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Abstract—As wireless communication technology evolves, ef-
ficient resource allocation in Orthogonal Frequency Division
Multiple Access (OFDMA) networks is becoming more important.
This study looks at three resource allocation algorithms: Genetic
Algorithms (GA), Particle Swarm Optimization (PSO), and a
hybrid approach that combines both. The hybrid algorithm takes
advantage of the strengths of both methods to improve data trans-
mission and energy efficiency. Using simulations in MATLAB,
the study assesses algorithms based on key metrics such as data
rate, energy consumption, and computational complexity. The
findings show that the hybrid approach generally performs better
than both GA and PSO, especially in maximizing data rates.
This research offers useful information for network operators
looking to implement effective resource management strategies
in practical wireless communication settings.
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I. INTRODUCTION

As wireless communication technology rapidly evolves,
the importance of efficient resource allocation has increased.
Orthogonal Frequency Division Multiple Access (OFDMA)
networks are the foundation of modern communication, en-
abling everything from our smartphones to high-speed Internet
connections. OFDMA divides the available bandwidth into
multiple distinct subcarriers, allocating a unique set to each
user. This separation allows users to communicate simultane-
ously without interference, ensuring a seamless and efficient
experience [1] [2].

OFDMA is commonly used in various wireless communi-
cation standards, including WiMAX, LTE, and 5G networks.
It effectively manages bandwidth, allowing multiple users to
connect at the same time while keeping latency low and
throughput high. By dynamically allocating subcarriers based
on user demand and channel conditions, OFDMA improves
overall network performance. This makes it a practical choice
for modern networks, where reliable connections for activities,
such as video streaming and online gaming are increasingly
important [3].

In a world where staying connected is essential, the task
of effectively distributing limited resources, such as bandwidth
and power, has become more complicated than ever. Energy
efficiency plays an important role, helping to lower operational
costs for network providers, extend battery life for mobile
devices, and reduce the environmental impact of increased
technology use. Optimizing resource allocation is increasingly

seen as both a practical necessity and a responsible choice. Im-
plementing energy-efficient practices can help reduce carbon
footprints and support efforts to address climate change.

To address these challenges, a variety of algorithms are
adopted, each offering unique strengths and tailored solutions
for resource allocation. For instance, the Water-Filling Algo-
rithm is recognized as a fundamental method for distributing
power according to the varying channel conditions of different
users. This algorithm efficiently allocates power to users with
better channel quality, thereby maximizing overall system
performance [4] [5]. In addition, the Bisection Algorithm
plays a crucial role by systematically narrowing the search
for optimal solutions, ensuring effective and efficient resource
utilization. Maintaining high quality of service is especially
important in crowded networks as the number of connected
devices and bandwidth demands increase [6] [7].

Adaptive resource allocation challenges can also be ad-
dressed using heuristics such as Genetic Algorithm (GA)
[8] and Particle Swarm Optimization (PSO) [9]. GA draws
inspiration from natural processes, beginning with a set of
potential solutions that are refined over time through selection,
crossover, and mutation. As these solutions evolve across
multiple generations, they continuously improve, making GA
particularly effective for complex problems that traditional
methods may struggle to solve [10] [11]. On the other hand,
PSO mimics the collective behavior of birds and fish. In this
approach, each particle represents a potential solution that
navigates the solution space based on its own experiences and
those of its neighbors. The position of a particle is adjusted
according to two factors: the best solution it has discovered and
the locations of its neighbors. This collaborative effort enables
PSO to explore the solution space effectively, often leading to
optimal solutions in complex scenarios [12] [13]. The hybrid
approach combines the evolutionary characteristics of GA with
the collaborative search capabilities of PSO, resulting in a more
robust and efficient method for optimizing data transmission
and energy efficiency in OFDMA networks [14] [15].

In this study, a comprehensive comparison of three resource
allocation algorithms is presented: GA, PSO, and a hybrid
method that effectively combines the strengths of both GA and
PSO. The evaluation will focus on key performance metrics
such as data rate, energy consumption, and time complexity.
By analyzing these algorithms across a range of scenarios, the
study aims to identify the best algorithm in terms of data rates
and energy consumption. The findings seek to bridge the gap
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between theoretical models and practical applications, offering
information that can enhance the operational efficiency of
wireless networks. As the industry encounters increasingly
complex and demanding environments, understanding how to
optimize resource allocation will be essential for ensuring
sustainable, high-quality service delivery. This research will
contribute to informed decision making and strategic planning
in resource management, ultimately supporting the evolving
needs of modern communication systems.

A. Contributions

This work offers several key contributions to the field of
wireless communication:

e A comparative evaluation of three existing algorithms,
GA, PSO, and a hybrid algorithm that combines GA
and PSO, is presented to optimize data transmission
and energy efficiency in wireless networks, highlight-
ing their respective advantages and limitations.

e  The preliminary results indicate that the proposed hy-
brid protocol outperforms the individual algorithms in
key metrics, such as data rate and energy consumption,
suggesting a more efficient use of resources.

e The findings provide practical guidelines for network
operators seeking to implement more effective re-
source management strategies in real-world wireless
communication scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

In a single cell, there exists a collection of User Equipment
(UE) devices that are tasked with transmitting data. Each
device operates under specific power constraints, limiting the
amount of transmit power it can utilize. In addition, these
devices are allocated a portion of the available bandwidth,
which restricts their data transmission capacity.

At the core of this network is a base station responsible
for receiving data from all UE devices. This base station not
only facilitates communication between the devices but also
operates under its own set of power and bandwidth constraints,
ensuring efficient data handling and network performance. To
enhance this performance, OFDMA is utilized in this network.
OFDMA allows multiple users to share the same frequency
band by dividing it into numerous orthogonal subcarriers,
enabling simultaneous transmission without interference. This
approach optimizes bandwidth usage and improves overall sys-
tem capacity, making it particularly effective in environments
with varying channel conditions.

Each UE device has a transmit power used for communi-
cation, which is determined by regulatory limits and device
capabilities. A finite total bandwidth By, is shared among
all devices, necessitating effective scheduling and allocation
methods to maximize throughput. OFDMA plays a crucial role
in this allocation process, dynamically assigning subcarriers
based on user demand and channel quality. Each device can
transmit data for a certain time period, contributing to the
overall energy consumption. This energy consumption is a
critical factor, as it impacts the battery life of the devices
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and the overall sustainability of the network. Understanding
the interplay of these constraints is essential for optimizing
performance and ensuring reliable service delivery in wireless
communication systems.

1) Data transmission model: The data rate for each device
can be modeled using the Shannon capacity formula:

Py
= B -1 1+ —— 1
Ry, % Og2<+N0~Bk)’ (D

where R, is the data rate of device Dy, By is the bandwidth
allocated to device Dy, P is the power allocated to device Dy,
and Ny represents the spectral density of the noise power.

2) Energy consumption: The energy consumed by each
device during transmission can be calculated as:

Ey = Py - Tk, )

where E}, is the energy consumed by device Dy and T} is
the transmission time for device Dy.

B. Problem Formulation

The primary objective of the proposed resource allocation
model is to maximize the total data rate across all devices
while minimizing the overall energy consumption. This can
be formulated as a multi-objective optimization problem:

N N
Maximize Z Ry — A Z Ey, (3)
k=1 k=1

Subject to:

N

Cl: Y Py < Po,
k=1
N

C2: > By < By,
k=1
N

C3: > T < Tiow,
k=1

where where N represents the total number of devices
in the network. Ry represents the data rate for device Dy;
Py denotes the transmission power for device Dy; T} is the
transmission time allocated for device D;,; By, is the bandwidth
allocated to device Dy; and hy, indicates the gain in the channel
for device Dy. In constraint C1, the total power allocated to
all devices should not exceed the maximum available power.
In constraint C2, the total bandwidth allocated to all devices
should not exceed the available bandwidth. In constraint C3,
the total transmission time allocated to all devices must not
exceed the maximum allowed transmission time.

The optimization problem here is mixed integer nonlinear
programming (MINLP). Having integer and continuous de-
cision variables leads to this classification. Mixing integers
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means that some variables, such as the number of UE devices
N, can have integer values, while others, such as power P,
bandwidth By, and transmission time 7}, can have continuous
values. Additionally, the objective function may include non-
linear relationships, such as maximizing total revenue minus
a penalty for energy consumption. As a result, if any part
of the objective function or constraints shows nonlinearity,
the problem is classified as nonlinear. Due to this complex-
ity, specialized algorithms are necessary for finding effective
solutions.

III. OPTIMIZATION TECHNIQUES

To effectively solve the optimization problem defined in
Eq. (3), population-based algorithms can be employed, includ-
ing GA, PSO, and hybrid algorithm that combine the strengths
of both GA and PSO.

A. Resource Allocation Using GA

GAs utilize principles of evolution to optimize complex
problems. They represent candidate solutions as chromosomes,
employing a population-based approach where multiple solu-
tions are evaluated concurrently. Each candidate solution is
assessed based on an objective function, as defined in Eq. (3).

The selection process in GA strategically prioritizes fitter
individuals, allowing them to pass advantageous traits to the
next generation through mechanisms such as crossover (where
parts of two parent solutions are combined) and mutation
(where random alterations are made to a solution). This evo-
lutionary strategy not only improves the quality of solutions,
but also fosters genetic diversity within the population, which
is essential to avoid local optima. To effectively manage
constraints (C1, C2, and C3), GA often implements penalty
functions. These penalties reduce the fitness scores of solu-
tions that violate established constraints, thereby discouraging
infeasible solutions. This mechanism promotes the exploration
of viable solutions while ensuring a diverse search space.
Such diversity is crucial for navigating complex non-linear
optimization problems, enabling GA to discover high-quality
solutions that satisfy all constraints.

A comprehensive overview of the processes involved in
GA, including specific steps and methodologies, is shown in
Table 1.

B. Resource Allocation Using PSO

Social behaviors are replicated in PSOs by mimicking
natural phenomena, such as flocks of birds or schools of fish.
In this algorithm, particles represent potential solutions that
dynamically adjust their positions in the search space based on
both their individual experiences and the collective knowledge
of the swarm. Each particle evaluates the objective function
to determine its fitness, which guides its movement towards
areas of higher quality solutions. The motion of a particle is
influenced by two main factors: its previous best position and
the best position found by any particle in the swarm. This
dual influence allows PSOs to effectively balance exploration
(searching new areas of the solution space) and exploitation
(known good solutions). Additionally, when particle positions
violate established constraints, PSOs typically employ strate-
gies to either adjust the particles back into feasible regions or
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TABLE I. OPTIMIZED RESOURCE ALLOCATION USING GA

Input:

. Population size P: Number of individuals in each generation.

. Number of generations G: Maximum iterations for the GA.

. Crossover rate Chye: Probability of crossover between parents.

. Mutation rate Miye: Probability of mutation for individuals.
Output:

. The best solution representing the optimal resource allocation with

its fitness value.

I. Initialize population:
Each individual is represented by a random vector:

Py Py -+ Py
individual; = (31 By - BN) C]
n T, -+ TN

2. Evaluate Fitness:
The fitness of each individual is evaluated based on the objective function:

N N
fitness (individual;) = E Ri — A E Ey ©)
k=1 k=1

Ensure that the individual satisfies the constraints C'y, C's, and C3. If constraints
are violated, apply a penalty to the fitness score:

fitness (individual ;) =
{ﬁtness(individualj) — P if constraints violated (6)

fitness (individual ;) otherwise

3. Selection:
. Select parents based on fitness.
. Choose a predetermined number of parents to form a mating pool.
4. Crossover:
. For each pair of parents in the mating pool, generate r, which
represents a random value generated uniformly within a specific
range between [0, 1].

. If r < Chae, perform crossover to create offspring:
_ Pyi1:q]
Of(Pz[qul:N] @
where ¢ is a randomly chosen crossover point.
5. Mutation:
. Apply mutation to offspring based on the mutation rate:

. Olj] + A if r < Muye
Olj] = y 8
7] {O[j] otherwise ®

where A is a random value drawn from a specified distribution. j-th
offspring in the population array O.

6. Evaluate offspring fitness:
. For each offspring, calculate its fitness based on the resource allo-
cation efficiency using equation (5).
7. Replacement:
. Form a new population by selecting the best individuals from both
the current population and the new offspring.
8. Termination:
. If the maximum number of generations G is reached or if a
satisfactory solution (fitness) is found, stop the algorithm. Otherwise,
return to step 3.

apply penalties that reduce their fitness scores. This penalty
mechanism discourages the swarm from exploring infeasible
solutions, thereby maintaining a focus on viable options. PSOs
are particularly effective for continuous optimization problems,
where the solution space is defined by real valued variables.
The algorithm’s inherent ability to adaptively explore while
converging towards an optimal solution makes it suitable for
a wide range of applications, including engineering design,
machine learning parameter tuning, and resource allocation.
Moreover, the simplicity of PSO, combined with its flexibility,
allows it to be easily hybridized with other optimization tech-
niques, further enhancing its performance in complex problem
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TABLE II. OPTIMIZED RESOURCE ALLOCATION USING PSO

Input:
. Population size P: Number of particles in the swarm, determining
the diversity of solutions.
. Maximum iterations G': The upper limit on the number of iterations
for the PSO algorithm, defining its computational duration.
. Cognitive coefficient c1: Weighting factor that influences how much
each particle is attracted to its own best-known position.
. Social coefficient c2: Weighting factor that influences how much
each particle is attracted to the swarm’s best-known position.
Output:
. The best solution found by the swarm along with its corresponding

fitness value, indicating the effectiveness of the resource allocation.

1. Initialize Swarm:
Each particle ¢ is represented with a random position and velocity:

. The position vector for particle ¢ is defined as:
P P .-+ Py
X;=(B1 B2 -+ Bn )
n T - TIn
where IV is the number of devices or resources.
. The velocity vector for particle 4 is defined as:
vp1 VP2 '°  UPN
V;=|vB1 wvB2 -+ UBN (10)
vr1  vT2 . UTN
. Initialize each particle’s best position pbest; to its initial position.

2. Evaluate Fitness:

. Calculate the fitness for each particle using the fitness function:

N N
fitness(z;) = E Ri — A E Ey, (11)
k=1 k=1

where Ry represents the reward from resource k£ and Ej, denotes
the energy consumption.

. Update the particle’s best position pbest; if the current position
yields a better fitness value.
. Ensure that the constraints C';, Co, and C3 are satisfied for each

particle’s position.
3. Update global best:

. Update the swarm’s best position gbest based on the best positions
found by all particles.

4. Update velocities and positions:
. Update the velocity for each particle :

v; = w-v;+c1-ry - (pbest; —x;)+ca-ra-(gbest—x;) (12)

. Update the position for each particle 4:

T =T + v, 13)
. Re-evaluate Cq, Cq, and Cg after updating positions to ensure
validity.
5. Termination:
. The algorithm stops if the maximum number of iterations G is
reached or if a satisfactory solution based on fitness is found.
. If neither condition is met, return to step 2 for further iterations.

domains.

A complete overview of the processes involved in PSO,
including specific steps and methodologies, is illustrated in
Table II.

C. Resource Allocation using Hybrid Algorithm

In hybrid algorithm, GA and PSO are integrated to improve
overall optimization performance. This combination leverages
the strengths of both techniques: initial solutions are gener-
ated using genetic principles, which emphasize diversity and
broad exploration, while subsequent refinements are achieved
through swarm intelligence, which focuses on effective local
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search. By merging these two algorithms, hybrid algorithm can
take advantage of the advantages of genetic operations, such as
cross-linking and mutation, to explore a wide solution space.
This broad exploration is critical for identifying promising
regions in complex landscapes. Once potential solutions are
identified, the dynamics of the swarm come into play, allowing
for precise fine-tuning of these solutions based on the collective
knowledge of the swarm. This dual approach improves the
convergence speed and the quality of the solution. Moreover,
the hybrid algorithm employs penalty mechanisms to handle
constraint violations, similar to traditional GA and PSO. By
discouraging infeasible solutions, this algorithm maintains a
focus on viable options, ensuring that the search remains
within the bounds of acceptable solutions. This capability
is especially advantageous in complex optimization scenarios
where constraints are stringent and multifaceted.

The hybrid approaches are particularly effective for tack-
ling challenging optimization problems, as they can success-
fully navigate both local and global search spaces. The com-
bination of exploratory genetic principles with the exploitative
strengths of swarm intelligence enables this algorithm to
escape local optima while still converging toward high-quality
global solutions. This versatility makes the hybrid algorithm
suitable for a wide range of applications, including engineering
design, logistics, financial modeling, and machine learning,
where the complexity of the problem demands a robust and
adaptive optimization strategy.

A comprehensive overview of the processes involved in the
hybrid approach, including specific steps and methodologies,
is shown in Table III.

IV. SIMULATION AND RESULTS

The network for the study was simulated using MATLAB, a
widely used tool for numerical analysis and data visualization.
GA, PSO, and the hybrid algorithm are implemented to as-
sess their effectiveness in resource allocation. The simulation
allowed for easy adjustment of parameters and visualization
of results in real time, providing insights into network perfor-
mance under different conditions.

The time complexities associated with solving the resource
allocation problem in OFDMA networks vary significantly
among the algorithms employed. The GA exhibits a time
complexity of O(P - G - N), where P denotes the size of the
population, G represents the number of generations, and N
corresponds to the number of User Equipment (UE) devices.
This complexity arises from the need to evaluate and evolve a
population of candidate solutions over multiple generations,
each requiring assessment of the fitness of N devices. In
parallel, the PSO algorithm demonstrates a time complexity
of O(S - G- N), where S indicates the swarm size. As
with GA and PSO, the iterative process of updating particle
(potential solution) positions based on their own and their
peers’ experience drives the complexity, requiring evaluations
across all N devices in each generation.

In contrast, the hybrid algorithm, which integrates ele-
ments of both GA and PSO, incurs a time complexity of
O((P + S) - G- N). This reflects the necessity to evaluate
the fitness of both populations on each iteration: the particles
generated by the GA and the particles from the PSO. As a
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result, this algorithm may provide a more thorough exploration
of the solution space, but at the cost of increased compu-
tational complexity. However, all three algorithms exhibit a
dependency on the sizes of their respective populations or
swarms, the number of generations or iterations, and the
number of devices involved. This relationship underscores the
computational effort required for larger networks, highlighting
a critical consideration for practitioners in the field. As the
number of UE devices increases, the time complexity can
lead to significant delays in real-time applications. Therefore,
optimizing these algorithms or developing hybrid algorithms
that can reduce time complexity while maintaining solution
quality is essential for scalable and efficient resource allocation
in OFDMA networks.
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Fig. 1. Comparison of fitness values across generations for GA, PSO, and
the hybrid algorithm.

Fig. 1 presents an analysis of the performance of various
algorithms in terms of their fitness values. The results clearly
indicate that the hybrid approach, which combines GA and
PSO, is the most effective in consistently achieving higher fit-
ness values compared to either algorithm used in isolation. The
observed performance trends highlight that while PSO tends to
provide stable solutions with less variability, the hybrid model
effectively leverages the strengths of both algorithms. By
utilizing GA’s exploratory capabilities to navigate the solution
space and PSO’s ability to refine and converge on optimal solu-
tions, the hybrid approach demonstrates superior performance
across various scenarios. Furthermore, the adaptability of the
hybrid algorithm enables it to function effectively in a variety
of settings and complex problems, indicating its possible use
in real-world situations where environmental changes could
occur.

5000 T — T

—&—GA
—&—PS0
Hybrid |

=

3

=
T

Total Data Rate

00—

10 15 20 25 30 35 40
Number of Devices

Fig. 2. The total data rate versus the number of devices for GA, PSO, and
the hybrid algorithm.
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Fig. 2 illustrates a comprehensive analysis of the perfor-
mance of three algorithms in relation to the total data rate
as the number of devices increases. The data reveals a clear
trend: all three algorithms demonstrate an improvement in total
data rate with the addition of more devices. This improvement
highlights the algorithms’ ability to effectively utilize available
resources as network demand grows. Among the algorithms
tested, the hybrid algorithm emerges as the most effective
solution, consistently achieving the highest data rates across
varying device counts. This superior performance may be
attributed to its unique approach, which likely combines the
strengths of both traditional and modern techniques, allowing
for more adaptable resource allocation and enhanced manage-
ment of network traffic.
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Fig. 3. The power consumption versus the number of devices for GA, PSO,
and the hybrid algorithm.

The analysis in Fig. 3 indicates that as the number of
devices increases, the energy consumption of all algorithms
increases. In spite of its superior data rate performance, the
hybrid approach uses the most energy, while GA and PSO
exhibit the most efficient energy usage. This shows that trade-
offs between energy efficiency and performance, especially in
larger networks, need to be carefully considered. In order to
better balance these factors, future research could concentrate
on improving the hybrid approach. The strong performance
of the hybrid algorithm indicates its potential for better re-
source management and performance optimization, especially
in larger networks where device density can significantly
affect data transmission efficiency. It could prove a fantastic
option for deployment in environments with high user demand
because of its capacity to maintain high data rates even as the
number of devices increases.

Future work should delve deeper into the specific con-
figurations that contribute to the hybrid algorithm’s success.
Identifying optimal parameter settings and operational strate-
gies could further enhance its efficacy. Additionally, further
investigations into the scalability of this algorithm are essen-
tial, as understanding its limits and capabilities in increasingly
complex network environments will be crucial for real-world
applications. This could involve exploring its performance
under varying network conditions, different types of traffic
loads, and integration with emerging technologies such as
Internet of Things (IoT) and 5G networks.

V. CONCLUSION

In conclusion, this study highlights the significance of
efficient resource allocation in OFDMA networks as a means
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TABLE III. OPTIMIZED RESOURCE ALLOCATION USING HYBRID
ALGORITHM (GA-PSO)

Input:
. Population size P: Number of individuals/particles in the population.
. Maximum iterations G: Total number of iterations for the hybrid
algorithm.
. Crossover rate Chye: Probability of crossover between individuals.
° Mutation rate Miy: Probability of mutation for individuals.
. Cognitive coefficient cq: Weight for the individual particle’s best
position.
. Social coefficient co: Weight for the swarm’s best position.
Output:
. The best solution found by the hybrid algorithm, along with its fitness
value.

I. Initialize population and swarm:

. Each individual j is represented by a random vector:
Py Py R Pn
individual; = <31 By - BN) 14
n T - InN
° Swarm particles ¢ are represented by a random position and velocity
vector:
Py P -+ Py
X; = (31 By - BN) (15)
n T, - IN
— (vp vp ©o+ UPN
Vi = ('UB} ng UBN) (16)
. Initialize each particle’s best position pbest; to its initial position.
2. Evaluate fitness:
. For each particle ¢ and individual j, calculate fitness based on the
objective function:
N N
Fitness(x;) = E R — A E Ey a7
k=1 k=1

where Ry represents the reward and Ej the energy consumption
for task k.
. Ensure that the individual satisfies the constraints C, Ca, and Cg:
If constraints are violated, apply a penalty to the fitness:
fitness (individual ;) =
fitness (individual ;) — P if constraints violated (18)
fitness (individual ; ) otherwise

3. Update global best:

. Determine the best position gbest across all particles and individuals
to guide future movements.

4. Update individuals:

. Select individuals based on fitness to form a mating pool.
. For selected individuals, perform crossover based on Clye:

Olg] = (p2f;1[+1 1 ‘?]N]) (19)

where ¢ is a randomly chosen crossover point.
. Apply mutation based on My to introduce variability:

Olg] = {O[g} + A if r < Mige

20
Olg] otherwise @0

where A is a specified distribution random value.
5. Update velocities and positions:
. Update velocity for each particle 4:

v; = w-v;+cq-ry - (pbest; —x;)+ca-ra-(gbest—x;) (21)
. Update position for each particle :
T =x; + 4 (22)

6. Replacement:
. Form a new population by selecting the best individuals from both
the current population and the new offspring Olg].
7. Termination:
. If the maximum number of iterations G is reached or if a satisfactory
solution based on fitness is found, stop the algorithm. Otherwise,
return to step 2.
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to meet the growing demand for seamless connectivity and
energy efficiency. By comparing GA, PSO, and the hybrid
algorithm, the hybrid approach effectively balances the benefits
of both methodologies, resulting in superior performance in
optimizing data transmission and energy consumption. The
findings emphasize the importance of adapting resource allo-
cation strategies to the dynamic conditions of modern wireless
environments. Future research could explore further enhance-
ments to the hybrid algorithm and investigate its scalability
across different network configurations.
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