(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

Optimizing Medical Image Analysis: A Performance
Evaluation of YOLO-Based Segmentation Models

Haifa Alanazi
Department of Information Systems-Faculty of Computing and Information Technology,
Northern Border University, Saudi Arabia

Abstract—Instance segmentation is a critical component of
medical image analysis, enabling tasks such as tissue and organ
delineation, and disease detection. This paper provides a detailed
comparative analysis of two fine-tuned one-stage object detection
models, YOLOv11-seg and YOLOV9-seg, tailored for instance
segmentation in medical imaging. Leveraging transfer learning,
both models were initialized with pretrained weights and sub-
sequently fine-tuned on the NulnsSeg dataset, which comprises
over 30,000 manually segmented nuclei across 665 image patches
from various human and mouse organs. This approach facilitated
faster convergence and improved generalization, particularly
given the limited size and high complexity of the medical
dataset. The models were evaluated against key performance
metrics. The experimental results reveal that YOLOv1ln-seg
outperforms YOLOv9c-seg with a precision of 0.87, recall of 0.84,
and mAP50 of 0.89, indicating superior segmentation quality
and more accurate delineation of nuclei contours. This study
highlights the robust performance and efficiency of YOLOv11n-
seg, demonstrating its superiority in medical image segmentation
tasks, with notable advantages in both accuracy and real-time
processing capabilities.

Keywords—Medical image; instance segmentation; one-stage
object detection models; transfer learning; nuclei detection

I. INTRODUCTION

Instance segmentation plays a critical role in medical
imaging, requiring precise delineation of objects (such as
organs, tissues, or cellular structures) is essential for accurate
diagnosis and treatment planning. By combining object de-
tection and semantic segmentation, instance segmentation can
identify and segment individual objects in an image, making
it highly valuable for applications like tumor detection, organ
delineation, and cell segmentation in microscopic images. In
particular, instance segmentation is pivotal in analyzing high-
resolution medical images, such as histopathology slides, MRI
scans, and CT images, where the spatial precision required
can significantly impact clinical outcomes [1], [2]. Accurate
instance segmentation can significantly improve the quality and
efficiency of medical diagnoses by automating the process of
identifying and delineating structures in medical images. In the
context of histopathology, for instance, instance segmentation
can help pathologists more effectively count and identify
individual cells or nuclei within tissue samples, improving
the accuracy of disease detection, particularly for cancers and
other abnormalities [3]. Furthermore, automated segmentation
enables the analysis of large datasets with high reproducibility
and minimal human error, making it an essential tool for
clinical research and practice. In organ segmentation, precise
delineation of structures from MRI or CT scans can aid in
better surgical planning, radiotherapy, and monitoring disease

progression. As medical imaging becomes more integral to
healthcare, the demand for high-performance instance seg-
mentation models continues to grow, making it imperative
to explore and refine algorithms that can meet these clinical
challenges [4].

Medical image analysis poses several unique challenges
that differentiate it from general image processing tasks. One
of the primary difficulties lies in the variability of tissue struc-
tures across different medical images. Tissues from different
organs have distinct characteristics, and within the same organ,
structures can vary based on disease progression or patient
conditions. For example, in histopathological images, tissue
samples can show irregularities in the size, shape, and color of
cells, which complicates the segmentation task. Moreover, im-
ages may have varying resolutions, noise levels, and artifacts,
which can obscure important features and make it difficult
for models to generalize effectively [5]. Another challenge
is the need for high-resolution image processing. Medical
images often contain fine-grained details, such as small tumors,
lesions, or nuclei, requiring segmentation models to maintain
accuracy at pixel-level precision. These models must also be
robust to variations in imaging modalities, such as differences
between CT, MRI, or histology slides [6]. Furthermore, real-
time processing is increasingly required, particularly in clinical
settings where time-sensitive decisions must be made. This
makes model efficiency and inference speed important factors
in developing practical solutions for medical imaging [7].

One-stage object detection models, known for their ability
to perform real-time detection with high accuracy, have been
a significant advancement in the field of object detection
[1]. Over time, the architecture of these models has evolved,
improving detection accuracy and handling more complex
tasks, including instance segmentation [8]. YOLOVY, one of
the earlier iterations in the series, introduced several optimiza-
tions, particularly in terms of speed and accuracy, making it
effective for various real-time applications, including medical
image segmentation. Despite its success, YOLOV9 still faces
challenges with fine-grained segmentation tasks, especially
in detecting small objects or distinguishing between closely
packed structures, which is crucial for medical imaging appli-
cations [9].

YOLOVI11, the latest model in this one-stage object de-
tection series, builds upon the strengths of its predecessors,
incorporating enhancements like improved feature pyramids,
attention mechanisms, and advanced loss functions to address
the limitations of previous versions. These innovations allow
YOLOVI11 to better handle variations in object size and shape,
making it more suitable for instance segmentation in complex
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medical images. YOLOvl11’s ability to efficiently perform
both segmentation and detection tasks in real-time, while
maintaining high accuracy, positions it as a promising solution
for medical image analysis [4].

The objective of this study is to evaluate and compare the
performance of YOLOV9 and YOLOv11 for medical image
instance segmentation, particularly focusing on the segmenta-
tion of nuclei in histopathological images using the NulnsSeg
dataset. Both models will be fine-tuned on the dataset, which
consists of over 30,000 manually annotated nuclei across 665
image patches from various human and mouse organs. The
study will assess the models based on key evaluation metrics,
such as precision, recall, mean Average Precision (mAP),
and Intersection over Union (IoU). The aim is to determine
whether YOLOvV11’s architectural improvements lead to better
performance in terms of segmentation accuracy, and how both
models compare in terms of computational efficiency and
applicability to medical imaging tasks.

The paper is structured as follows: Section II provides an
overview of related works in the field. Section III outlines the
proposed methodology for instance segmentation in medical
imaging. Section IV presents a discussion of the findings.
Section V details the experimental results, including perfor-
mance comparisons and a detailed analysis. Finally, Section
VI concludes the paper and suggests potential directions for
future research.

II. RELATED WORK

Instance segmentation in medical imaging has garnered
significant attention due to its critical role in accurate diagnosis
and treatment planning. Several studies have explored the
application of deep learning models for this task, leveraging
advancements in convolutional neural networks (CNNs) and
attention mechanisms to enhance segmentation accuracy and
performance.

One of the pioneering works in medical image segmen-
tation is the U-Net architecture, proposed by Ronneberger et
al. [1]. U-Net introduced a fully convolutional network with
a symmetric encoder-decoder structure, which has become a
standard for biomedical image segmentation due to its ability
to handle high-resolution images and produce precise segmen-
tation masks. This architecture has been widely adopted and
adapted for various medical imaging tasks, including nuclei
segmentation in histopathological images.

Recent advancements in one-stage object detection models,
such as the YOLO (You Only Look Once) series, have shown
promise in real-time medical image analysis. YOLOV9, an
earlier iteration, introduced optimizations for speed and accu-
racy, making it suitable for real-time applications [9]. However,
challenges remain in handling fine-grained segmentation tasks,
particularly in detecting small or densely packed objects,
which are common in medical images. The latest iteration,
YOLOv11, builds upon the strengths of its predecessors by
incorporating enhanced feature pyramids and attention mech-
anisms, which improve its ability to handle complex and
overlapping objects [4]. These advancements make YOLOv11
particularly suitable for medical image segmentation tasks,
where precise delineation of structures is crucial. Transfer
learning has also been widely used to adapt pre-trained models

Vol. 16, No. 4, 2025

to specific medical imaging tasks. By leveraging large, general
datasets like COCO, models can be fine-tuned to achieve better
performance on specialized medical datasets [5]. This approach
has been shown to improve segmentation accuracy and reduce
the need for extensive annotated medical datasets, which are
often limited in availability.

Several studies have focused on nuclei segmentation in
histopathological images, highlighting the importance of accu-
rate segmentation for disease diagnosis and research. For in-
stance, Lee and Kumar [10] provided a comprehensive review
of nuclei segmentation techniques, emphasizing the challenges
posed by variations in staining, image quality, and tissue
complexity. Similarly, Jiang and Zhang [11] discussed the
application of deep learning models for tissue segmentation,
highlighting the need for robust models capable of handling
diverse imaging conditions.

In summary, the evolution of deep learning models, par-
ticularly the YOLO series, has significantly advanced the field
of medical image segmentation. The integration of attention
mechanisms, feature pyramids, and transfer learning tech-
niques has enabled the development of models that can handle
the complexities of medical imaging tasks with high accuracy
and efficiency.

III. PROPOSED METHOD

Fig. 1 introduces the proposed scheme for instance seg-
mentation, which employs a comprehensive and systematic
methodology that amalgamates dataset preparation, sophisti-
cated neural network topologies, and optimization for medical
image analysis. The methodology begins with the NulnsSeg
dataset, a specialized dataset containing images of nuclei,
which undergo preprocessing to isolate individual nuclei in-
stances. This includes overlaying segmentation masks to en-
hance visual clarity and support instance segmentation. Once
preprocessed, the dataset is split into training and validation
subsets, ensuring a robust foundation for model training and
evaluation.

At the core of the framework are the YOLOV9 and
YOLOV11 architectures, fine-tuned for medical image instance
segmentation tasks. YOLO models are widely recognized for
their real-time object detection capabilities, which involve pre-
dicting bounding boxes, class labels, and object probabilities
in a single pass. YOLOv9 and YOLOvll, as iterations of
the YOLO architecture, introduce significant advancements in
feature extraction, multi-scale detection, and attention mech-
anisms. Specifically, YOLOvV9 employs an efficient backbone
network for faster and more accurate feature extraction. This
is achieved through the use of feature pyramids, which en-
hance multi-scale object detection, and the integration of
convolutional layers with batch normalization to stabilize the
learning process. YOLOV9 uses anchor-based bounding box
predictions for effective object localization across various
scales. This architecture strikes an optimal balance between
speed and accuracy, making it particularly suitable for real-
time applications in medical imaging. YOLOv11 builds upon
the strengths of YOLOVY, introducing several architectural
enhancements aimed at improving performance, especially
for complex or overlapping objects such as small cells or
tumors in medical images. One of the key advancements in
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Fig. 1. Proposed framework for instance segmentation task.

YOLOVI11 is the inclusion of enhanced attention mechanisms,
which enable the model to focus on the most relevant parts
of an image, thereby improving its ability to handle densely
packed or irregularly shaped objects. Additionally, YOLOv11
features more robust feature pyramids with additional layers
that capture fine-grained details, an essential capability for
medical imaging tasks involving high-resolution structures like
nuclei or tumors. YOLOvV11 also employs an improved loss
function, which better balances localization and classification
errors, resulting in enhanced detection accuracy. These im-
provements make YOLOvI1 particularly effective for tasks
requiring precise object boundaries and accurate segmentation,
addressing common challenges in medical image analysis.

The differences between YOLOV9 and YOLOv11 highlight
the evolution of the architecture in response to the specific
demands of medical image segmentation. While both models
utilize feature pyramids, YOLOv11’s enhanced pyramids pro-
vide superior detail capture. Moreover, the advanced attention
mechanism in YOLOv11 allows it to outperform YOLOV9
when working with small, densely packed, or complex objects.
YOLOvVI11 also optimizes the trade-off between speed and
accuracy through improvements in its backbone architecture
and the incorporation of advanced convolutional layers, further
enhancing its utility in real-time medical imaging applications.

To adapt both YOLOV9-seg and YOLOv11-seg for instance
segmentation, the framework employs fine-tuning through
transfer learning strategies. Transfer learning enables the mod-
els to leverage learned features from large, general datasets,
such as COCO, and adapt them to the specific requirements of
medical image segmentation. The fine-tuning process involves
replacing the final layers of the pre-trained models with seg-
mentation heads designed for pixel-wise classification of object
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instances. This adaptation ensures that the models retain the
powerful feature extraction capabilities of the original YOLO
architectures while addressing the unique challenges of medi-
cal image segmentation, such as small or overlapping objects.
By fine-tuning the models on the medical dataset used in this
study, their ability to generalize to task-specific challenges
is significantly improved, resulting in better performance in
segmenting nuclei and other structures within human liver
tissue.

The framework’s workflow integrates these methodologies
seamlessly, beginning with dataset preparation and culminating
in the application of fine-tuned YOLOv9-seg and YOLOv11-
seg models for instance segmentation inference. The inference
stage outputs include bounding boxes, segmentation masks,
and confidence scores for each detected nucleus. The results
are evaluated by comparing the model’s predictions with the
ground truth, demonstrating the effectiveness of the framework
in accurately identifying and segmenting nuclei in human liver
tissue. The visualization of these results highlights the models’
capability to achieve precise segmentation, even in challenging
scenarios involving small or overlapping objects. This compre-
hensive framework represents a significant advancement in the
application of deep learning for medical image analysis. By
leveraging the strengths of YOLOV9-seg and YOLOv11-seg
architectures, coupled with fine-tuning and transfer learning
techniques, the proposed methodology achieves a robust bal-
ance between speed, accuracy, and adaptability. This makes
it a valuable tool for addressing the complexities of medical
image segmentation, paving the way for more accurate and
efficient analysis in clinical and research settings.

A. Dataset

The NulnsSeg dataset, utilized in this study, is a compre-
hensive collection of medical images designed for the task of
instance segmentation. The dataset was curated specifically for
the segmentation of nuclei in histological images and includes
over 30,000 manually segmented nuclei across 665 image
patches. These images were extracted from Hematoxylin and
Eosin (H&E)-stained whole slide microscopic images, which
are commonly used for tissue examination in pathology [12],
[10]. The dataset features a variety of tissues and organs from
both human and mouse subjects, with key organs such as the
cerebellum, kidney, liver, and pancreas being included [11],
[13]. These images are critical for the study of medical diag-
nostics, offering rich information for segmenting and analyzing
the structural details of biological tissues.

The dataset consists of 665 image patches, each containing
segmented nuclei, making it ideal for the instance segmentation
task, where the goal is to not only detect the presence of nuclei
but also delineate their exact boundaries within each image
[14], [15]. This dataset’s diversity—spanning multiple organ
types and tissue structures—poses unique challenges for seg-
mentation algorithms, especially due to the inherent variability
in the quality and resolution of the images. Furthermore, the
complexity of the tissue structures, varying shapes of nuclei,
and the presence of overlapping or clustered cells introduce
significant challenges for achieving precise segmentation [16],
[17].

For training and validation purposes, the NulnsSeg dataset
is split into an 80% training set and a 20% validation set. This
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split ensures a sufficient number of samples for model training
while maintaining an adequate set of images to evaluate the
model’s performance in real-world scenarios [18], [19]. The
training set provides a large enough pool for the model to learn
diverse patterns from various tissue types, while the validation
set is used to assess the model’s ability to generalize and make
accurate predictions on unseen data. The variability in the
dataset further challenges the models to maintain performance
across different tissue types, image qualities, and segmenta-
tions [20], [21]. Medical image datasets, such as NulnsSeg,
present several challenges due to the variability in image qual-
ity caused by differences in slide preparation, staining intensity,
and imaging equipment [22], [23]. Moreover, the structural
complexity of organs and tissues, along with the potential for
overlapping cells, increases the difficulty of achieving accurate
segmentation. These challenges emphasize the importance of
developing robust instance segmentation models capable of
handling such diversity and complexity [24], [25].
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Fig. 2. Correlogram of bounding box attributes in the dataset.

Fig. 2 illustrates the distribution and relationships between
bounding box attributes (X, y, width, height) in the dataset. It
provides insights into the spatial placement and size variability
of nuclei across the images, helping to understand patterns in
object positioning and scale, which are crucial for optimizing
the model’s detection and segmentation performance.

B. Performance Metrics

The performance of the instance segmentation models
(YOLOVY9 and YOLOVI11) is evaluated using a set of com-
monly used quantitative metrics that are critical for assessing
the effectiveness of medical image segmentation models. These
metrics include Precision, Recall, Intersection over Union
(IoU), Mean Average Precision (mAP), and the F1 Score.

Precision is the proportion of true positives (TP) to the sum
of true positives and false positives (FP), and it measures how
many of the predicted positive instances are actually correct.
It is given by the Formula (1):
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Precision = _TP (1
TP+ FP

Recall, on the other hand, measures the proportion of
true positives (TP) to the sum of true positives and false
negatives (FN), and it assesses how many of the actual positive
instances are correctly identified by the model. It is calculated
as Formula (2):

TP
Recall = — 2
A= TPYFN 2)

To provide a balance between precision and recall, the F1
Score is used. The F1 Score is the harmonic mean of precision
and recall, and is calculated by the Formula (3):

Precision x Recall
F1 S =2 3
core 8 Precision + Recall 3)

Intersection over Union (IoU) is another critical metric,
specifically for evaluating segmentation tasks. It measures the
overlap between the predicted segmentation mask and the
ground truth mask. IoU is given by the Formula (4):

Area of Overlap

IoU = “

Area of Union

The Mean Average Precision (mAP) is a common met-
ric used in object detection and segmentation tasks, which
evaluates the precision of predicted masks at different IoU
thresholds. The mAP is calculated as the mean of average
precision (AP) for each class, as shown below Formula (5):

N
1
AP = — ) AP, 5
m N; 5)

The mAP at various IoU thresholds, such as mAP@50 and
mAP@75, is commonly used to assess segmentation accuracy,
particularly in tasks like medical imaging where fine-grained
object boundaries are critical. These metrics—Precision, Re-
call, IoU, mAP, and F1 Score—are used together to evaluate
the model’s overall performance in medical image segmen-
tation tasks. Precision and recall help understand the trade-
off between false positives and false negatives, while IoU
and mAP provide insight into the quality of the segmentation
boundaries. The F1 Score combines both precision and recall
into a single metric to offer a comprehensive assessment of
the model’s performance.

C. Training Process

The training process for the proposed YOLO-seg models
was conducted over 100 epochs to ensure sufficient learning
and convergence of the models. A batch size of 4 was chosen
to balance computational efficiency with model performance,
particularly given the high-resolution nature of the dataset
images. The input image size was set to 640 x 640 pix-
els, a resolution that allows for detailed feature extraction
while maintaining manageable computational demands. The
learning rate was initialized at 0.001, a value selected to
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provide a steady optimization process, avoiding overshooting
while ensuring gradual convergence of the loss function. This
configuration was designed to optimize the models for accurate
instance segmentation in medical imaging tasks.

IV. EXPERIMENTAL RESULTS
A. Complexity Analysis

Table I provides a comparative complexity analysis of the
one-stage YOLOvVO9c-seg and YOLOvIIn-seg models, high-
lighting their layers, parameters, GFLOPs (billion floating-
point operations), inference time per image, and post-
processing time per image. YOLOvOc-seg, with 441 layers
and 27,625,299 parameters, has a computational complex-
ity of 157.6 GFLOPs, achieving an inference time of 24.2
milliseconds per image and a post-processing time of 5.5
milliseconds. This design focuses on achieving high accuracy,
albeit with higher computational requirements. On the other
hand, YOLOv11n-seg, a lightweight model with 265 layers and
only 2,834,763 parameters, significantly reduces computational
complexity to 10.2 GFLOPs, achieving an inference time of
just 2.6 milliseconds per image and a post-processing time of
2.4 milliseconds. The streamlined design of YOLOvIIn-seg
makes it highly suitable for real-time applications where com-
putational resources are limited, effectively balancing speed
and accuracy.

TABLE I. COMPLEXITY ANALYSIS OF ONE-STAGE MODELS

Model yolov9c-seg | yolovlln-seg
Layers 441 265
Parameters (M) 27,625,299 2,834,763
GFLOPs 157.6 10.2
Inference Time(ms) 24.2 2.6
Postprocess per image (ms) 55 24

B. Training and Validation Loss Results

Fig. 3 shows loss curves for two different instance segmen-
tation models evaluated on the NulnsSeg dataset. Each model
is assessed on training and validation losses for four categories:
box loss, segmentation loss, classification loss, and distribution
focal loss (DFL). The comparison between YOLOv9c-seg and
YOLOv11n-seg for instance segmentation on the NulnsSeg
dataset reveals that both models show a consistent downward
trend in losses, indicating successful learning. However, the
fine-tuned YOLOvI11n-seg model demonstrates superior per-
formance with lower initial and final losses across all metrics,
including box loss, segmentation loss, classification loss, and
DFL loss, on both training and validation sets. The validation
losses for YOLOv1ln-seg are notably smoother and lower
towards the end, suggesting better optimization, generalization,
and regularization compared to YOLOV9. This makes the
proposed YOLOvI1 model the more optimal choice for the
NulnsSeg dataset.

C. Comparative Performance Evaluation

For instance segmentation in medical imaging, particularly
in the context of segmenting nuclei in histopathological images
using the NulnsSeg dataset, the provided metrics compare two
versions of YOLO (YOLOv9c-seg and YOLOvI1In-seg), as
shown in Fig. 4. In the box metrics, YOLOv9c-seg achieves a
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Fig. 3. Training and Validation loss curves.

precision of 0.84, recall of 0.73, and mAP50 of 0.85, indicating
solid performance in detecting the nuclei. In comparison,
YOLOv11n-seg demonstrates improved performance with a
precision of 0.86, recall of 0.82, and mAP50 of 0.88, sug-
gesting better accuracy in detecting and localizing the nuclei.
For the mask metrics, YOLOv9c-seg shows a precision of
0.83, recall of 0.76, and mAP50 of 0.843, reflecting good
segmentation of the nuclei boundaries. YOLOvIIn-seg out-
performs YOLOvVO9c-seg with a precision of 0.87, recall of
0.84, and mAP50 of 0.89, indicating superior segmentation
quality and more accurate delineation of nuclei contours.
Overall, YOLOvllIn-seg demonstrates better detection and
segmentation accuracy for nuclei from the NulnsSeg dataset.

The predicted results from YOLOv11n-seg and YOLOvO9c-
seg demonstrate their medical image instance segmentation
capabilities, as depicted in Fig. 5. Advanced attention mech-
anisms and feature pyramids let YOLOvV1 In-seg identify tiny,
densely packed nuclei in many tissue types with great accuracy.
Bounding boxes with high confidence ratings (0.7-0.9) around
nuclei in diverse tissue types are predicted. For overlapping
or irregularly shaped nuclei, YOLOvI11n-seg’s bounding box
placement shows its attention processes, resulting in gener-
ally constant confidence ratings even in complicated areas.
YOLOvVI1 In-seg is ideal for complex medical imaging activities
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Fig. 4. Performance evaluation: YOLOv11n-seg vs YOLOVOc-seg.

like assessing tumors or cell nuclei because to its enhanced
resilience and precision.

YOLOVO9c-seg also provides bounding boxes with good
confidence ratings for medical image nuclei. When addressing
thick or overlapping nuclei, YOLOv9c-seg is less precise
than YOLOv11n-seg owing to the lack of strengthened atten-
tion mechanisms and feature pyramid enhancements. Tissue
locations with complicated or subtle nucleus features may
have small detection consistency differences. Despite this,
YOLOV9c-seg balances speed and accuracy, making it suited
for real-time applications that prioritize processing efficiency.
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Fig. 5. Predicted results.

A performance comparison shows important differences
between the two devices. YOLOv11n-seg’s sophisticated at-
tention mechanism and feature pyramids may help it identify
tiny or overlapping nuclei more consistently. While both
algorithms have similar confidence levels for discovered nu-
clei, YOLOv11n-seg has a somewhat better balance between
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accuracy and false positives. YOLOv1l1n-seg is superior for
sophisticated medical imaging tasks requiring fine-grained
detail identification, whereas YOLOv9c-seg works well but
may struggle with thick or complex tissue samples. The
comparative analysis reveals that while YOLOv9c-seg per-
forms adequately in standard scenarios, YOLOv1 1n-seg excels
in complex imaging conditions, offering enhanced detection
capabilities that are crucial for precise and reliable medical
diagnostics.

V. DISCUSSION

The comparative analysis of YOLOv9c-seg and
YOLOvlln-seg models for instance segmentation in
medical imaging provides several important insights into their
performance and practical applicability. The models were
fine-tuned using transfer learning on the NulnsSeg dataset,
which contains over 30,000 annotated nuclei, presenting a
diverse and complex challenge for segmentation models.
The experimental results clearly indicate that YOLOv1In-
seg outperforms YOLOV9c-seg across multiple evaluation
metrics. Notably, YOLOv11n-seg achieved higher values in
precision (0.87), recall (0.84), and mAP50 (0.89), compared
to YOLOVO9c-seg. This suggests superior segmentation quality
and a greater ability to accurately detect and delineate
nuclei, particularly in complex or densely populated tissue
regions. The reduced training and validation losses across
all categories further affirm YOLOvIIn-seg’s improved
generalization capabilities. The success of YOLOvIIn-seg
can be attributed to its architectural advancements, including
enhanced attention mechanisms and deeper feature pyramids,
which allow for more precise detection of small, overlapping,
and irregularly shaped nuclei. Additionally, the significant
reduction in parameters and computational complexity makes
YOLOvllIn-seg an attractive option for real-time clinical
applications, achieving inference times of just 2.6 milliseconds
per image. These findings support the primary objective of
the study—to identify a more robust and efficient instance
segmentation model for medical imaging. By demonstrating
higher segmentation accuracy and faster inference with
YOLOvllIn-seg, the study confirms the advantages of
integrating transfer learning and advanced architectural
features for improving medical image analysis. These results
highlight YOLOv11n-seg’s strong potential for deployment in
diagnostic tools and automated workflows within clinical and
research settings.

VI. CONCLUSION

This paper provided a detailed comparative analysis of fine-
tuned one-stage object detection models for instance segmen-
tation in medical imaging. Using the NulnsSeg dataset, which
contains over 30,000 manually segmented nuclei across 665
image patches from various human and mouse organs, we
presented the fine-tuned YOLOvV9-seg and YOLOv11-seg ar-
chitectures. The models were evaluated using key performance
metrics, including precision, recall, mAP, and Intersection
over Union (IoU). The experimental results demonstrate that
the fine-tuned YOLOV11-seg outperforms YOLOv9-seg, with
significant improvements in segmentation accuracy and mAP.
YOLOvV11-seg’s advanced attention mechanisms and enhanced
feature pyramids enable superior detection of small, densely
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packed, and irregularly shaped nuclei, making it a robust and
efficient tool for complex medical imaging tasks.

Future studies may investigate the use of multi-modal
imaging methods to provide more comprehensive contextual
information, hence possibly improving segmentation accu-
racy. Furthermore, enhancing the computational efficiency of
YOLOv11-seg for implementation in resource-limited con-
texts, such as mobile or embedded systems, would expand
its practical use. Incorporating varied datasets and diseases
into the assessment may enhance the models’ resilience and
scalability across numerous medical imaging contexts.
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