithm [36], bio-geography-based
optimization (BBO) [36], harmony search (HS) [37], animal
migration optimization (AMO) [38], krill herd method (KH)
[39], [40], bat algorithm (BA) [41], teaching learning-based
optimization (TLBO) [42], dragonfly algorithm (DA) [43], the
Secretary Brid Optimization Algorithm(SBOA) [53]. (SBOA)
is an innovative population based meta-heuristic approach such
that is inspired from the survival behaviours of secretary
brids in their natural habitat. the implementation of SBOA is
structured into phases: an exploration step simulating a hunting
strategy and an exploitation step simulating a escape strategy.
In this work, we are interested by the secretary bird optimiza-
tion algorithm. The SBOA algorithm offers advantages due to
its simplicity showcasing its robustness and wide applicability.

This study employs the secretary birds optimization algo-
rithm (SBOA) to assess the optimal value pertaining to the
vertices for optimal domain of attraction (DA) estimation.
SBOA is expected to offer higher performance versus the
techniques suggested in [2],[12]. This paper aims to ameliorate
the technique analyzed in [2] by combining the LMI with
SBOA.

The paper is structured as follows: statement problem
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preliminaries are introduced in Section II, and estimation
DA using DAR representation in Section III. In this we
further detail the DAR representation and signify the candidate
Lyapunov and LMI formulation. In Section IV, we present
the Secretary Brids Optimization algorithm implementation.
Section V, is reserved for a numerical analysis study. Section
VI introduce the discussion of the results, while Section VII
ends the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

Given a nonlinear affine systems described by:{
ẋ = f (x) + g (x) sat (u)
u = Kx

(1)

where, x ∈ ℜn represents the state variables vector, u ∈ ℜ
signifies the control variable, with, K ∈ ℜ1×ncan be defined
as the assumed constant vector denoting an input gain vector
that relies linearly on the system state variables. f (x) , g (x) :
ℜn → ℜn defines a vectors of a nonlinear value function
that satisfies the constraints pertaining to the uniqueness and
existence of solution for all x ∈ Dx and the equilibrium point
of interest is the origin. A classical unitary saturation function
is defined as follows [2]:

sat (u) := sign (u)min {|u| , 1} (2)

Analysis of the stability of the system (1) can employ
Lyapunov theory [47]. Lemma [2]

Assume V (x) to be a Lyapunov function pertaining to the
system as Eq. (1) in the following region:

J = {x : V (x) ≤ 1} (3)

Should V̇ (x) be negative, then may be defined as:

V̇ (x) =
dV (x)

dt
f (x) (4)

The system seemed to be asymptotically stable and for
all x (0) ∈ J the trajectory x (t) corresponds to J while
approaching the origin as t→ ∞. ξ (x)

A. Determining a LF Candidate

This section is dedicated to introduce fundamental out-
comes of the Lyapunov theory. Consider the following func-
tion:

V (x) = ξ (x)
T
Pξ (x) (5)

where, ξ (x) ∈ ℜnξ represents a rational vector function
pertaining to x and P = PT ∈ ℜnξ×nξ signifies the
constant matrix that must be computed. The time derivate
pertaining to V (x) has been represented as follows: dV (x)

dt =

ξ̇T (x)Pξ (x) + ξT (x)P ξ̇ (x). It needs to be noted that ξ (x)
and ξ̇ (x) denote the rational vector function pertaining to x
and ẋ.

Remark: The Lyapunov function has been presented in
[13], which covers a broad class of physical process, including:

• Quadratic LF [8] where; ξ (x) = x.

• Bi-quadratic LF [28] and polynomial [29], where ξ (x)
being a polynomial vector function in x.

• Rational LF where ξ (x) being a non-singular rational
function of x .

As a generally accepted rule, the more complex this vector
is, the more conservative the results obtained. Hereafter we
assume there exist DAR of ξ (x) and ξ̇ (x) defined as follows
[2]: {

ξ(x) = E1x+ E2ς (x)
0 = Γ1(x)x+ Γ2(x)ς (x)

(6)

{
ξ̇(x) = F1x+ F2χ(x, ẋ)
0 = ϕ1(x)ẋ+ ϕ2(x)χ(x, ẋ)

(7)

where, ς (x) ∈ ℜnς , χ (x, ẋ) ∈ ℜnχ are nonlinear vector
functions, E1 ∈ ℜnξ×n, E2 ∈ ℜnξ×nς , F1 ∈ ℜnξ×n, F2 ∈
ℜnξ×nχ are constant matrices, Γ1(x) ∈ ℜnϕ×n,Γ2(x) ∈
ℜnϕ×nς , ϕ1(x) ∈ ℜnϕ×n, ϕ2(x) ∈ ℜnϕ×nχ are affine matrix
functions of x. The representation is called well defined if
the following hypotheses satisfied: Γ2 (x) , ϕ2 (x) have full
column-rank for all x ∈ Dx.
Using Eq. (6) and Eq. (7) it comes,

V (x) =

[
x
ς (x)

]T
∆P

[
x

ς (x)

]
(8)

V̇ (x) =

[
ẋ
ς̇ (x)

]T
∆P

[
x
ς (x)

]
+

[
x
ς (x)

]T
∆P

[
ẋ
ς̇ (x)

]
= 2

[
x
ς (x)

]T
ΨP

[
ẋ
χ (x, ẋ)

]
(9)

with, ∆P =

[
ET

1 PE1 ET
1 PE2

ET
2 PE1 ET

2 PE2

]
,

ΨP =

[
ET

1 PF1 ET
1 PF2

ET
2 PF1 ET

2 PF2

]
B. Domain of Attraction

Domain of attraction (DA) can be described as those initial
conditions in which the states converge towards equilibrium
asymptotically [44], [46], [45]. According to the Lyapunov
function introduced in the Section II-A we can estimate the
domain of attraction. A region of attraction is given as follows;

J =
{
x ∈ Dx : ξ (x)

T
Pξ (x) ≤ 1

}
(10)

where, P ∈ ℜn×n is a positive definite matrix and J is the
normalised ellipsoid. When the condition V̇ (x) hold for all
x (0) ∈ J , the region J can be represent an estimated domain
of attraction for system (1), this means that any trajectory
starting within J will converge to the origin, without exiting
J .
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C. Statement of the Generalized Sector-Based Constraint

Consider H ∈ ℜ1×n the row vector function and define
the set below:

S = {x ∈ ℜn; |(K −H)x| ≤ 1} (11)

when x belongs to S, the relation can be stated as [5],
then the deadzone nonlinearity ψ(Kx) meets the following
inequality which is valid for any positive scalar µ.

ψ(Kx)Tµ [ψ(Kx)−Hx] ≤ 0 (12)

Let the set J and S defined respectively in (10) and (11)
and consider a matrix C(x) ∈ ℜnc×(n+nξ) affine in x, where
C(x) [ x ς(x) ] = 0. Let S included in J . If a matrix Ξ
exists the following condition is satisfied: 1 [ (K −H) 0 ][

KT −HT

0

]
(
∑

(P ) +NC(x) + C(x)TNT )

 ≥ 0

(13)

D. Polytope in State Space

Let Dx is given polytope (with ne vertices), which defines
the intiales conditions and contains the origin. Therefore, the
polytope can be defined as follows:

Dx =
{
x ∈ ℜn : aTi x ≤ 1, i = 1, ....., ne

}
(14)

with, the constant vectors ai ∈ ℜn are defined such that
aTi x = 1 for all groups of adjacent vertices.
Similarly, to the result of section II-C the set J include in Dx

and a matrix C(x) [ x ς(x) ] = 0, if the following condition
is satisfied: 1

[
−aTi 0

][
−ai
0

] (
Σ (P ) +RC (x) + C (x)

T
RT
)  ≥ 0,

∀k ∈ {1, . . . , ne}
(15)

III. ESTIMATION OF THE DOMAIN OF ATTRACTION USING
DAR REPRESENTATION

A. Differential Algebraic Representation DAR

Set the nonlinearity of the following dead zone [48]

ψ (u) = u− sat (u) (16)

A nonlinear dead-zone ψ(u) is defined in this work to jus-
tify the occurrence of the saturation nonlinearity. Taken into
accounts, Eq. (16) the system Eq. (1) is presented as follows:{

ẋ = f(x) + g (x)u− g (x)ψ(u)
u = Kx

(17)

A nonlinear system can be described in many different rep-
resentation. In this case, the system is represented by the

differential algebraic representation (DAR). That is defined as
follows: {

ẋ = A1x+A2z(x) +A3sat(Kx)
0 = π1x+ π2z(x) + π3sat(Kx)

(18)

where z ∈ ℜnz signifies a nonlinear auxiliary vector
pertaining to x, which includes the nonlinear elements in f(x).
A1 ∈ ℜn×n, A2 ∈ ℜn×nz and A3 ∈ ℜn×1 can be defined as
constant matrices, and π1 ∈ ℜnz×n,π2 ∈ ℜnz×nz ,π3 ∈ ℜnz×n

represent the affine matrix functions pertaining to x. To ensure
the differential algebraic representation is well determined and
the solution x is unique, the previous assumptions have been
implemented. If z is invisible, considering Eq. (18) we have
that:

z (x) = −π−1
2 (π1x+ π3sat (u)) (19)

System (1) can be expressed as follows:

ẋ = (A1 −A2π
−1
2 π1)x+ (A3 −A2π

−1
2 π3)sat(u) (20)

As a result, the term sat(u) can be substituted with Eq.
(16), so the system Eq. (1) can be expressed in the following
form: {

ẋ = (A1 +BK)x+A2z(x)−Bψ(Kx)
0 = (π1 + π3K)x+ π2z(x)− π3ψ(Kx)

(21)

with, B = A3 ∈ ℜn×1.

B. LMI Formulation

In this part of the study, we made a proposition for
LMI condition development to ensure the Lypaunov function
presented in Eq. (8). This LMI is attained by integrating the
linear annihilator condition [10] and Finsler’s lemma [47].
Thus, it is possible to define the solution of estimating the area
of attraction with respect to LMIs that are state dependent as
shown in the theorem given below.

For the system represented in Eq. (21), the Lypaunov
function in Eq. (8) and its time derivative in Eq. (9) are
considered first with, ν = [ ξ φ z ψ (Kx) ]

Than it comes:

dV (x)
dt = ξ

φ
z

ψ (Kx)


 0 ΨP 0 0

ΨPT 0 0 0
0 0 0 0
0 0 0 0


 ξ

φ
z

ψ (Kx)


T

< 0

(22)

According to the Section II-C if the relation in Eq. (12) is
verified for any positive scalar such that

dV (x)

dt
− 2ψ (Kx)

T
µ(ψ (Kx)−Qx) < 0 (23)

Therefore (23) can be written as follows

νTΛν < 0 (24)
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with, Λ =


0 ΨP 0

[
µHT

0

]
ΨPT 0 0 0
0 0 0 0

[ µH 0 ] 0 0 −µ


by exploiting the DAR’s property of equality in Eq. (21),

Eq. (6), Eq. (7) and the linear annihilator obtained by the
formula [10] can be utilized to obtain that


L (x) 0 0 0
Γ1 (x) Γ2 (x) 0 0

0 0 ϕ1 (x) ϕ2 (x)
Acl 0 −In 0

π1 (x) +Kπ3 (x) 0 0 0

0 0
0 0
0 0
A2 −B

π2 (x) π3 (x)




x
ς (x)
ẋ

χ (x, ẋ)
z

ψ (x)

 = 0

(25)

with, Acl = A1 +BK.

Using the Finsler’s lemma[47] for Eq. (24), Eq. (25) such
that:


0 ΨP 0

[
µHT

0

]
ΨPT 0 0 0
0 0 0 0

[ µH 0 ] 0 0 −µ

+

MX (x) +XT (x)MT < 0,

(26)

with, L(x) =


x2 −x1 0 · · · 0
0 x3 −x2 · · · 0
...

...
. . . . . .

...
0 · · · 0 xn −x(n−1)

 ,
C(x) =

[
L(x) 0
Γ1(x) Γ2(x)

]
Theorem 1

Consider the nonlinear system with saturating actuators
given in Eq. (1) with u(t) = Kx(t) and let ξ(x) be a rational
vector function in terms of x with DAR of ξ(x) and ξ̇(x)
as given in Eq. (6) and Eq. (7) and lets define a polytope
Dx. If there exists matrices P = PT , H,R,N,M and Υ, of
appropriate dimensions that satisfy the following LMIs for
all x ∈ Θ(Dx). For instance, the following LMIs can be
represented:

∆P +ΥC (x) + C (x)
T
ΥT > 0 (27)

 1
[
−aTi 0

][
−ai
0

]
∆P +RC(x) + CT (x)RT

 ≥ 0 (28)

 1 [ K −H 0 ][
KT −HT

0

]
∆P +NC(x) + CT (x)NT

 ≥ 0

(29)


0 ψP 0

[
HTµ
0

]
ψP 0 0 0
0 0 0 0

[ Hµ 0 ] 0 0 −µ

+MX(x)+

XT (x)MT < 0

(30)

So, for all x(0) ∈ J , trajectory x (t) belongs to J and
V (x) = ξ(x)TPξ(x) in Eq. (5) is a Lyapunov function in
Dx. Theorem 1 establishes a sufficient condition to guarantee
that an J formed by a Lyapunov function, is an domain of
asymptotic stability for the closed loop system. Also, let try
to find a domain estimate as large as possible. Therefore, the
idea is to select among all possible feasible solutions for LMI
in Eq. (27)-(30) the one that offers the largest possible set
J , taking into account a volume size criterion. In the more
general case described here, where the domain of attraction is
an ellipsoid, a solution to the volume maximization problem
can be directly addressed through the following optimization
problem: {

Max (V ol) = 1
trace(P )

subject to : (27)− (30)
(31)

The domain of attraction volume maximization cannot exist
when parameters introduced in LMI are not well chosen. For
example if we leave µ free, or badly chosen we lose the
convexity of the conditions of Theorem 1 and consequently
LMI does not give solutions from where it will not be feasible.
On the other hand, the polytope search of admissible states
gives the largest domain of the state space Dx(a1, a2) so that
the system is stable by solving Eq. (27-30), for an optimal
pair (a1, a2). In the end the attraction domain search will be
bounded in the admission polytope by selecting the optimal
Lyapunov function.

IV. MAIN RESULTS

In this section we develop an algorithm to expand the
domain of attraction using the SBOA-based meta-heuristic
method. This section introduces a strategy for selecting the
right parameter µ to guarantee the convexity of theorem 1, the
best pair (a1, a2) to maximize the admissible polytope of the
states and the right choice of the optimal Lyapunov function
matrix P . Evalutionary tehniques are emloyed to determine the
parameters µ, and the coefficients of the Lyapunov function.
The form of the candidate Lyapunov function defined by the
user, and its corresponding domain are validated for and the
LMIs of theorem 1, are feasible. In case these conditions are
not met and the LMIs are not feasible, we repeatedly estimate
the parameters in question and the coefficients of the Lyapunov
function until the LMI optimization has a solution. The basis
of this criterion is to obtain optimal parameters through the
use of evolutionary algorithms.
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A. Proposed Method to Enlarging DA

1) Secretary Birds Optimization Algorithm: Secretary birds
[53] are large, terrestrial birds of prey that generally found in
tropical savannas or semi-desert regions. Secretary birds are
perdators of snakes on the Arican continent including species
like the black mamba and Cobra. The SBOA algorithm derives
inpiration from the survival techniques of searching or prey and
escaping tough ecologies. A secretary birds optimisation algo-
rithm is created to handle complex optimisation challenges.
The secretary brid’s itelligence is showcased in its strategies
for evading predators. The SBOA is composed of the following
parts:

Initiation Phase: The first step in solving a typical min-
imization problem f(x) is to determine the initial solutions
that will be used to initiate the search. In the population, each
individual represents a solution to the optimization problem
and this solution is initialized according to the following
equation:

Xj = lb+ r × (ub− lb) , j = 1, 2, . . . , N (32)

where, Xj is the postion of the jth lb and ub are the lower
and upper bounds. rand designates a random number in [0, 1].
N is the dimension of the problem. In addition, the fitness
value of the solution Xi denoted as Fi = f(Xi) is a measure
of its quality.

Hunting Strategy of Secretary Birds (Exploration step):
Contraty to the other fierce predators secretay birds employ
a more intelligent strategy for hunting snakes. Therefore, the
whole hunting process can be broken down into three steps,
they include searching prey, consuming prey, and attacking
prey.

• Searching prey: In this stage, secretary birds need seek
prey while keeping a safe range. By referencing the
positions of the others two secretary birds, the secre-
tary brid can scout new potential areas. For this reason,
the differential mutation operations are incoperated
to maintain algorithm diversity. The position of each
individual Xi is updated using equations (33) and (34)
when the current iteration time t is smaller than one-
third of the maximum iterations T .

XnewP
t (t) = Xt (t)+(Xrandom1 (t)−Xrandom2 (t))×R1

(33){
Xt (t+ 1) = XnewP

t (t) , if FnewP
t < Fi

Xt (t+ 1) = Xt (t) , else
(34)

Where, R1 is a random vector consisting of
1 × M elements chosen randoml from [0, 1].
Xrandom1 , Xrandom2 represent two individuals ran-
domly chosen from the present population.

• Consuming prey: When secretary brids identify poten-
tial prey their first action is to hover around the snake
exhibiting aile footwork and maneuvers. Through
observing and baiting opponents while circling, the
prey’s patience will be exhausted, causing it to lower
its guard. Considering the current best individual as
the prey, other secretary birds adjust their positions

to move closer to it. In this stage, we use Brownian
motion (RB) to simulate a random movement of the
secretary birds such that is given by:

RB = randn (1, D) (35)

Hence, updating the secretary birds position during the
consuming pery stage can be represented as follows:

XnewP
t (t) = Xbest (t) + e(

t
T )

4

× (RB − 0.5)×
(Xbest (t)−Xt (t))

(36)

{
Xt (t+ 1) = XnewP

t (t) , if FnewP
t < Ft

Xt (t+ 1) = Xt (t) , else
(37)

where, Xbest represent the best solution for the current
population.

• Attacking prey: When, the prey well exhausted, so it
the time to start the attack. Here the secretary brid used
the Levy flight approach. Therefore, the characteristics
of this stage are describe by the following Eq. (38),
(39)

XnewP
t (t) = Xbest (t)+

((
1− t

T

) 2×t
T

)
×Xt (t)×RL

(38)
Xt (t+ 1) = XnewP

t (t) , if FnewP
t < Ft

Xt (t+ 1) = Xt (t) , else
(39)

where RL represents a random movement(the levy
fight representation) which is defined as follows:

RL = 0.5× Levy (M) (40)

Escape Strategy for Secretary Birds (Exploitation step):
In nature the main enemies of secretary bird are large preda-
tors. Such as eagles, hawks, foxes, and jackals, which may
attack them or steal their food. In this cas we proposed two
categories:

• Camouflage based on environment: When secretary
birds are confronted by enemies, their first strategy
is to camouflage themselves in order to avoid danger.
The secretary birds modify their positions around the
prey (which represents the best individual) reflecting
the behavior of attempting to evade local optimal
algorithms. The following Eq. (41),(42) present the
mathematical model of this approach.

XnewP
t (t) = Xbest (t) + (2×RB − 1)×(
1− t

T

)2 ×Xt (t)
(41)

{
Xt (t+ 1) = XnewP

t (t) , if FnewP
t < Ft

Xt (t+ 1) = Xt (t) , else
(42)

Where,
(
1− t

T

)2
is a disturbance factor that helps to

strike a balance between exploration (seeking new
solutions) and exploitation (using known solutions).
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• Running mode: Then in this step, if they can’t avoid
they enem we use the approach of flight or rapid run-
ning to maintain their saftey. Secretary brid updated
their new position by using the following equation

XnewP
t (t) = Xbest (t)+R2×(Xrand (t)−K ×Xt (t))

(43){
Xt (t+ 1) = XnewP

t (t) , if FnewP
t < Ft

Xt (t+ 1) = Xt (t) , else
(44)

In a SBOA, the main operation involves computing the fit-
ness function. Therefore the quality of the particle is evaluated
using its objective function, the goal being to maximize it.

v =
1

trace (P )
(45)

To achieve this objective, a meta-heuristic technique is
used. We developed a technique to expand the DA by inte-
grating the SBO algorithm and an LMI technique to ensure
the computing of the maximal LF defined in Eq. (4). In this
work we estimate again by SBOA µ and the values of the
vertices a1 and a2 to expand the domain of attraction defined
by Eq. (10).


Max (V ol (J)) = 1

trace(P )

s.t :

{
min θ

s.t : LMI (27)− (30) , a feasible solution

θ − trace
(
∆P +ΥC(x) + C(x)TΥT

)
> 0
(46)

The designed approach is synthesized in the following
flowchart depicted in the Fig. 1.

V. NUMERICAL EXAMPLES

In this section, numerical examples are presented to verify
the effectiveness of the proposed approach. The conditions in-
troduced in this paper were implemented in MATLAB (R2015)
using the parser Yalmip and the solver SDPT3.

Example 1

Consider a nonlinear system with saturated input given by
[2]:

 ẋ1 = x2
ẋ2 = (1 + x21)x1 + (2 + 8x22)x2 + sat(u)
u = Kx

(47)

The state is x = [ x1 x2 ]
T and the control input is

u (t) = −2x1 (t) − 4x2 (t). In this paper, we search for
the Lyapunov function that stabilizes the system asymptot-
ically, minimizes the cost function represented by the trace
of Matrix P definite positive, and has the largest estimation
of the DA of system (47) in a closed loop. We use the
proposed method for example 1. Note that, Dx (a1, a2) :={
x ∈ ℜ2 : |x1| ≤ a1, |x2| ≤ a2

}
is a state admissible, with

1.Apply SBOA algorithm to estimate
the positive scalar a1, a2, ..., an and µ.
2.find a feasible solution of LMI (27,28,29,30).
3. Determine the optimal value of a1, a2, ..., an, µ
and the corresponding large domain of attraction J

and determine the large space domain Dx.

J̃ =
{
x ∈ D̃x : ζ (x)T Pζ (x) ≤ 1

}

Define the nonlinear{
ẋ = f (x) + g (x) sat (u)
u = Kx

Represent the non linear system under
the representation DAR

Check regionally
stability.

Start

End

Fig. 1. Flowchart of the meta-heuristic technique for estimating the DA of a
nonlinear system with input saturation.

a1, a2 tow positive predefined scalars. First, we reformulate the
system (47) in the DAR form. Then, by applying the equation
(16)-(18), a DAR of this system is given by:

{
ẋ = (A1 +BK)x+A2z(x)−Bψ(Kx)
0 = (π1 + π3K)x+ π2z(x)− π3ψ(Kx)

(48)

where, z =
[

x2
1 x2

2 x3
1 x3

2

]T
, Acl = A1+BK, A3 = B,

Acl =

[
0 1
−1 −2

]
, A2 =

[
0 0 0 0
0 0 1 8

]
, B =

[
0
1

]
,

π1 =

 x1 0
0 x2

0 0
0 0

 , π2 =

 −1 0 0 0
0 −1 0 0
x1 0 −1 0
0 x2 0 −1

 , π3 = 0

.

As a means of evaluating the stability of the system, two dis-
tinctive Lyapunov functions are taken. First, the quadratic Lyapunov
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function is analyzed:

V1 (x) = ξT1 (x)P1ξ1 (x) (49)

Second a polynomial Lyapunov function is considered:

V2(x) = ξT2 (x)P2ξ2(x) (50)

where ξ1(x) = x, ξ2(x) =
[

x2
1 x1x2 x2

2 x1 x2

]T
.

P1 ∈ ℜ2×2 and P2 ∈ ℜ5×5 are two symmetric matrices to be
computed. The polynomial LF calculation requests the decomposition
of ξ2(x) and ξ̇2(x) as stated below.

{
ξ2(x) = E1x+ E2ς(x)
0 = Γ1(x)x+ Γ2ς(x)

,{
ξ̇2(x) = F1ẋ+ F2χ(x, ẋ)
0 = ϕ1(x)ẋ+ ϕ2χ(x, ẋ)

(51)

where, ς (x) =
[

x2
1 x1x2 x2

2

]T
, E1 =


0 0
0 0
0 0
1 0
0 1

 ,

E2 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 ,Γ1 (x) =

[
x1 0
0 x1

0 x2

]
,

Γ2 =

[
−1 0 0
0 −1 0
0 0 −1

]
, χ (x, ẋ) =

 x1ẋ2

x1ẋ2

x2ẋ1

x2ẋ2

 ,

F1 =


0 0
0 0
0 0
1 0
0 1

 , F2 =


2 0 0 0
0 1 1 0
0 0 0 2
0 0 0 0
0 0 0 0

 ,

ϕ1 (x) =

 x1 0
0 x1

x2 0
0 x2

 , ϕ2 =

 −1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


the optimization problem (46) was solved to obtain the largest

admissible polytope in state space and that maximizes the domain of
attraction. The Fig. 2 shows the dynamic of the cost function. The
optimal domain is obtained as:


(a1, a2) =

[
0.51233 0.32322

]
Popt =

[
4.6221 3.0714
3.0714 11.6130

]
,

θ = 16.2351

(52)

Fig. 3 shows the evolution of the DA for the system Eq. (47)
using SBOA approach. Fig. 4 represents the dynamic of the state
space initialized from the tangency point state locus and the evolution
of the input control of the system.

Fig. 2. Dynamic of the cost function using the SBOA approach for system
(47) for obtain the optimal value of µ.

Fig. 3. Approximation of the DA for the system Eq. (47) using quadratic LF
(Blue ellipsoid using SBOA technique - red ellipsoid analytical technique).

Example 2

Considering a single-link robot arm in [50]

θ̈(t) = −Mgl

J
sin(θ)− D

J
θ̇ +

1

J
u (53)

where,

• θ is the angle position of the arm

• u is the input control.

• M is the mass of the poyload.

• J is the moment of inertia.

• g is the acceleration of gravity and l is the length of the
arm.

Assume, x1 = θ, x2 = θ̇ then we obtain the following state space
model of the robotic arm manipulator{

ẋ1 = x2

ẋ2 = −Mgl
J

sin(x1)− D
J
x2 +

1
J
u

y = x
(54)

Then the values parameters for robotic arm are given by: g =
9.81, l = 0.5, for this work we consider the nominal value of D =
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Fig. 4. Results of simulations for example 1: states dynamics and control
input.

D0 = 2 and for J and M we consider the mode 1 so M = J = 1,
With this parameters chosen we obtain the following representation.

{
ẋ1 = x2

ẋ2 = −4.905× sin(x1)− 2× x2 + u
y = x

(55)

Using the Taylor series atsin(x) = x − x3

3!
+ x5

5!
− · · · then in

this work we stop at n = 3 therefore sin(x) = x − x3

3!
. Then, we

obtain the following state-space:

{
ẋ1 = x2

ẋ2 = −4.905× x1 +
4.905

6
× x3

1 − 2× x2 + u
y = x

(56)

This example cannot be applied with this approach because the
absence of any indication for the command u. Where, u = k1x1 +
k2x2 to find the parameters of the command u we want to apply Chesi
2004 [51]. Therefore, we linearize in the vicinity of the equilibrium
to establish a Lyapunov function LF:

A =
∂f

∂x

∥∥∥∥(0,0) = [ 0 1
−4.905 −2

]
(57)

Then, for determine the matrix P we used this equation: ATP +

PA = −Q with Q =

[
1 0
0 1

]
. Such that, we obtain the following

matrix P

P =

[
1.68 0.102
0.102 0.301

]
(58)

with V (x) = 1.68x2
1 + 0.204x1x2 + 0.301x2

2 and the controller
class defined by ϕ(y) = y,
ℑ =

{
U =

[
u1 u2

]
: u ∈

[
−1 1

]}
. Let us examine the

structure of the GEVP introduced in [51]. The degree of V̇ denoted as
δd is 4. As a result, δs can be chosen as follows: δs = 1, so m = 2 and
x{δv} = x{δs} =

[
x1 x2

]T
, x{m} =

[
x1x2x

2
1x1x2x

2
2

]T
, it

is found that

Df (α) =


−1.0006 −4× 10−4 0 α1 α2

−4× 10−4 −1 −α1 −α2 0
0 −α1 0.2501 0.2460 α3

α1 −α2 0.2460 −2α3 0
α2 0 α3 0 0

,

Dg (U) =


0.204u1 0.301u1 + 0.102u2

0.301u1 + 0.102u2 0.602u2

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


In order to compute W (S), let’s note that V = I2. Therefore, we

have that s =

[
s1 s2
s2 s3

]
,

K =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

 ,

W (S) =


s1 s2 0 0 0
s2 s3 0 0 0
0 0 τs1 τs2 0
0 0 τs2 τ(s1 + s3) τs2
0 0 0 τs2 τs3


W2 (S) =


0 0 0
0 0 0
0 0 1.68s1
0 0 0.84s2 + 0.102s1
0 0 0
0 0
0 0

0.84s2 + 0.102s1 0
1.68s3 + 0.408s2 + 0.301s1 0.102s3 + 0.302s2

0.102s3 + 0.302s2 0.301s3


The obtained input control u is given by: u = −0.5043x1 −

0.2863x2. In this step, we want to apply our proposal and given the
DAR representation Eq. (21) with the auxiliary vector z = x2

1, we
consider

A1 =

[
0 1

−5.4093 −2.2863

]
, A2 =

[
0
x1

]
, A3 =[

0
1

]
, π1 =

[
x1 0

]
, π2 = −1 and π3 = 0.

To analyze the stability, we consider a quadratic Lyapunov
function. SBOA is implemented with (maximum number of iterations
100 and the swarm size is 30). To obtain the optimal value of µ,
(a1, a2). Fig. 5 present the evolution of the SBOA process for 100
iterations.
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
(a1, a2) =

[
1.4221 2

]
Popt =

[
0.6106 0.1142
0.1142 0.2714

]
θ = 0 .8819

(59)

Fig. 5. Dynamic of cost function volume using the SBOA approach for
nonlinear system to obtain the optimal value of µ.

Fig. 6. Estimation of the DA for system Eq. (54) using quadratic LF (Blue
ellipsoid using SBOA technique-Red ellipsoid using analytical technique).

The largest DA is represented by the blue ellipsoid in Fig. 6. Fig.
7 presents the evolution of the state space and the input control.

VI. DISCUSSION

This section seeks to compare the advantages of the current
work’s strategy with those of works presented in study [12] and
study [2] as part of a bench-marking study. Table I summarizes
the different results achieved for four dynamic nonlinear systems
taking into account input saturation. The implementation of the SBOA
method incorporates both quadratic Lyapunov functions. In this study,
obtaining the maximum volume of the region of attraction serves as
the primary criterion for evaluation. As far as the domain of attraction
values are concerned, the results obtained are clearly superior. DA
features are shown in table I for four nonlinear dynamic systems
with quadratic Lyapunov functions. Systems of E1, E2 and E3 are
second-order systems. However, E4 is a nonlinear third order system.
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Fig. 7. Simulation results of example 2: states and input control.

The example 5.1 illustrates the advantage of a polynomial Lyapunov
function over a quadratic Lyapunov function. Please be aware that the
domain of volume serves as the primary evaluation factor. For each
example, going through three stages using the SBOA approach, and
comparing the results obtained by the technique presented in study
[2].

Fig. 8. DA that is approximation based on the SBOA approach for the origin
in case E1 that is listed in Table I.

Fig. 8, 9, 10 and 11 illustrates the approximate domain of
attraction for example E1-E4 described in Table I. The blue ellipsoid
illustrates the estimated DA as determined by the SBOA method,
while the red ellipsoid illustrates the estimated DA as determined
by the approach described in study [2]. As a result, Fig. 12, 13, 14
and 15 depict the dynamic of state variables and their control inputs
for each of the examples in Table I. A stable equilibrium point can
be established asymptotically by the state variables. In this regard,

Fig. 9. DA that is approximation based on the SBOA approach for the origin
in case E2 that is listed in Table I.

Fig. 10. DA that is approximation based on the SBOA approach for the
origin in case E3 that is listed in Table I.

Fig. 11. DA that is approximation based on the SBOA approach for the
origin in case E4 that is listed in Table I.

the strategy developed offers a complete solution that begins by
guaranteeing the local stability of the system, then estimates the states
admissible, and finally provides the maximal domain volume possible.
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Furthermore, Table I clearly illustrates that, for the four examples
studied, the SBOA technique yields significantly better estimates of
the basin of attraction than the approach presented in study [2].

Fig. 12. Simulation results of example E1: states and input control.

Fig. 13. Simulation E2; states and input control.

VII. CONCLUSION

This paper discusses the concept of combining analytical and
meta-heuristic approaches. This approach improve the performance of
practical engineering systems using hybrid optimization techniques.
Under the constraint of actuator saturation, the proposed method
ensures high stability and efficiency. Among the fields of robotics
and control, this is a well-known and sensitive issue. As a result, it
is established that the developed technique maintains this feature and

Fig. 14. Simulation results of E3; states and input control.

Fig. 15. Simulation results of E4; states.

ensures the reliability of controlled systems. Particularly, the method
has been proven effective in controlling robot actuators. The study
focuses on the maximization of the attraction region. Furthermore, the
attraction region that is studied is deducible by the defined state space
polytopic regions. The main idea is to combine the generalized sector
condition, with the Finsler lemma and linear annihilator in order to
reduce the conservativeness. The designed outline presented in this
research relied on the central idea of computing best vertices of the
polytypic and determining the associated optimal Lyapunov function
to find the largest attraction region. To obtain the largest domain of
attraction we implemented a meta-heuristic approach, with encoding
the variable of the vertices of the polytope of admissible state to
be determined as particle position was presented. The meta-heuristic
technique introduced in this study is powerful in problem solving,
and a very efficient global search algorithm. As well as the result,
the numerical example shows that using meta-heuristic leads to the
biggest DA. A novel perspective on the enlarging of the DA could be
performed by implementing meta optimization method for tuning the
controller gains of nonlinear system with input saturation and model
parameter uncertainties.

www.ijacsa.thesai.org 1147 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 4, 2025

REFERENCES

[1] H. Chen, C. Wang, B. Zhang and D. Zhang, Saturated tracking control
for nonholonomic mobile robots with dynamic feedback. Transactions
of the Institute of Measurement and Control, 35(2), 105-116, 2013.

[2] D. F. Coutinho and J. G. da Silva. Estimating the region of attraction of
nonlinear control systems with saturating actuators. In 2007 American
Control Conference, (pp. 4715-4720), IEEE, 2007.

[3] J. B. Biemond and W. Michiels. Estimation of basins of attraction
for controlled systems with input saturation and time-delays. IFAC
Proceedings Volumes, 47(3), 11006-11011, 2014.

[4] H. K. Khalil. Control of nonlinear systems Prentice Hall, New York, NY,
2002.

[5] J. G. Da Silva and S. Tarbouriech. Antiwindup design with guaranteed
regions of stability: an LMI-based approach, IEEE Transactions on
Automatic Control, 50(1), 106-111, 2005.

[6] Y. Huang and A. Jadbabaie. Nonlinear H ∞ control: An enhanced quasi-
LPV approach, IFAC Proceedings Volumes, 32(2), 2754-2759, 1999.

[7] G. Chesi, A. Garulli, A. Tesi and A. Vicino. Robust analysis of LFR
systems through homogeneous polynomial Lyapunov functions IEEE
Transactions on Automatic Control, 49(7), 1211-1215, 2004.

[8] L. El Ghaoui, and G. Scorletti. Control of rational systems using linear-
fractional representations and linear matrix inequalities Automatica,
32(9), 1273-1284.,1996.

[9] D. Coutinho, A. Trofino and M. Fu. Guaranteed cost control of uncertain
nonlinear systems via polynomial Lyapunov functions, IEEE Transac-
tions on Automatic control, 47(9), 1575-1580, 2002.

[10] A. Trofino and T.J. M. Dezuo. LMI stability conditions for uncertain ra-
tional nonlinear systems, International Journal of Robust and Nonlinear
Control, 24(18), 3124-3169., 2014.

[11] D. F. Coutinho, C. E. de Souza, and A. Trofino. Stability analysis of
implicit polynomial systems IEEE Transactions on Automatic Control,
54(5), 1012-1018., 2009.

[12] D. F. Coutinho and J. G. Da Silva. Computing estimates of the region
of attraction for rational control systems with saturating actuators, IET
control theory & applications, 4(3), 315-325., 2010.

[13] S. Rozgonyi, K. Hangos and G. Szederkényi. Determining the domain
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