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Abstract—Timely and precise identification of potato leaf
diseases plays a critical role in improving crop productivity and
reducing the impact of plant pathogens. Conventional detection
techniques are often labor-intensive, dependent on expert anal-
ysis, and may not be practical for widespread agricultural use.
This paper introduces an automated detection system based on
YOLOVS, a cutting-edge deep learning framework specialized
in object detection, to accurately recognize multiple potato
leaf diseases. The proposed model is trained on a carefully
prepared dataset that includes both healthy and infected leaves,
utilizing robust feature learning to distinguish between different
disease types. Our experimental evaluation reveals that the
YOLOVv8-based method achieves superior performance in terms
of accuracy and processing speed when compared to traditional
approaches. This work contributes to the ongoing transformation
of agriculture through smart technologies by offering an Al-
powered tool that facilitates real-time crop monitoring. Future
research may focus on deploying this solution on edge devices,
such as smartphones or drones, to enable scalable, on-field
disease diagnostics. Ultimately, this study supports the vision
of sustainable agriculture by integrating intelligent systems into
everyday farming operations.

Keywords—Potato disease detection; YOLOvS; Agriculture 4.0;
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I. INTRODUCTION

Agriculture plays a pivotal role in global economic growth
and food security, particularly in rural areas where a significant
portion of the population depends on farming for their liveli-
hood. According to reports, nearly 80% of rural inhabitants are
engaged in agricultural activities [1]. However, food security
remains a major challenge due to various factors, including
plant diseases that threaten crop yields. Among staple crops,
the potato is one of the most widely cultivated and economi-
cally significant vegetables. It ranks as the third most important
crop after rice and wheat in several countries, contributing
substantially to national food supplies and economic stability.
Although potato cultivation plays a critical role in agricultural
systems, it remains highly susceptible to numerous diseases, as
extensively reported in previous research [2]. Without timely
detection and effective management, these diseases can lead
to significant reductions in both yield and quality.

Early detection of potato diseases is crucial to mitigating
potential losses and ensuring sustainable agricultural practices.
Traditional methods of disease identification often rely on
expert observation and laboratory testing, which can be time-
consuming, expensive, and inaccessible to small-scale farmers.

As a result, researchers have increasingly turned to artificial
intelligence (AI) and computer vision techniques to automate
the process of plant disease detection. Convolutional neural
networks (CNNs) and other deep learning and machine learn-
ing advancements have shown great promise in accurately
diagnosing plant diseases [3].

A wide range of research efforts has been dedicated to
leveraging machine learning techniques for the classification of
plant diseases. Initial contributions in this area often focused on
conventional algorithms, including Support Vector Machines
(SVM), Random Forests (RF), and k-Nearest Neighbors (k-
NN), which were employed to build predictive models capable
of identifying various plant health conditions. Previous studies
[4] have employed multiclass support vector machines (SVMs)
on segmented potato leaf images, demonstrating significant
effectiveness in accurately classifying various leaf diseases.
Other researchers [5] have combined k-means clustering for
image segmentation with machine learning classifiers, demon-
strating a broad range of accuracy rates depending on the
dataset and feature extraction techniques employed.

With the rise of deep learning, CNN-based models have be-
come increasingly popular for plant disease detection. Several
works [6] have applied well-known architectures, including
VGG16, ResNet50, and MobileNet, to classify potato leaf
diseases. Researchers have also experimented with transfer
learning techniques to enhance classification performance.
Previous studies in [7] utilizing the PlantVillage dataset, one
of the most widely used open-source datasets for plant disease
research, have reported high classification accuracies using
deep learning models.

Recent advancements have also focused on hybrid models
that integrate different techniques to improve classification
performance. Researchers in study [8] have proposed using
structured residual dense networks to reduce computational
complexity while maintaining high accuracy. Others have
explored feature selection techniques combined with deep
learning to enhance model efficiency. Furthermore, lightweight
models such as MobileNetV2 have been developed for real-
time applications, achieving competitive results with minimal
computational resources [9].

Despite these advancements, challenges remain in plant
disease detection, particularly regarding dataset availability and
model generalization. While many studies rely on PlantVillage
or similar datasets, there is a growing need for diverse, real-
world datasets that capture variations in environmental con-
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ditions, lighting, and disease severity. Some researchers have
attempted to address this limitation by collecting their own
datasets, but these datasets are often not publicly available,
limiting reproducibility and comparative analysis [10].

Building upon recent progress in deep learning and the
emergence of Agriculture 4.0, this research introduces a de-
tection strategy based on YOLOvVS for identifying diseases
affecting potato leaves. As a cutting-edge object detection
architecture, YOLOVS is particularly well-suited for precision
agriculture due to its ability to perform rapid and accurate
inference in real time. Unlike traditional classification models,
YOLOVS can detect multiple disease regions within a single
image, providing a more comprehensive assessment of plant
health [11] [12] [13].

This study aims to enhance the accuracy and efficiency
of potato disease detection by leveraging image segmentation
techniques alongside deep learning. By training the model on
a curated dataset of diseased and healthy potato leaves, this
research seeks to improve disease classification performance
compared to existing approaches. While this work primarily
focuses on model development and evaluation, future research
could explore the integration of this system into mobile or edge
computing devices, aligning with the principles of Agriculture
4.0 to enable real-time, Al-driven disease diagnostics in the
field. By advancing automated plant disease detection, this
study contributes to the broader goal of precision agriculture,
where Al-powered solutions enhance crop monitoring, reduce
losses, and support sustainable farming practices.

The structure of the paper is organized as follows: Sec-
tion II presents the related work. Section III details the pro-
posed methodology, encompassing dataset collection, prepro-
cessing strategies, and the fine-tuning process of the YOLOVS
model. Section IV reports the experimental results, accom-
panied by a thorough performance evaluation and analysis.
In Section V, a comparative assessment is conducted against
existing state-of-the-art detection approaches. Section VI high-
lights the detection outcomes achieved by the proposed model.
Lastly, Section VII concludes the paper by summarizing the
principal findings and outlining possible directions for future
research. Section VIII introduces future work related to this
study.

II. RELATED WORK

In recent years, artificial intelligence and computer vision
have seen remarkable advancements, offering effective solu-
tions for the complex task of plant disease identification. Initial
approaches primarily relied on classical machine learning
algorithms, such as Support Vector Machines (SVM), Random
Forests (RF), and k-Nearest Neighbors (k-NN). For example,
the study in [4] employed multiclass SVM models combined
with segmentation techniques to classify potato leaf diseases
with reasonable accuracy. Similarly, the study in [5] used
graph cut segmentation prior to classification, highlighting the
importance of preprocessing in improving model performance.

With the evolution of deep learning, CNNs became the
dominant paradigm due to their ability to automatically extract
hierarchical features from images. Architectures like VGG16,
ResNet50, and MobileNet have been widely adopted in plant
pathology applications [6]. Many studies have utilized the
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PlantVillage dataset, a benchmark resource for plant disease
classification, achieving high accuracy using pretrained CNNs
and transfer learning strategies [7]. These models demonstrated
strong generalization in controlled conditions but often lacked
robustness in real-world scenarios due to limited dataset diver-
sity.

To overcome the limitations of standard CNNs, hybrid
models have been proposed. These models combine the
strengths of deep networks and optimization algorithms or in-
corporate handcrafted features to enhance disease recognition.
For instance, the study in [8] introduced a structured residual
dense network to reduce computational load while maintaining
performance. Lightweight models like MobileNetV2 have also
been explored for real-time mobile deployment, offering a
balance between speed and accuracy [9].

Recent research has shifted towards object detection tech-
niques, which provide spatial localization in addition to classi-
fication. The YOLO (You Only Look Once) family of models
has gained prominence for its real-time capabilities. Stud-
ies have compared different YOLO versions (e.g., YOLOVS,
YOLOVS) for plant disease detection tasks. For example, [25]
conducted a comparative analysis of YOLOvVS and YOLOVS in
detecting corn leaf diseases, highlighting YOLOVS8’s superior
detection accuracy and faster inference speed. Similarly, [24]
evaluated YOLOv8 and YOLOVY in hydroponic environments
and confirmed YOLOVS8’s robustness in complex agricultural
scenes.

Moreover, the introduction of specialized architectures
such as SIS-YOLOvV8 has further improved the adaptability
of detection models to agricultural conditions. In [26], a
deep learning-enhanced version of YOLOVS was used for
Solanaceae crop monitoring, integrating segmentation-based
improvements to boost detection performance under various
environmental constraints.

Despite these advancements, challenges persist in dataset
generalization, annotation consistency, and deployment on
low-power edge devices. Many studies still depend heavily on
curated datasets like PlantVillage, which may not reflect real
field variability. This highlights the need for research focusing
on real-world datasets and robust models that can maintain
performance across diverse conditions.

In response to these challenges, this work builds on the
strengths of YOLOVS, leveraging its advanced architecture for
accurate and efficient detection of multiple disease regions
within potato leaves. By curating and annotating a diverse
dataset and integrating fine-tuned segmentation techniques, our
approach aims to bridge the gap between high-performance
research models and practical agricultural applications.

III. POTATNET: FINE-TUNED YOLOV8 FOR POTATOES
LEAF DISEASE DETECTION

The YOLO series represents a deep learning framework
tailored for object detection tasks. YOLOVS, an advancement
over YOLOVS by the same development team, retains the
core architectural principles while incorporating notable op-
timizations and enhancements. This latest iteration surpasses
YOLOVS in algorithmic efficiency and versatility, enabling not
only object detection and tracking but also additional function-
alities as well as instance segmentation, image classification,
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and keypoint detection. Expanding upon the foundation estab-
lished by YOLOVS, YOLOVS introduces key modifications that
extend its applicability beyond conventional object recognition
to more specialized tasks.

For this study, we employ a fine-tuned version of YOLOVS8
optimized for detecting and classifying potato leaf diseases.
The model is trained to accurately segment and classify various
leaf infections, which is crucial for early disease diagnosis
and precision agriculture. The architecture follows the five
YOLOvVS model variants: n, s, m, 1, and x, each progressively
increasing in depth and width. Aligning with the ELAN design
strategy [14], our fine-tuned YOLOVS improves upon the
YOLOVS5 backbone by replacing the C3 module with the C2f
structure, enhancing gradient flow and feature representation
while maintaining computational efficiency.

A key enhancement in the fine-tuned YOLOVS architec-
ture is the integration of a decoupled head design, which
enhances loss computation and optimizes feature extrac-
tion for segmentation-based tasks. The model utilizes the
TaskAlignedAssigner technique [15] to refine loss function
computation and incorporates the distribution focal loss func-
tion [16] to improve localization accuracy. To further en-
hance generalization, the fine-tuned YOLOvVS8 optimizes its
data augmentation strategy by disabling Mosaic augmenta-
tion—originally introduced in YOLOX [17]—during the final
training epochs, resulting in improved precision for leaf disease
detection. Additionally, the YOLOvVS8 object detection frame-
work includes segmentation-optimized variants, YOLOv8s-Seg
and YOLOv8n-Seg. Inspired by the YOLACT network, these
models achieve high segmentation mean average precision
while enabling real-time instance segmentation. Fig. 1 illus-
trates the YOLACT network architecture [18].

The architecture of our fine-tuned YOLOv8 model consists
of two fundamental components: the backbone and the head,
where the latter is further divided into the neck and segmenta-
tion layers. Fig. 2 illustrates the modified network, optimized
specifically for instance segmentation in potato leaf disease
classification. The backbone integrates a 3x3 convolutional
layer, the C2f module, and the Spatial Pyramid Pooling Fusion
(SPPF) component. To enhance efficiency, we replace the
standard 6x6 convolution in YOLOVS with a 3x3 convolution.
Additionally, the C2f module replaces the conventional C3
component to facilitate improved gradient propagation and
feature extraction through optimized residual connections. The
fine-tuned model also integrates two forms of the Cross-Stage
Partial Network (CSP), applying residual connections in the
backbone and direct connections in the head component [19].
The SPPF module, utilizing sequential 5x5 pooling kernels,
remains aligned with YOLOVS (version 6.1) for computational
efficiency.

The head module comprises the neck and segmentation
layers. The neck component integrates feature fusion networks
such as the PANet [20] and FPN [21], ensuring effective
multi-scale feature extraction. Unlike previous YOLO versions,
including YOLOvS and YOLOV6, our fine-tuned YOLOvVS
eliminates the need for a 1x1 convolution before upsampling,
opting instead for direct fusion of feature maps across different
backbone stages.

To further enhance performance, we introduced key mod-
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ifications to the neck module. Two 1x1 SimConv convo-
lIutions were used to enhance feature map aggregation and
spatial information retention before every upsampling step.
Additionally, 3x3 SimConv convolutions replace traditional
convolutions in the neck, extending the receptive field and
enhancing feature extraction capabilities. Moreover, we sub-
stituted the C2f module with the RepBlock module, which
consists of stacked RepConv convolutions [22] designed for
computational efficiency and optimized residual connections.
This structural refinement ensures better gradient flow, im-
proves parameter utilization, and enhances feature represen-
tation—key factors in achieving high-precision potato leaf
disease detection.

By integrating these modifications, our fine-tuned YOLOVS
model achieves superior accuracy and efficiency in classifying
and segmenting diseased potato leaves. The optimized archi-
tecture facilitates real-time detection, making it an effective
tool for agricultural disease monitoring and precision farming
applications.

IV. EXPERIMENTS AND RESULTS
A. Evaluation Metrics

To evaluate the performance of the fine-tuned YOLOVS
model, both the training and validation datasets were em-
ployed. The assessment was carried out using standard object
detection and segmentation metrics, with a particular focus on
Average Precision (AP), which is calculated at various Inter-
section over Union (IoU) thresholds. These metrics provide a
solid framework for measuring the accuracy and completeness
of the model’s predictions.

The IoU is a crucial metric that measures the degree of
overlap between the predicted and ground truth regions. It
is computed as the ratio of the area of overlap to the area
of union between the two regions. An IoU of 1.0 represents
a perfect match, while an IoU of O indicates no overlap.
Based on the chosen IoU threshold, predictions are classified
into different categories, including True Positive (TP), False
Positive (FP), or False Negative (FN). Though not commonly
used in segmentation tasks, a True Negative (TN) can also
be considered, referring to accurately identified background
regions.

To evaluate the model’s capacity for object detection and
localization, three important metrics were used: Precision, Re-
call, and the F1 Score. Precision is defined as the ratio of true
positive predictions to the total number of predicted positives,
reflecting the accuracy of the model’s positive predictions.
Recall is the proportion of true positives relative to the total
number of actual positive instances, indicating the model’s
ability to correctly detect all relevant cases. The F1 Score,
which combines both precision and recall, is calculated as the
harmonic mean of these two metrics, offering a balanced eval-
uation when both precision and recall are equally important.

In addition to these metrics, for segmentation tasks, the
performance of the model was also evaluated using mAP,
particularly at an IoU threshold of 0.5. This value, referred
to as mAP@(.5, summarizes the precision across all classes
detected by the model, providing a comprehensive measure of
its performance.
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Fig. 1. YOLACT Architecture.

B. Potatoes Leaf Disease Dataset

The used dataset in this study, generated via the Roboflow
platform [23], was designed to support the training of deep
learning models in detecting potato leaf diseases. It includes
nine clearly defined classes like Early Blight, Healthy, Late
Blight, Leaf Miner, Leaf Mold, Mosaic Virus, Septoria, Spider
Mites, and Yellow Leaf Curl Virus. The data is split into train-
ing and validation subsets to ensure a robust learning process
and reliable evaluation. Before training, all images underwent
preprocessing, including automatic orientation correction to
ensure a consistent viewpoint. A range of augmentation tech-
niques was also applied to improve the model’s generalization
to different conditions. These augmentations included hori-
zontal flipping, adjustments to brightness and contrast, Gaus-
sian blurring, and random rotation. Such techniques introduce
greater variability into the training data, enabling the model
to better recognize disease symptoms across diverse scenarios.
Thanks to its thoughtful structure and comprehensive prepro-
cessing, this dataset represents a valuable asset for advancing
research in automated plant disease detection and precision
agriculture.

1) Dataset distribution: The analysis of the Potatoes
dataset, as shown in Fig. 3, reveals a detailed distribution of in-
stances across various disease categories, ensuring a balanced
and representative coverage of the major plant conditions. The
dataset includes a diverse range of leaf conditions, covering
both healthy samples and various disease types such as Early
Blight, Late Blight, and Septoria. It also encompasses instances
of Leaf Mold, Mosaic Virus, and Yellow Leaf Curl Virus,
along with damage caused by pests like Spider Mites and Leaf

Miners.

Yellow Leaf Curl Virus emerges as the most common class,
with around 5200 labeled instances, highlighting its significant
presence in the dataset. On the other hand, Spider Mites is
the least represented class, with approximately 2900 samples,
indicating a lower frequency of occurrence. The remaining
classes are distributed as follows: Early Blight with about
3000 instances, Healthy with 3500, Late Blight with 4200,
Leaf Miner with 3200, Leaf Mold with 4000, Mosaic Virus
with 3900, and Septoria with 3800 instances. Additionally,
scatter plots provide insights into the distribution of bounding
box annotations using normalized coordinates—specifically
the center points (X, y) and dimensions (width, height). These
visual representations underscore the variability in the dataset,
which is essential for developing deep learning models capable
of robust generalization across diverse visual symptoms of
plant diseases.

2) Dataset correlogram: The correlogram depicted in
Fig. 4 offers a comprehensive graphical analysis of the an-
notation features within the Potatoes dataset. It visualizes the
relationships among key variables such as the normalized x
and y positions, bounding box width, and height. The diagonal
subplots represent the distribution of each individual feature,
where noticeable peaks in the x and y axes indicate that
object annotations are concentrated in particular regions of
the images. The lower triangle of the correlogram, contain-
ing scatter plots, reveals inter-variable dependencies. Notably,
a strong positive correlation is observed between bounding
box width and height, suggesting that larger objects tend
to maintain consistent aspect ratios. Additionally, the spatial
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Fig. 2. Fine-tuned YOLOvS8-based leaf disease detection for potatoes.

coordinates exhibit discernible structure, pointing to a non-
random pattern in the placement of objects, likely influenced
by the systematic capture of plant imagery. These observations
highlight the dataset’s diversity in both spatial location and
object size—an important factor in training resilient detection
models for agricultural disease identification. The correlogram
thus plays a crucial role in uncovering underlying biases and
guiding informed model development. Representative image
samples from the dataset are presented in Fig. 5.

C. Fine-Tuned YOLOVS Training Performance

The illustrated results in Fig. 6 presents the Box
Loss (train/box_loss) which measures the accuracy of pre-
dicted bounding box locations. The Classification Loss
(train/cls_loss) that reflects how well the model classifies the
detected objects into different disease categories. The DFL
Loss (train/dfl_loss) which is the Distribution Focal Loss
(DFL) that measures the quality of localization in object
detection.

The fine-tuned YOLOVS model for potato leaf disease
detection exhibits strong performance, as evidenced by the
trends observed in the training and validation loss curves,
as well as the precision, recall, and mAP metrics. The box
loss, classification loss, and distribution focal loss decrease
consistently throughout training, suggesting that the model
effectively learns to localize and classify diseased leaves with
increasing accuracy. A noticeable drop in loss around epoch

40 indicates a significant learning adjustment, possibly due
to an optimal tuning of hyperparameters or adaptive weight
updates. The validation loss follows a similar pattern, con-
firming that the model generalizes well to unseen data without
signs of overfitting. Precision and recall improve steadily, with
precision stabilizing above 0.90 and recall rising from an
initial 0.65 to over 0.90, indicating that the model confidently
detects diseased leaves while minimizing false negatives. The
mAP50 metric, which measures detection accuracy at a loose
IoU threshold, surpasses 0.95, while the mAP50-95, a stricter
evaluation metric, also reaches high values, demonstrating
robust performance across various object scales and positions.
These results suggest that the YOLOVS model is highly reliable
for real-time agricultural applications, offering precise and
efficient disease detection that can aid in early intervention
and crop health monitoring. The combination of low loss
values, high detection accuracy, and stable performance trends
indicates that the model is well-optimized for this task, making
it a valuable tool for automated disease identification in potato
plants.

D. Metrics Evaluation

To assess the efficiency of the YOLOv8 model, we con-
ducted an analysis based on key performance indicators, in-
cluding precision-recall curves, F1 scores, and the normalized
confusion matrix, across a range of confidence thresholds.
This comprehensive assessment aims to determine the model’s
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Fig. 4. Potatoes dataset correlogram.

capability to accurately detect and classify different object cat-
egories within the dataset. The findings are visualized through
three main plots: the F1 score versus confidence threshold
curve (Fig. 7), the precision-recall (PR) curve (Fig. 8), and
the normalized confusion matrix (Fig. 9). These visual tools
collectively offer insights into the model’s reliability and class-
wise performance under varying conditions.
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Fig. 5. Potatoes dataset samples.

1) FI-Score analysis: Fig. 7 displays the F1-Confidence
Curve, which demonstrates how the F1 score varies with
changes in the confidence threshold across different potato leaf
disease classes. The F1 score serves as an important indicator
of detection performance, as it represents a harmonic mean
between precision and recall. According to the curve, the
model achieves its highest overall F1 score of 0.94 when the
confidence threshold is set to 0.584. This value reflects the
most favorable balance between precision and recall, ensuring
that the model performs consistently well across all identified
disease categories.

Examining individual disease classes, most curves exhibit a
high F1 score, remaining above 0.85 for a broad range of con-
fidence values, signifying strong classification performance.
However, certain classes, such as Yellow Leaf Curl Virus,
have comparatively lower F1 scores, suggesting a slightly
higher degree of misclassification or difficulty in distinguishing
these instances from others. The sharp decline in F1 scores
at extreme confidence levels (close to 0 or 1) suggests that
overly conservative or lenient confidence thresholds negatively
impact detection performance. A very low threshold includes
too many false positives, while an overly high threshold leads
to excessive false negatives.

Overall, the model demonstrates reliable disease detection,
with an optimal threshold around 0.58, where it maximizes
F1 score across all categories. These findings indicate that the
fine-tuned YOLOvV8 model is well-calibrated for precise and
efficient disease identification, making it a promising tool for
real-time agricultural applications.

2) Precision and recall analysis: Fig. 8a curve illustrates
how precision varies with different confidence thresholds for
each disease class. The model demonstrates high precision
across most classes, with precision values stabilizing above
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Fig. 6. Training performance of fine-tuned YOLOVS.
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Fig. 7. F1-Score performance of fine-tuned YOLOVS.

80% at relatively low confidence thresholds. The curve for all
classes (bold blue line) achieves nearly perfect precision (1.00)
at a confidence level of 0.992, indicating that when the model
assigns high confidence to a prediction, it is almost always
correct. However, some classes, such as Yellow Leaf Curl Virus
and Healthy, exhibit slightly lower precision, particularly at
lower confidence levels, suggesting potential misclassifications
at uncertain predictions.

The Recall-Confidence curve (Fig. 8b) shows how recall
behaves as the confidence threshold changes. The model
maintains a recall rate close to 1.0 at lower confidence values,
ensuring a high detection rate. However, recall decreases
significantly as confidence increases, indicating that the model
becomes more selective in its predictions. The all-class curve

maintains an overall recall of 0.98 at a confidence threshold
of 0.0, meaning the model is highly capable of detecting
all disease types when it does not impose strict confidence
constraints. The drop-off in recall at higher confidence levels
suggests a trade-off between high-confidence precision and
sensitivity, which must be balanced depending on the appli-
cation.

The PR (Fig. 8c) is a crucial evaluation metric for im-
balanced datasets like disease detection. The PR curve for
all classes exhibits excellent performance, with a mAP@0.5
of 0.975. Individual class performance is also strong, with
Leaf Miner achieving the highest AP (0.995) and Yellow
Leaf Curl Virus the lowest (0.938). The consistently high
precision-recall values indicate that the model maintains strong
detection capability even at varying recall levels, reinforcing
its reliability in practical applications.

The fine-tuned YOLOvV8 model exhibits outstanding per-
formance in potato leaf disease detection, achieving high
precision, recall, and precision-recall metrics. The precision-
confidence curve suggests that the model makes highly ac-
curate predictions when confidence is high, while the recall-
confidence curve highlights a natural trade-off where higher
confidence leads to lower recall. The PR curve further confirms
the model’s robustness, demonstrating a near-perfect balance
of precision and recall across different disease categories. The
results underscore the model’s potential for deployment in
practical agricultural scenarios, where precise and dependable
disease detection is essential.

3) Confusion matrix analysis: The confusion matrix, illus-
trated in Fig. 9, for the fine-tuned YOLOvV8 model in potato
leaf disease detection reveals strong classification performance
across multiple disease categories. The model achieves notably
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Fig. 8. Precision and recall for fine-tuned YOLOVS.
high classification accuracy, with Leaf Miner attaining per- assessment.

fect prediction (1.00), followed by Early Blight (0.97), Late
Blight (0.96), and Spider Mites (0.98), indicating exceptional
reliability for these disease types. However, certain classes, o m 0
such as Yellow Leaf Curl Virus (0.91) and Healthy (0.93),
show some degree of misclassification, with Healthy instances

Healthy - 028

occasionally misclassified as background (0.24), suggesting wate st -
that variations in leaf appearance might introduce classification LeotMines -
challenges. Additionally, Yellow Leaf Curl Virus shows a o

Leaf Mold - 01 010

notable false positive rate, with 38% of background instances
being mistakenly classified under this category, likely due to

Predicted

Mosaic Virus - 001 o003

-04

similar visual features between the disease and non-leaf areas. septoia - 001

The model also exhibits minor confusion between Leaf Mold spider vites -

(0.93) and background (0.10), and Mosaic Virus (0.93) with R o2
occasional misclassification as Septoria (0.01) or background

(0.03). These findings indicate that while the model effectively e B = B »

distinguishes most diseases with high confidence, further re-
finement could focus on reducing background misclassification
and improving separability between visually similar disease
types. Overall, the YOLOvVS model demonstrates strong clas-
sification performance and practical viability for real-world
agricultural applications in disease monitoring and crop health
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Leaf Miner -
Leaf Mold -
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background -
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Fig. 9. Confusion matrix of fine-tuned YOLOVS.
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TABLE I. COMPARATIVE PERFORMANCE METRICS FOR POTATO LEAF DISEASE DETECTION

Model Dataset Inference Time (ms) FLOPs (GFLOPs) Params (M) FPS mAP@50 (%) mAP@50:95 (%)
YOLOV8 (Your Work) Potato Leaf Disease ~3-5 ~4.5 ~3.2 ~200+ 95 90
YOLOv8n [24] PlantVillage 5.2 4.5 32 192 94.37 89.12
YOLOVS [25] PlantDoc 6.1 4.7 34 185 96.5 72.7
YOLOVS [26] Custom Potato and Tomato Dataset 5.5 4.6 3.3 190 90.1 83.7

V. COMPARATIVE STUDY

To rigorously analyze the performance of our YOLOvS-
based approach for potato leaf disease detection, we performed
a detailed comparative analysis with several recent state-of-
the-art deep learning models. The results of this evaluation are
presented in Table I, where our model consistently outperforms
competing methods in terms of mean Average Precision (mAP)
across different thresholds. In particular, our system achieves a
mAP@50 of 95% and a mAP@50:95 of 90%, indicating strong
performance not only at a single Intersection over Union (IoU)
threshold but also across a range of IoU values.

When compared to the work of Qureshi et al. [24], who
implemented a YOLOv8n model on the widely used PlantVil-
lage dataset and reported mAP@50 and mAP@50:95 scores
of 94.37% and 89.12% respectively, our model demonstrates
a clear improvement in both metrics. This suggests that the
modifications and optimizations applied to our implementation
contribute significantly to its enhanced detection accuracy.
Additionally, while the model developed by Lee et al. [25]
attained an impressive mAP@50 of 96.5% using the PlantDoc
dataset, its performance dropped considerably at the stricter
mAP@50:95 threshold, where it only reached 72.7%. This
discrepancy highlights a potential lack of consistency in pre-
diction precision across varying IoU thresholds, a limitation
that our model manages to overcome effectively. Similarly,
the approach proposed by Wang et al. [26], which employed a
customized YOLOVS variant for a dataset encompassing both
potato and tomato leaf diseases, reported mAP scores of 90.1%
(at 50%) and 83.7% (at 50:95), both of which remain below the
performance levels achieved by our model. These comparisons
collectively underscore the robustness and accuracy of our
system in identifying multiple disease types in complex visual
conditions.

Beyond accuracy, our model also exhibits high computa-
tional efficiency, with an average inference time of approxi-
mately 3-5 milliseconds per image. With a computational cost
of only 4.5 GFLOPs and a compact architecture comprising
3.2 million parameters, the model is optimized for real-time
deployment. This balance between accuracy and speed is par-
ticularly advantageous for applications in precision agriculture,
where timely and reliable detection is critical.

Overall, these results validate the effectiveness of our
optimized YOLOv8n architecture. It offers a compelling trade-
off between high detection accuracy and efficient runtime
performance, making it a practical choice for real-world plant
disease monitoring systems, especially in resource-constrained
or mobile environments.

VI. DETECTION RESULTS

Fig. 10 illustrates the detection outcomes produced by
the proposed YOLOv8-based model on the validation set for

potato leaf disease identification. The results highlight the
model’s capacity to accurately detect and classify a wide
range of disease types, including but not limited to Early
Blight, Late Blight, Leaf Mold, Septoria, Mosaic Virus, and
Yellow Leaf Curl Virus. Each identified disease is marked
with a clearly defined bounding box and an associated color-
coded label, facilitating intuitive visual differentiation between
disease categories.

The model consistently produces predictions with high con-
fidence scores, frequently approaching a value of 1.0, which
reflects the strong reliability of the classification decisions.
This level of precision underscores the model’s robustness in
managing diverse scenarios, including images with overlapping
foliage, inconsistent lighting, and varying leaf orientations.
Even in challenging visual conditions, the system maintains
a low rate of false positives and negatives, which is crucial for
practical deployment in agricultural settings.

Furthermore, the detection outputs align closely with the
performance metrics presented in Table I, particularly the
elevated mean Average Precision (mAP), precision, and re-
call values. Such consistency between quantitative evaluation
and visual inspection confirms the effectiveness and practical
viability of the proposed approach. These findings support the
potential integration of our model into smart farming platforms
for real-time, in-field disease monitoring and early intervention
strategies.

VII. CONCLUSION

In this research, we designed a robust deep learning model
for automated potato leaf disease detection using YOLOVS.
The model was trained and evaluated on a diverse dataset
comprising nine distinct classes of potato leaf diseases. Our ex-
perimental results demonstrate that YOLOvS8n achieves state-
of-the-art performance with a high mAP@50 of approximately
95% and an mAP@50-95 of around 90%, surpassing several
existing approaches in terms of accuracy, efficiency, and infer-
ence speed. The comparative analysis highlights the advantages
of YOLOv8n, particularly its lightweight architecture, which
enables real-time detection with an inference time of 3-5 ms
per image and a processing speed exceeding 200 FPS. The
model’s effectiveness is further supported by the confusion
matrix and qualitative results, which show precise classification
with minimal misclassification errors. The high accuracy and
real-time capabilities of our model make it suitable for deploy-
ment in agricultural settings, enabling farmers and agricultural
experts to detect diseases early and take timely action to
prevent crop losses. Future work can focus on expanding the
dataset to include more variations in environmental conditions,
integrating edge AI deployment for on-field diagnosis, and
exploring self-supervised learning techniques to further en-
hance generalization across different crop varieties. Overall,
our study contributes to the advancement of smart agricultural
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Fig. 10. Detection results based on fine-tuned YOLOVS.

systems by providing an efficient and accurate deep learning-
based solution for potato leaf disease detection.

VIII. FUTURE WORK

The current study demonstrates the effectiveness of the
YOLOvV8 model in accurately detecting multiple potato leaf
diseases. However, several avenues remain open for future
research. First, expanding the dataset with images from varied
environmental conditions (e.g., different lighting, backgrounds,
or leaf orientations) could improve the model’s robustness
and generalization ability. Second, integrating temporal data
through video sequences or deploying the model on drone-
based platforms may enable large-scale, real-time field surveil-
lance, which is crucial for early disease detection and re-
sponse in precision agriculture. Moreover, although the current
work focused on leaf-based disease detection, incorporating
other plant parts (e.g., stems or tubers) and multiple crop
species could extend the applicability of the system. Another
promising direction involves the combination of YOLOvVS8 with

lightweight model optimization techniques such as pruning
and quantization, which would facilitate real-time inference on
edge devices. Finally, fusing image-based data with sensor data
(e.g., temperature, humidity, soil moisture) could contribute
to the development of more holistic and context-aware plant
health monitoring systems.
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