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Abstract—The security and efficiency of Internet of Things
(IoT) networks depend on optimizing the routing protocol for
low-power, lossy networks (LPNs) to manage various challenges,
including expected number of transmissions (ETX), latency and
energy consumption. This study proposes an advanced meta-
heuristic optimization framework integrating several algorithms,
including Particle Swarm Optimization (PSO), Mixed Integer
Linear Programming (MILP), Adaptive Random Search with
two-step Adjustment (ARS2A) and Simulated Annealing (SA),
to improve the performance of RPL-based IoT networks under
attack scenarios. Our methodology focuses on secure routing by
integrating dynamic anomaly detection and adaptive optimization
mechanisms to mitigate network threats such as Blackhole,
Sinkhole, and Wormhole attacks. Simulations were carried out on
large-scale IoT networks with 100 and 150 nodes to evaluate the
performance of the proposed algorithms. Experimental results
indicate that ARS2A and MILP offer the best compromise between
security and performance, achieving minimal ETX (1.28), reduced
latency (0.12 ms) and optimized energy consumption (0.85 J) in
dense networks. Furthermore, simulated annealing demonstrates
high adaptability to mitigate routing attacks while guaranteeing
stable energy efficiency. The comparative analysis highlights the
strengths and weaknesses of each algorithm, underscoring the
need for hybrid optimization strategies that balance computational
cost and real-time adaptability. This work establishes a secure and
scalable optimization framework for IoT networks, contributing
to the development of intelligent, resilient and energy-efficient
routing solutions.
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I. INTRODUCTION

Mission-critical applications in fields including smart
cities,industrial surveillance-health [1], and critical infrastruc-
ture management have emerged as a result of the Internet of
Things (IoT) explosive growth. These networks [2], which are
composed of linked sensor nodes,need to optimize energy use
while guaranteeing safe and effective data transfer. However,
their decentralized architecture, coupled with limited hardware
resources, exposes them to major challenges, particularly in
terms of reliability, energy efficiency and security against
cyber-attacks. The Routing Protocol for Low-Power and Lossy
[3] Networks is one of the numerous vulnerabilities in these
networks are of particular concern. Numerous attacks take
advantage of RPL flaws to interfere with routing and jeopardize
data transfer. The most destructive of these are the Blackhole

[4], Sinkhole, Wormhole and Selective Forwarding attacks,
which reroute, delay, or eliminate packets moving throughout
the network. These threats [5] have a direct impact on network
performance, increasing the number of retransmissions required
(ETX), latency and energy consumption. These degradations
have the potential to cause significant system failures in
critical applications,like medical and environmental networks,
endangering the availability and integrity of services.

The development of sophisticated attack detection [6]
and mitigation techniques that can preserve the best possible
balance between security energy efficiency [7], and quality of
service(QoS) is essential in light of these expanding threats.
Traditional cryptography-based solutions and authentication
often prove unsuitable for IoT networks [8] due to the
energy and computing constraints of sensors. Therefore,a more
dynamic and intelligent strategy that incorporates cutting-edge
optimization techniques [9] is needed to improve routing
resilience while lowering energy expenses.

In light of this,our work suggests a novel strategy that
combines behavioral analysis methods with metaheuristic opti-
mization algorithms [9], in order to secure IoT networks against
attacks targeting the RPL protocol [10]. Optimizing packet
routing is the goal by taking into account three fundamental
metrics:

• Expected Transmission Count (ETX): Indicator of link
quality, measuring the Average number of transmis-
sions required to route a packet. A high ETX value
reflects increased routing instability, often caused by
attacks or interference.

• Latency: Total time required to transmit a packet from
the source node to the destination node. Excessive
latency is often a symptom of the presence of attacks
such as Wormhole, Flooding or Selective Forwarding.

• Consumed Energy [11]: Total amount of energy con-
sumed by nodes during transmissions. An abnormal
increase in this metric is generally a sign of attack,
resulting from artificially generated traffic or packet
hijacking.

In order to optimize safety and network resilience, we use
four sophisticated optimization algorithms [12]:

• Simulated Annealing: Enhances routing robustness by
facilitating effective solution space exploration while
avoiding local minima.
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• Particle Swarm Optimization: Simultaneously mini-
mizes latency and energy consumption, based on how
particles behave collectively.

• Mixed Integer Linear Programming: Ensures safe and
reliable routing by offering the best solution under
tight restrictions.

• ARS2A (Adaptive Random Search with Two-Step
Adjustment): Adaptive routing optimization is a new
high-performance algorithm that allows for dynamic
enhancements in IoT network performance.

By integrating these various methods, we provide a strong at-
tack detection [13] and mitigation strategy that can dynamically
adjust to threats while preserving optimal energy efficiency. By
increasing network stability, our solution dramatically lessens
the effect of attacks on routing, as demonstrated by our tests
conducted on network with 100 and 150 nodes, reducing latency
and optimizing energy consumption. These results confirm
the importance of a hybrid approach combining security and
metaheuristic optimization to ensure reliable, energy-efficient
and resilient routing in modern IoT environments [14]. The
remainder of this paper is structured as follows: Section II
provides an overview of related work in the field of secure RPL-
based IoT routing. Section III presents the problem formulation,
detailing the key challenges and security threats addressed in
this study. Section IV describes the metaheuristic algorithms
employed, including PSO, MILP, ARS2A, and Simulated
Annealing, and their application to secure and energy-efficient
routing optimization. Section V discusses the experimental
setup and performance evaluation, comparing the effectiveness
of different algorithms under various network configurations
and security attack scenarios. Finally, Section VI concludes
the paper by summarizing key findings and suggesting future
research directions to enhance the robustness and scalability of
secure RPL-based IoT networks.This research aims to answer
the following question: How can metaheuristic algorithms be
effectively utilized to optimize secure routing in RPL-based
IoT networks while minimizing ETX, latency, and energy
consumption under attack conditions?

II. RELATED WORK

Due to the increase in cyber threats [5], a lot of research
has been done recently on the security of Internet of Things
networks [14], especially in relation to routing Protocol for
Low-Power and lossy Networks.To address vulnerabilities in
RPL-based IoT systems [15], a number of research projects
have investigated the combination of machine learning [16],
[17], metaheuristics algorithms [18], and security-enhancing
techniques [19]. The rapid expansion of IoT networks has intro-
duced significant challenges in energy efficiency, security, and
routing optimization. Various studies have explored solutions
leveraging metaheuristic algorithms and security mechanisms
to mitigate threats and optimize network performance. The
application of metaheuristic algorithms to improve routing
effectiveness and reduce energy consumption in IoT networks
has been the subject of numerous studies. Choudhary et al.
[12] carried out a thorough investigation to enhance routing
security and efficiency in IoT environments by merging
metaheuristic approaches with convolutional Neural Networks.
Their findings highlight the potential of hybrid AI-metaheuristic

models in optimizing path selection while mitigating security
threats. Similarly, Rahmani et al. [18] investigated the use of
metaheuristic algorithms for task offloading optimization in
cloud, fog, and edge computing settings. Their strategy showed
increased resource allocation effectiveness and delay reduction,
making it a viable technique for extensive IoT deployments.

Security is a major issue in IoT networks, especially in
low-power and lossy networks (LLNs) that rely on RPL routing.
Omar et al. [10] introduced UOS IOTSH 2024, a dataset
specifically designed for analyzing sinkhole attacks in RPL-
based IoT networks, providing a benchmark for evaluating
intrusion detection systems. Reshi et al. [20] suggested a unique
defense against blackhole attacks, showing how preventative
security measures can lower packet loss and improve network
robustness.

Further, Yalli et al. [14] carried out a thorough analysis of
IoT authentication methods,emphasizing biometric-based access
restrictions,AI-driven authentication models, and lightweight
cryptographic protocols as crucial ways to increase IoT security.
Additionally, Kadri et al. [13] offered a thorough analysis
of Dos and DDOS attack detection in Internet of Things
environments, categorizing current solutions according to
mitigation techniques and validation methods. Their results
demonstrate that hybrid models combining anomaly detection
and heuristic-based prevention offer significant benefits in
securing IoT networks against large-scale attacks.

In the context of routing security, Moudni et al. [4]
investigated the detection of blackhole attacks in Mobile
Ad Hoc Networks (MANTEs) using machine learning. Their
findings showed how adaptive learning algorithms and tailored
datasets may be used to detect and stop harmful activities.
Similarly, Karima et al. [19] demonstrated the promise of AI-
driven adptive security frameworks by proposing a method
based on SDN and AI to dynamically improve IoT security
policies.

Optimizing IoT networks while maintaining security in
IoT routing, the relationship between security measures and
metaheuristics has drawn more attention. Yugha et al. [21]
provided an extensive survey on security protocols for next-
generation IoT networks, emphasizing the importance of
lightweight cryptographic methods that do not compromise
energy efficiency. P. M. R. et al. [11] highlighted the trade-offs
between network performance, security, and energy restrictions
in their analysis of energy-aware routing strategies. These
studies collectively suggest that a hybrid approach, integrating
metaheuristic algorithms for optimization and advanced security
mechanisms, could significantly enhance the resilience and
efficiency of IoT networks. Future research should focus on
scalable, AI-driven security models and adaptive optimization
techniques to ensure sustainable and secure IoT deployments.
Although various studies have explored the use of metaheuristics
and AI-based approaches for enhancing RPL-IoT routing
security and efficiency, few have provided a unified solution
that simultaneously addresses resilience against multiple attack
types and optimization of key metrics such as ETX, latency,
and energy consumption. To bridge this gap, our study proposes
a novel hybrid metaheuristic framework integrating ARS2A,
MILP, PSO, and Simulated Annealing, which collectively aim
to enhance security and performance under realistic attack
scenarios.
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III. PROBLEM STATEMENT

In the section we formulate the RPL-based IoT networks
optimization problem considering the following metrics:ETX ,
the latency (LT ) and the energy consumption (EC). The
objective function integrating these criteria is defined as follows
[15],

Minimize F = w1.ETX + w2.LT + w3.EC (1)

Where w1, w2 and w3 are weights assigned to ETX , LT and
EC respectively.

A. Define the Metrics

ETX measures the number of expected transmissions,
including retransmissions, required to successfully deliver a
packet over a link.

ETXij =
1

Pij .Pji

Where Pij is the probability of successful packet transmission
from node i to node j, and Pji is the probability of successful
acknowledgment.
LT represents the time required for a packet to travel from the
source to the destination.

LT ij = dij +
∑
k

ProcessingT imek

Where dij is the propagation delay between nodes i and j, and
the sum represents the processing delays at intermediate nodes.
EC is the of energy consumed to transmit a packet from the
source to the destination.

ECij = TEij +
∑
k

ProcessingEnergyk

Where TEij is the energy consumed for transmission between
nodes i and j, and the sum represents the energy consumed at
intermediate nodes for processing.

B. Formulate the Constraints

The connectivity constraint ensures that the selected path
maintains network connectivity [15].∑

j∈N

xij = 1, ∀ i ∈ N

Where xij is a binary variable indicating whether the link
between nodes i and j is part of the path (1) or not (0). The
Loop-Free constraint ensures that routing path does not exceed
the available energy at any node.∑

j∈N

xij = 1, ∀ i ∈ N

The energy constraint ensures that the energy consumption
does not exceed the available energy at any node.

ECij ≤ Ei, ∀ i ∈ N

Where Ei is the available energy at node i.

C. Optimization Problem Formulation

Minimize F =
∑
i,j∈E

(w1.ETXij+w2.LT ij + w3.ECij).xij

Subject to: ∑
j∈N

xij = 1, ∀ i ∈ N

xij + xji ≤ 1, ∀ i, j ∈ N

ECij ≤ Ei, ∀ i ∈ N

xij ∈ 0, 1

IV. SECURITY-AWARE OPTIMIZATION FORMULATION

We apply security-aware constraints to the routing optimiza-
tion problem in order to improve security in IoT networks [14].
The following is the definition of the objective function that
combines network performance and security.

Minimize F = w1.ETX+ w2.LT + w3.EC−w4.SI (2)

Where w1, w2, w3, and w4 are the respective weights
assigned to ETX , LT , EC, and the security index (SI), which
quantifies the resilience of the network against attacks.

A. Security and Attack Analysis

IoT networks are extremely susceptible to different kinds
of cyberattacks [13] that take advantage of resource constraints
and routing flaws. Specifically, by absorbing all packets and
preventing them from reaching their destination, Blackhole
attacks [20] interfere with communication. Wormhole attacks
cause significant route diversion by establishing a tunnel
between two malevolent nodes in order to intercept and
after communications. By deceiving trustworthy nodes into
sending packets via a compromised node, sinkhole [10] attacks
dramatically raise network latency and energy usage. Selective
forwarding attacks make it more difficult to identify them
by dropping important packets while forwarding others. By
increasing the Expected Transmission Count, Latency and
Energy Consumption, these attacks collectively degrade network
performance.

Our architecture has anomaly detection methods that con-
tinuously track changes in routing behavior in order to combat
these attacks. The security-aware optimization ensures routing
pathways do not include compromised nodes, and energy-
efficient, low-latency routes are prioritized.

B. Security Index (SI)

We define a Security Index (SI) that takes into account the
likelihood of attack detection (DA) and the effect of the attack
on routing reliability in order to guarantee secure routing.

SI =
∑
i,j∈E

(DAij
×Rij) (3)

Where:
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• DAij
indicated the likelihood of finding a link attack

(i, j), calculated based on anomaly detection methods
.

• Rij represents the routing reliability of link (i, j),
which is inversely proportional to the number of
compromised nodes.

C. Security-Aware Constraints

To mitigate routing attacks, we introduce additional con-
straints:

Attack Avoidance Constraint∑
(i,j)∈E

xij · Cij ≤ Tmax (4)

Where: - Cij is a binary variable indicating whether a node
(i, j) is identified as compromised (1) or safe (0). - Tmax is
a predefined threshold limiting the number of compromised
nodes in the path.

Secure Energy Constraint

ECij +
∑
k

ProcessingEnergyk ≤ Ei − Esafe, ∀i ∈ N

(5)

Where:

• Esafe is an energy buffer set aside to guard against
malicious energy depletion.

• This limitation prevents attack-induced routing changes
from causing nodes to prematurely exhaust their energy.

D. Final Optimization Problem Formulation

Integrating security considerations, the final optimization
model is formulated as:

Minimize F =
∑
i,j∈E

(
w1 · ETXij + w2 · LTij

+w3 · ECij − w4 · SIij
)
· xij

(6)

Subject to: ∑
j∈N

xij = 1, ∀i ∈ N (7)

xij + xji ≤ 1, ∀i, j ∈ N (8)

ECij ≤ Ei − Esafe, ∀i ∈ N (9)

∑
(i,j)∈E

xij · Cij ≤ Tmax (10)

xij ∈ {0, 1} (11)

V. METAHEURISTIC METHODS FOR ROUTING
OPTIMIZATION IN IOT NETWORKS

Optimization methods that draw inspiration from physical,
biological,or natural phenomena are known as metaheuristic
algorithms [18]. They are employed to resolve complicated
issues when precise methods are not feasible because of
computational complexity. Metaheuristics [12] as opposed to
exact algorithms produce high-quality approximations in a
reasonable amount of time but do not ensure global optimality.
Among the most popular algorithms in the field of IoT
network optimization [9], we have used, PSO (Particle Swarm
Optimization), MILP (Mixed-Integer Linear Programming),
ARS2A (Adaptive Random Search with Two-Step Adjustment
and Simulated Annealing).

A. Algorithms Used

1) Particle Swarm Optimization: PSO [24] is modeled after
how schools of fish or swarms of birds behave collectively.
Each particle represents a good solution and adjusts its position
according to its own experience and that of the other particles.
The updating of positions is impacted by the best results
observed individually and collectively.

Key benefits :

• Easy to implement

• Rapid convergence for certain types of problem

• Good exploration of the search space

2) Mixed-Integer Linear Programming: MILP [23] is a
precise method that formulates a problem as linear constraints
with continuous integer variables using mathematical models.
Although it guarantees optimal solutions, it quickly becomes
impractical for large networks due to its exponential complexity.

Key benefits :

• Optimality guarantee

• Suitable for small networks with limited resources

• Provides a benchmark for comparing heuristic solutions

3) Simulated Annealing: Simulated Annealing [22] is in-
spired by the process of metal cooling to avoid local minima,
the algorithm investigates solutions by momentarily tolerating
declines in solution quality. As the temperature drops, the
likelihood of accepting a less-than-ideal solution gradually
diminishes.

Key Benefits

• Avoid local minima with controlled random exploration

• Good flexibility for a wide range of problems

• Convergence controlled by cooling function

4) Adaptive Random Search with Two-Step Adjustment
(ARS2A): Algorithm ARS2A is based on adaptive random
search combined with two-stage fitting. It is effective for
problems where the search space is large and non-linear.

Key Benefits
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• Adaptability and flexibility in exploration

• Lightweight calculation approach

• Suitable for non-differentiable problems

These different metaheuristics offer various approaches for
optimizing routing in IoT networks. While MILP provides
optimal but computationally expensive solutions, heuristics such
as PSO, ARS2A and Simulated Annealing deliver approximate
results in a fair amount of time. Certain network constraints,
including size dynamics, and resource availability.

B. Dataset Configurations for Metaheuristics Techniques and
Security

Metaheuristics algorithms [12], [25] are essential for opti-
mizing routing in IoT networks by improving latency, energy
consumption and transmission efficiency. This study compares
several approaches, including PSO, MILP, ARS2A and Sim-
ulated Annealing, on networks of 100 and 150 nodes. The
evaluation focuses on optimization capability, convergence and
adaptability to topological variations. The analysis highlights
the strengths and limitations of each method, helping to identify
the most effective strategies for stable, energy-efficient routing
in IoT networks [2].

TABLE I. SHAPES OF DATA SETS FOR DIFFERENT SIMULATIONS

Simulation Train Data Shape Test Data Shape
100 nodes (80, 3) (20, 3)
150 nodes (3392, 3) (848, 3)

The simulation datasets for 100 and 150 nodes were chosen
to reflect both moderate and large-scale IoT environments,
which are commonly deployed in smart cities and industrial
monitoring. These configurations allow for robust evaluation
of routing performance and scalability under various network
sizes and threat levels (see Table I).

C. Implementation of Metaheuristics Techniques

This section presents a Metaheuristics Techniques frame-
work for minimizing transmission and energy costs in IoT
networks.

This algorithm (Algorithm 1) optimizes routing in an
IoT network while integrating security constraints to mitigate
attacks. It starts with an initialization of network parameters
and a risk assessment using an attack detection matrix. Next,
it solves an optimization problem that minimizes a score
combining ETX, latency, energy consumption and attack impact.
Finally, it selects and deploys secure routing, guaranteeing a
balance between network performance and protection.

This algorithm (Algorithm 2) applies simulated annealing to
optimize several parameters of an IoT network, including ETX,
latency and energy consumption. It starts with a random initial
solution and evaluates its score using an objective function. At
each iteration, it generates a neighboring solution, compares its
score with the current solution and accepts it if it is better or
with a certain probability according to the Metropolis criterion.
The temperature is gradually reduced to refine the optimization.
At the end of the iterations, the algorithm returns the best

Algorithm 1 Security-Aware Routing Optimization for IoT
Networks
Input : Network topology G(N,E), attack detection matrix

DA, reliability matrix R, weights w1, w2, w3, w4,
node energy Ei, max compromised threshold Tmax.

Output : Optimized secure routing path minimizing F under
security constraints.

/* Step 1: Initialization */ Normalize network parameters,
initialize metrics Compute initial ETX , LT , and EC for
(i, j) ∈ E

/* Step 2: Security Evaluation */ Compute SIij = DAij
×

Rij for (i, j) ∈ E

/* Step 3: Routing Optimization */ Solve:

minF =
∑

(i,j)∈E

(w1ETXij + w2LTij + w3ECij − w4SIij)xij

(12)
Subject to:∑

j

xij = 1, xij + xji ≤ 1, ECij ≤ Ei − Esafe, (13)

∑
(i,j)∈E

xijCij ≤ Tmax, xij ∈ {0, 1} (14)

/* Step 4: Route Selection and Deployment */ Extract and
deploy optimized routing path Monitor network and adapt
routing if needed return Optimized path

solution found, offering an optimal balance between routing,
latency and energy consumption in an IoT environment.

The PSO algorithm (Algorithm3) optimizes ETX, latency
and energy metrics by adjusting the positions and speeds of
a swarm of particles to minimize an objective function. Each
particle updates its position according to its best score and
the best overall solution found by the group. Thanks to its
balance between exploration and exploitation, PSO enables
rapid convergence towards an optimized solution, improving
routing, latency and energy management in an IoT network.

Algorithm 4 demonstrate the ARS2A (Adaptive Random
Search with Two-Step Adjustment) algorithm optimizes ETX,
latency and energy metrics by exploring different solutions
in a random, adaptive way. It starts with a random initial
solution, then generates two candidate solutions at each iteration,
selecting the best one to progressively improve the optimization.
The algorithm dynamically adjusts its learning rate through
adaptive updating, enabling faster convergence towards an
optimal solution. This approach ensures an effective balance
between minimizing latency, reducing energy consumption and
optimizing routing in an IoT network.

The MILP (Mixed-Integer Linear Programming) algorithm
(Algorithm 5) simultaneously optimizes ETX, latency and en-
ergy consumption by solving a constrained linear programming
problem. It aims to minimize latency and energy consumption,
while respecting the constraints defined by ETX to ensure
efficient routing. The algorithm uses an optimization solver to
find the optimal solution, then checks its feasibility before
extracting the optimized mean values of the metrics. If it
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Algorithm 2 Simulated Annealing for Multi-Objective Opti-
mization
Inputs:
• Initial Temperature Tinitial

• Cooling rate α;
• Maximum number of iterations MaxIter;
• Solution size (number of nodes) N ;
• Dataset with metrics: ETX,Latency(ms), EC(J);

Outputs:
• Optimal solution Sbest;
• Optimal values of metrics (ETX, Latency, Consumed

Energy);

Begin Simulated Annealing Algorithm
/* Initialization */
Initialize current solution: Scurrent ←
Random selection of N nodes;
Compute current score: Scorecurrent ←
OBJECTIV E FUNCTION(Scurrent);
Set Sbest ← Scurrent, Scorebest ← Scorecurrent;

for iteration ← 1 to MaxIter do
/* Neighbor Generation */
Generate neighbor solution: Sneighbor ←
NEIGHBOR SOLUTION(Scurrent);
Compute neighbor score: Scoreneighbor ←
OBJECTIV E FUNCTION(Sneighbor);

/* Metropolis Criterion */
if Scoreneighbor < Scorecurrent or random(0, 1) <

exp
(

Scorecurrent−Scoreneighbor

Tinitial

)
then

Set Scurrent ← Sneighbor, Scorecurrent ←
Scoreneighbor;

/* Best Solution Update */
if Scorecurrent < Scorebest then

Set Sbest ← Scurrent, Scorebest ← Scorecurrent;
end

end
/* Temperature Update */
Update temperature: Tinitial ← α× Tinitial;

end
/* Return Results */
Return optimal solution Sbest and metrics (ETX, Latency,
Consumed Energy);
End Simulated Annealing Algorithm

make require parameter adjustments. This approach guarantees
rigorous and efficient optimization, suitable for IoT networks
requiring fast, energy-efficient routing.

VI. RESULTS AND DISCUSSION

A. Experimental Environment

The tests were conducted on a device with an Intel(R)
Core(TM) i5-7200U CPU @ 2.50GHz, 8 GB RAM, and a 64-bit
Windows system. Python was used to implement categorization
methods on Jupyter Notebook, with libraries such as pandas
(1.5.3), matplotlib, seabron and random. Dependencies and

Algorithm 3 Particle Swarm Optimization for Multi-Objective
Optimization
Inputs:
• Number of particles num particles;
• Number of iterations num iterations;
• Inertia weight w;
• Personal acceleration coefficient c1;
• Global acceleration coefficient c2;
• Dataset with metrics:

ETX,Latency, ConsumedEnergy;
Outputs:
• Optimal solution Sbest;
• Optimal values of metrics (ETX, Latency, Consumed

Energy);

Begin PSO Algorithm
/* Initialization */
Initialize particle positions randomly: positions ←
random indices of dataset nodes;
Initialize particle velocities randomly;
Evaluate particles using OBJECTIV E FUNCTION ;
Set personal best positions personal best positions ←
positions;
Set global best position Sbest ← position of best particle;

for iteration ← 1 to num iterations do
for particle i← 1 to num particles do

/* Velocity and Position Update */
Generate random numbers r1, r2 ∈ [0, 1];
Update velocity:
velocityi ← w · velocityi + c1 · r1(personal besti −
positioni) + c1 · r2(Sbest − positioni);
Update position:
positioni ← positioni + velocityi;
Ensure valid positions: keep positioni within bounds;

/* Evaluation and update */
Evaluate particle position:
Scorei ← OBJECTIV E FUNCTION(positioni);
if Scorei < Scorepersonal besti then

Update personal best for particle i:
personal besti ← positioni;

end
if Scorei < Scoreglobal best then

Update global best position: Sbest ← positioni;
end

end
end
/* Return Results */
Return optimal solution Sbest and metrics (ETX, Latency,
Consumed Energy);
EndAlgorithm
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Outputs:
• Optimal solution Sbest;
• Optimal values of metrics (ETX , Latency,

Consumed Energy);

Begin ARS2A Algorithm
/* Initialization */
Initialize a random solution:

Scurrent ← {xi | i ∈ random subset of nodes} (15)

Compute the initial objective function value:

Scorecurrent = w1 · ETX(Scurrent) + w2 · LT (Scurrent)

+ w3 · EC(Scurrent)
(16)

Set Sbest ← Scurrent, Scorebest ← Scorecurrent;

for iteration ← 1 to num iterations do
/* Generate two random candidate solutions */
Select two random solutions Scandidate1 and Scandidate2;
Compute their objective function values:

Scorecandidate1 = w1 · ETX(Scandidate1)

+w2 · LT (Scandidate1)

+ w3 · EC(Scandidate1)

(17)

Scorecandidate2 = w1 · ETX(Scandidate2)

+w2 · LT (Scandidate2)

+ w3 · EC(Scandidate2)

(18)

/* Selection Step */
if Scorecandidate1 < Scorecandidate2 then

Snew ← Scandidate1, Scorenew ← Scorecandidate1
(19)

end
else

Snew ← Scandidate2, Scorenew ← Scorecandidate2
(20)

end
/* Update Best Solution */
if Scorenew < Scorebest then

Sbest ← Snew, Scorebest ← Scorenew (21)

end
/* Adaptive Learning Rate Adjustment */
Introduce an adaptive learning factor to improve conver-
gence:

Sbest ← Sbest − α · ∇F (Sbest) (22)

where ∇F (Sbest) represents the local gradient estimation
of the objective function.

end
/* Return Results */
Return optimal solution Sbest and metrics (ETX ,
Consumed Energy);
EndAlgorithm

Algorithm 5 MILP for Multi-Objective Optimization
Inputs:
• Dataset containing metrics:

ETX,Latency, ConsumedEnergy;
• Objective coefficients c (minimization of Latency +

Energy);
• Constraints matrix A (based on ETX);
• Constraint bounds b;
• Solution bounds;

Outputs:
• Optimal solution Sbest;
• Optimal average values of metrics (ETX, Latency,

Consumed Energy);

Begin MILP Algorithm
/* Solve MILP Problem */
Solve the linear programming optimization:
Minimize cTx
Subject to constraints:
A× x ≤ b, 0 ≤ xi ≤ 1 ∀i ∈ solutions indices;
Use optimization solver (e.g., linprog method ”highs”);

/* Check solution feasibility and optimality */
if Solution is feasible and optimal then

Extract best solutions’ metrics: ETX, Latency, Consumed
Energy;
Compute average values over the best solutions found;

end
else

Report failure and suggest parameter adjustment;
end
/* Return Results */
Return optimal solution Sbest and metrics (ETX, Latency,
Consumed Energy);
EndAlgorithm

tools were managed using Anaconda, which facilitates the
implementation and management of metaheuristics techniques.

B. Performance of Algorithms Across all Simulations

In order to assess the effects of metaheuristics techniques
and secure optimization, this study simulated IoT networks
with 100 and 150 nodes. The algorithms successfully predicted
ETX, latency, and energy consumption,enabling performance
comparisons. Table II and Table III demonstrate the potential
of metaheuristics techniques in optimizing IoT networks
and propelling future developments. Table IV demonstrate a
parameters of PSO, MILP, ARS2A, and Simulated Annealing.

TABLE II. COMPARISON OF PSO, MILP, ARS2A AND SIMULATED
ANNEALING RESULTS ON 100 NODES

Algorithm ETX Latency (ms) Consumed Energy (J)
PSO 3.2791 81.7157 1.5756
MILP 2.9884 81.7157 10.5672
ARS2A 1.3481 12.2719 3.5139
Simulated Annealing 4.7602 10.5672 1.5756
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TABLE III. COMPARISON OF PSO, MILP, ARS2A AND SIMULATED
ANNEALING RESULTS ON 150 NODES

Algorithm ETX Latency (ms) Consumed Energy (J)
PSO 1.70 0.34 0.54
MILP 1.10 0.12 0.85
ARS2A 1.28 0.15 1.45
Simulated Annealing 2.55 3.22 0.75

TABLE IV. PARAMETERS OF PSO, MILP, ARS2A, AND SIMULATED
ANNEALING PARAMETERS

Parameter PSO MILP ARS2A SA
Iterations 50 N/A 1000 2000
Population Size 20 N/A N/A 10
Inertia (w) 0.5 N/A N/A N/A
C1, C2 1.5, 1.5 N/A N/A N/A
Cooling Rate N/A N/A N/A 0.995
Selection Best global Min(Lat+Energy) Best of 2 Probabilistic
Best ETX Dyn. (X-Y) Top 10 Avg. Random Best Selected Nodes
Best Latency (ms) Dyn. (X-Y) Top 10 Avg. Random Best Selected Nodes
Best Energy (J) Dyn. (X-Y) Top 10 Avg. Random Best Selected Nodes
Complexity O(n × i) NP-hard O(i) O(i)

The performance of the optimization algorithms is closely
tied to their parameter configurations. For instance, PSO relies
on the inertia weight and acceleration coefficients to balance
exploration and exploitation. Simulated Annealing’s behavior
is governed by its cooling rate and temperature schedule,
which affect convergence speed and escape from local minima.
MILP depends on solver precision and constraint bounds,
while ARS2A dynamically adjusts its learning rate to adapt
during iterations. These parameters were fine-tuned through
preliminary experimentation to ensure effective performance
across different scenarios.

C. Simulation of Attacks

1) Correlation Matrix: The correlation matrices for the
100 (Fig. 1)- and 150-node (Fig. 2) datasets show how the
ETX, Latency and Energy Consumption metrics relate to one
another. In the 150-node dataset, correlations are almost zero,
demonstrating that increasing the number of nodes reduces
the dependency between these parameters, recommending
improved distribution for routing. On the other hand, in the 100-
node dataset, slight correlations are observed, notably between
ETX and energy consumption (-0.13), indicating that routing
performance has a greater influence on energy consumption in
a less dense network. These findings demonstrate that routing
dynamics and energy optimization are impacted by network
scale, requiring network-size-specific strategies.

2) Distribution of Attacks: Fig. 3 shows the distribution of
assaults in the revised dataset is displayed in the graph (figure).
The majority of connections are evidently normal, however the
most common assaults are Sinkhole and Blackhole, which are
Known to interfere with routing by intercepting and dropping
data packets. Although they are less common other attacks
like Flooding, Grayhole, and Selective Forwarding also impact
packet transit by overloading the network or causing delays.
Finally, Sybil and Wormhole attacks, although less frequent,
can have significant consequences by manipulating network
topology and creating false routes. This distribution emphasizes
the variety of network risks and the necessity of strong detection
and mitigation strategies.

Fig. 1. Correlation matrix for 100 nodes.

Fig. 2. Correlation matrix for 150 nodes.

Fig. 3. Attacks.
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Fig. 4. Detection of energy consumption anomaly under attacks.

3) Detection of energy consumption anomaly under attacks:
Fig. 4 suggest that the differences in energy consumption under
different types of attack are depicted in the box graphic. Given
that they interfere with packet routing and diminish network
activity, it is evident that Blackhole and Grayhole attacks exhibit
a comparatively lower median energy consumption. On the
other hand,Wormhole and Selective Forwarding assaults use
more energy, most likely because of the overload causes by
packet hijacking or redundant transmissions. As a standard
for comparison, normal network operation exhibits low energy
use. The higher power usage during Flooding and Sybil attacks
indicates that they put a heavy burden on the network by causing
excessive traffic or skewing routing choices. The findings
highlight how critical energy-efficient security measures are for
identifying and reducing anomalies brought on by intrusions
in Internet of Things networks.

4) Impact heatmap attacks on IoT: Fig. 5 shows the
heatmap how various attacks affect an IoT networks latency
and energy usage. The network is significantly slowed down by
the Wormhole and Selective Forwarding attacks, which have
the largest latencies at 70.00 and 68.42ms, respectively. By
contrast, the Flooding attack has a relatively lower latency
(48.82 ms), but can still affect network reliability. In terms
of energy consumption, the highest values were observed
by the Selective Forwarding and Wormhole assaults (3.37J
and 3.32J, respectively), suggesting network overload due to
excessive transmissions or packet hijacking. In contrast, Attacks
by flooding and grayhole us less energy, which suggests that
they have on resource use. These findings highlight the fact that
some attacks specifically, Wormhole and Selective Forwarding
are especially harmful since they affect latency and energy
consumption simultaneously, necessitating efficient detection
and mitigation techniques.

5) Latency variability under different attacks: The above
diagram (Fig. 6) shows how latency varies in an IoT network
under various attacks. It is evident that certain assaults, such
as Grayhole and Selective Forwarding, exhibit a wide range
of latency values, occasionally reaching extremely high levels,
signifying serious network instability. The Wormhole attack
displays a generally higher and more concentrated latency,
suggesting a systematic impact on packet delay. Conversely, the
Blackhole and Sinkhole attacks show more moderate latency,
although their impact remains significant. Normal network

Fig. 5. Impact attacks on IoT.

Fig. 6. Latency variability under different attacks (Violin Plot).

operation indicates a more even distribution, with generally
lower and more stable latency. These results demonstrate how
attacks can have varying effects on latency; some generate one-
time spikes in latency, while others result in chronic latency,
necessitating modified mitigation techniques.

D. Results of 100 Nodes

1) PSO: Fig. 7 indicate the Particle Swarm Optimization
algorithms convergence when used for IoT network security is
depicted in the graph. Around the 35 iteration, we see a sharp
decline, suggesting a significant improvement in the solution,
after an initial period of stagnation during with which the
objective function stays constant. After this descent, the score
stabilizes and no longer varies until the end of the iterations,
suggesting that PSO has reached an optimal solution relatively
early. With a strong capacity to explore and take advantage of
the search area, this quick and steady convergence shows how
well PSO optimizes routing and safety parameters. These results
indicate the value of PSO for Internet of Things applications that
need to converge quickly while maintaining peak performance.

2) MILP: Fig. 8 shows how the MILP technique opti-
mized the distribution of parameters, with an emphasis on
ETX, latency, and Energy Consumption. Latency shows high
variability, with values ranging up to 100 ms, indicating that
the optimization attempts to minimize latency, but with some
dispersion. The energy usage and ETX measures, on the
other hand, are significantly more consistent and fluctuate
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Fig. 7. Results of PSO.

Fig. 8. Results of MILP.

less, indicating that MILP has identified ideal values for these
parameters.

3) Simulated annealing: The ideal values that the simulated
Annealing process produced on a typical sample of simulated
IoT network nodes that were being attacked are shown in Fig. 9.
The overall scores steady change across the algorithms iterations
is depicted in Fig. 10. Particularly after 1000 iterations; there
is a noticeable drop in score, indicating a clear and effective
convergence towards an ideal solution. Finally, Fig. 11 shows
how each parameters (ETX, latency, and energy consumption).
This visualization particularly highlights the significant and
stable reduction in latency, demonstrating that the algorithm
gives this statistic top priority in order to maximize the IoT
networks overall quality. Additionally, the stability observed
for ETX.

4) ARS2A: The convergence of the ARS2A algorithms
optimization score is depicted in Fig. 12. In the initial
iterations,the score rapidly drops from 26 to about 12, before
stabilizing after 400 iterations. This pattern indicates that the
algorithm is quickly identifying the best answer,which lowers
network in efficiencies and boosts efficiency. Fig. 13 shows the
evolution of key metrics: ETX, latency and energy consumption.
Routing Optimization is indicated by a significant drop in
latency before it stabilizes. A similar pattern is seen in energy
usage, which shows a decline in energy expenses. Lastly, ETX
stays steady, indicating that routing reliability has improved.

E. Results of 150 Nodes

1) PSO: The first figure (Fig. 14) illustrates the PSO algo-
rithms show convergence and effective solution optimization
over the period of repetitions. This stability demonstrates

Fig. 9. Optimal results from simulated annealing.

Fig. 10. Score evolution during iterations.

Fig. 11. Metric evolution during iterations.

how PSO progressively modifies particle placements to reduce
inaccuracy. The effect of PSO on three important metrics: ETX,
Latency, Energy Consumption, is depicted in Fig. 15. When
delay is reduced and ETX reaches a high value, transmission
efficiency is increased. Energy consumption remains moderate,
proving that PSO optimizes routing by maintaining a balance
between performance and energy consumption.

2) MILP: The convergence of MILP is displayed in Fig.
16 based on various optimization options (priority over ETX,
latency, energy consumption). Every configuration gradually
lowers the objective function score, but those that prioritize
energy and active search show faster convergence, suggesting
higher efficiency. Fig. 17 contrasts each configurations opti-
mized ETX, latency, and energy usage metrics. While distinct
goals allow targets optimization, highlighting the trade offs
between performance and energy usage, balanced strategies
produce comparable outcomes.
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Fig. 12. ARS2A score convergence during iterations.

Fig. 13. Metric evolution during ARS2A iterations.

3) Simulated Annealing: The ETX, latency, Energy Con-
sumption measures ideal values as determined by Simulated
Annealing on an RPL-IoT network under assault are displayed
in Fig. 18. The outcomes demonstrate a suitable balance
between these variables, guaranteeing effective energy, Latency,
and link quality control. With a steady increase in the overall
score until stabilization after about 1200 iterations, Fig. 19
shows the algorithm convergence and demonstrates the opti-
mizations resilience and effectiveness in spite of the dataset
complexity. Finally, Fig. 20 details the evolution of metrics
over the course of iterations, highlighting a marked reduction
in latency and energy consumption.The ultimate stability of the
curves demonstrates that Simulated Annealing can effectively
handle several concurrent objectives, which qualifies it for use
in IoT network security applications.

4) ARS2A: An instantaneous improvement in the solution
is indicated by Fig. 21 sharp decline in the optimization
score during the initial iterations.The curve stabilizes after
200 iterations indicating that ARS2A is effective and that the
algorithm has attained an optimal minimum. The evolution of
three important metrics: ETX, Latency and Energy depicted in
Fig. 22. ETX exhibits dynamic route adjustment, fluctuating
significantly before settling. After 300 rounds, latency steadily
drops and stabilizes enhancing packet delivery. Similar trends
are shown in energy usage, which has significantly decreased
from the initial iterations

VII. DISCUSSION OF THE RESULTS

Significant variations exist between these strategies in terms
of efficiency and goal balance, according to the comparative
analysis. Although MILP uses a lot of energy, it has the lowest

Fig. 14. Convergence of the objective function score using PSO.

Fig. 15. Optimized values after applying PSO.

Fig. 16. MILP Convergence across different configurations.

Fig. 17. Optimized values for different MILP configurations.
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Fig. 18. Optimal results from simulated annealing.

Fig. 19. Score evolution during iterations.

Fig. 20. Metric evolution during iterations.

latency which is essential for applications that need quick
transmission. In certain configurations, PSO has high latency,
but it effectively optimizes ETX by lowering the number of
hops required to reach the destination, ARS2A is notable
for its capacity to sustain low latency and moderate energy
consumption providing a favorable trade-off between network
lifetime and routing efficiency. Finally, Results from Simulated
Annealing are competitive, especially on the 100-node network,
where it manages to optimize latency and energy, although its
ETX score is not the best, which may imply an increase in
the number of intermediate transmissions. In contrast, ARS2A
exhibits superior adaptability on a larger network with 150
nodes, stabilizing performance while preserving an effective
trade-off between latency and energy consumption. Thus,
According to the the study, ARS2A provides the best robustness
and stability, especially on large-scale IoT networks. While
MILP excels at minimizing latency. These finding imply that
network constraints play a major in algorithm selection and
that a hybrid strategy that combines the advantages of PSO and
MILP may be the best way to balance quick response times,

Fig. 21. ARS2A Score convergence during iterations.

Fig. 22. Metric evolution during ARS2A iterations.

low energy costs, and effective routing.

VIII. CONCLUSION

In this study, we compared PSO, MILP, ARS2A and
Simulated Annealing on networks of 100 and 150 nodes. In
order to explore various optimization strategies while integrating
security considerations in the face of networks attacks.Routing
optimization in RPL-based IoT networks is a crucial issue
where energy efficiency, latency, and transmission reliability
must be balanced to ensure network performance and resilience.

According to simulation results, MILP is the best option for
applications needing quick, reliable routing because it excels at
reducing latency. Nevertheless; this method uses more energy,
which restricts its use in battery-powered networks. Though it
comes at the cost latency, PSO efficiently optimizes transmis-
sion cost (ETX) by lowering the number of hops required to
route data. One of the most well-balanced algorithms turned
out to be ARS2A, maintaining good performance stability over
different scenarios, with low latency and controlled energy
consumption. While its ETX was not always ideal suggesting
a greater number of retransmissions, Simulated Annealing dis-
tinguished itself for its resilience in simultaneously optimizing
latency and energy.

The impact of Selective Forwarding, Sinkhole, and Black-
hole attacks, which hinder data transmission and raise network
energy consumption, has been lessened by the incorporation of
routing security measures. By excluding compromised nodes
from the routing process, overall algorithm performance was
preserved despite the hostile environment. From an applied
perspective, these results indicate that the selection of an
optimization algorithm must be adapted to network constraints.
For an environment requiring fast, reliable transmission, MILP
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is a robust, albeit resource-intensive, solution. PSO and ARS2A
seem like appropriate options in a setting where network
lifetime is crucial since they provide improved energy manage-
ment without sacrificing. Future work will focus on integrating
reinforcement learning techniques with metaheuristics to further
enhance autonomous decision-making in secure routing. Addi-
tionally, validating the framework on real-world IoT testbeds
and extending support for heterogeneous networks will improve
its adaptability and practical deployment.
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