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Abstract—Continual learning, also referred to as lifelong 

learning, has emerged as a significant advancement for model 

adaptation and generalization in deep learning with the 

capability to train models sequentially from a continuous stream 

of data across multiple tasks while retaining previously acquired 

knowledge. Continual learning is used to build powerful deep 

learning models that can efficiently adapt to dynamic 

environments and fast-shifting preferences by utilizing 

computational and memory resources, and it can ensure 

scalability by acquiring new skills over time. Continual learning 

enables models to train incrementally from an ongoing stream of 

data by learning new data as it comes while saving old 

experiences, which eliminates the need to collect new data with 

old data to be retrained together from scratch, saving time, 

resources, and effort. However, despite continual learning 

advantages, it still faces a significant challenge known as 

catastrophic forgetting. Catastrophic forgetting is a phenomenon 

in continual learning where a model forgets previously learned 

knowledge when trained on new tasks, making it challenging to 

preserve performance on earlier tasks while learning new ones. 

Catastrophic forgetting is a central challenge in advancing the 

field of continual learning as it undermines the main goal of 

continual learning, which is to maintain long-term performance 

across all encountered tasks. Therefore, several types of research 

have been proposed recently to address and mitigate the 

catastrophic forgetting dilemma to unlock the full potential of 

continual learning. As a result, this research provides a detailed 

and comprehensive review of one of the state-of-the-art 

approaches to mitigate catastrophic forgetting in continual 

learning known as the gradient-based approach. Furthermore, a 

performance evaluation is conducted for the recent gradient-

based models, including the limitations and the promising 

directions for future research. 
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adaptation and generalization; catastrophic forgetting; gradient-
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I. INTRODUCTION AND PROBLEM DEFINITION 

Human beings and other species possess the innate ability 
to learn, adapt, and retain information throughout their 
existence. This natural capability, termed continuous learning, 
is supported by neurocognitive mechanisms that enable 
organisms to dynamically adapt to new experiences while 
retaining prior knowledge. Neurocognitive mechanisms 
involve a complex interplay of neurons and synapses that 
dynamically process, store, and retrieve information. The brain 

achieves this remarkable feat through processes such as 
neuroplasticity, which allows neural pathways to adapt in 
response to new experiences, and consolidation, which 
stabilizes memories and integrates them with prior knowledge. 
This enables humans and animals to continuously acquire, 
refine, and transfer knowledge while retaining previous 
learning [1]. For example, humans can learn new skills, such as 
playing a musical instrument, without losing the ability to 
perform unrelated tasks like speaking or walking. And since 
deep learning mimics certain aspects of the human brain, 
particularly how neurons in the brain process and transmit 
information, then deep learning can use this biological 
efficiency to incrementally train its models, but unfortunately 
unlike the human neurocognitive mechanisms, mimicking 
continual learning in artificial neural networks contrasts 
sharply with the challenges referred to as catastrophic 
forgetting—a phenomenon where the acquisition of new 
knowledge disrupts or erases previously learned information. 
Addressing this limitation is central to advancing continual 
learning systems in artificial intelligence [2]. 

Continual learning, also known as lifelong learning, seeks 
to emulate the brain’s neurocognitive mechanisms in artificial 
systems. By enabling models to incrementally learn and adapt 
to new information without forgetting past knowledge, 
continual learning systems aim to achieve human-like 
adaptability. These systems have far-reaching implications for 
applications in dynamic environments, such as robotics, 
autonomous vehicles, financial forecasting, environmental 
monitoring, adaptive user interface, and personalized 
healthcare, where consistent performance across evolving tasks 
is essential [2], [3]. Deep learning has revolutionized the 
interaction with technology and process data. By mimicking 
the way the human brain works, it enables systems to learn 
from experience, adapt to new information, and perform tasks 
without explicit programming. This makes deep learning 
crucial in automating complex processes, improving accuracy, 
and handling vast amounts of data, which are essential in 
today's data-driven world. 

Before continual learning and other common model 
adaptation and generalization paradigms, deep learning models 
used to be trained using fixed datasets, which caused a major 
challenge especially in dynamic real-time environments where 
new data arrives continuously and data distribution shifts 
sharply therefore deep learning models struggled to maintain 
accuracy. 
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Fig. 1. Data distribution shifts in dynamic environments. 

Additionally, deep learning models require significant 
computational power and large-scale datasets to function 
effectively, especially for training, as these models often need 
specialized hardware like GPUs and large amounts of labeled 
data to produce accurate results [4], which is a challenge 
especially when building models for real-time multi-task 
classification purposes in dynamic environments. This is a key 
problem in deep learning and real-time analysis, where data 
preferences and patterns are changed rapidly over time as 
shown in Fig. 1. In this case, traditional deep learning models 
often use an iterative deployment mechanism to keep up with 
the changing patterns by collecting the new arriving stream of 
data with old experiences and training the model from scratch 
to include the entire set of data and not lose efficiency, and this 
solution is computationally expensive and inefficient. 

 

Fig. 2. Model adaptation and generalization paradigms. 

As a result, several model adaptation and generalization 
paradigms have been proposed to address this challenge either 
by incrementally training deep learning models with new 
experiences as in continual learning (also referred to as 
incremental learning, lifelong learning, continuous learning) 
[5], or by allowing models to adapt to new unseen tasks by 
utilizing related past experiences using multi-task learning, 
meta-learning, transfer learning, or online learning [5], [6], [7],  
[8], [9]. As shown in Fig. 2, although the objectives of these 
learning paradigms may differ, they may overlap in certain 

aspects, which sometimes may confuse the researchers. 
Table I  shows the main differences and highlights the focus of 
each approach. 

Although, continual learning shows a significant 
contribution to deep learning, especially in dynamic 
environments by enabling models to adapt efficiently and 
maintain accuracy to data distribution shifts and multi-task 
processes, with minimum and constant computation powers 
and memory utilization. But continual learning still faces a 
significant challenge known as catastrophic forgetting [2], [5]. 
Catastrophic forgetting, also referred to as catastrophic 
interference, is a phenomenon in continual learning where a 
model forgets previously learned knowledge when trained on 
new tasks, making it challenging to preserve performance on 
earlier tasks while learning new ones. Catastrophic forgetting is 
a central challenge in advancing the field of continual learning 
as it undermines the main goal of continual learning, which is 
to maintain long-term performance across all encountered tasks 
[2], [5]. However, it is important to highlight that while some 
model adaptation and generalization paradigms, such as  multi-
task learning and transfer learning, improve learning efficiency 
and generalization across tasks, they do not directly address the 
issue of catastrophic forgetting [6],[9]. Unlike continual 
learning, which is specifically designed to retain previously 
learned knowledge while learning new tasks sequentially [5]. 

TABLE I MODEL ADAPTATION AND GENERALIZATION PARADIGMS 

Learning 

Paradigm 
Main Objective 

Continual 

Learning [5] 

Enable models to learn from a continuous stream of tasks 
without forgetting previously learned knowledge, which is 

very significant in dynamic environments with high data 

distribution shits over time. 

Multi-task 
Learning [6] 

Enable models to solve multiple related tasks 

simultaneously. Instead of treating each task independently, 

models leverage shared information across similar tasks to 

improve the learning efficiency and generalization 
performance of all tasks. 

Meta 

Learning [7] 

Enable models to perform effectively in rare unseen tasks 

where datasets are currently evolving and not yet available, 
by utilizing similar experiences from related tasks. It requires 

diverse task datasets for meta-training, and few-shot or 

limited data for testing/adaptation. 

Online 
Learning [8] 

Enable models to immediate and real-time short-term 
adaptation to the recent observations and does not inherently 

address long-term retention of knowledge or ensure that past 
patterns are preserved, for instance online learning models 

might update their predictions as new data arrives without 

revisiting historical data. 

Transfer 
Learning [9] 

Enable models to reuse knowledge learned from a source 
task or domain to improve learning on a target task or 

domain. Instead of training a model from scratch for every 

task. It involves pretraining on a large source dataset and 

fine-tuning on the target task. 

So, the primary objective of this research is to address the 
main issues of catastrophic forgetting in continual deep 
learning and recent potential solutions. Section II introduces 
the background and key concepts underlying continual deep 
learning, establishing a foundational understanding of the 
topic. Section III presents an overview of the latest gradient-
based approaches developed to mitigate catastrophic forgetting 
in continual deep learning. Finally, Section IV offers a 
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discussion of the research and Section V presents conclusions, 
limitations, and directions for future work. 

II. BACKGROUND AND KEY CONCEPTS 

The field of continual learning addresses one of the most 
significant challenges in artificial intelligence: enabling 
systems to learn sequentially from non-stationary data while 
retaining previously acquired knowledge. Unlike traditional 
deep learning without adaptation and generalization 
capabilities, where models are trained on static datasets, 
continual learning operates in dynamic environments where 
new tasks or patterns continuously emerge. However, this 
learning paradigm faces two fundamental challenges: 

a) Catastrophic forgetting: The tendency of neural 

networks to lose performance on previously learned tasks 

when trained on new ones [10]. 

b) Stability-plasticity dilemma: The need to balance the 

retention of old knowledge (stability) with the incorporation of 

new information (plasticity) [11]. 

These challenges have profound implications for real-world 
applications, including robotics, autonomous systems, and 
personalized assistants, where adaptability and knowledge 
retention are paramount. Below, the research explained the key 
concepts underpinning continual learning in deep learning 
tasks, and its associated challenges to establish a foundational 
understanding of the topic. 

A. Continual Learning 

Continual Learning, also known as lifelong learning, is one 
of the most common model adaptation and generalization 
paradigms, as it refers to the ability of a deep learning model to 
learn from a continuous stream of tasks without forgetting 
previously learned knowledge [5], [12]. Unlike traditional deep 

learning setups, where models are trained on a fixed dataset, 
continual learning simulates a dynamic learning environment 
where new tasks emerge sequentially. For instance, continual 
learning aims to train models on a sequence of 𝑁  tasks 
𝑇1 𝑇2 𝑇3 . . .  𝑇𝑁 , where each task 𝑇𝑖  is defined by its dataset 

𝐷𝑖 = {(𝑥𝑗  𝑦𝑗)}
𝑛𝑖

𝑗 = 1 and its objective 𝐿𝑖(θ) , with θ  denoting 

the model parameters, and the purpose of the model is to 
minimize the cumulative loss across all tasks, as shown in 
Eq. (1). 

𝜃∗ = 𝑎𝑟𝑔 
𝑚𝑖𝑛
𝜃
 ∑ 𝐿𝑖(𝜃)

𝑁
𝑖=1           (1) 

So, the continual learning model main objective is to 
perform this optimization without degrading performance on 
earlier tasks, 𝑇1 𝑇2 𝑇3 . . .  𝑇𝑖−1 when learning task 𝑇𝑖 , but this 
is challenging because the datasets 𝐷𝑖  are typically not 
accessible once the task 𝑇𝑖  is completed, and therefore 
continual learning model making it hard to preserve 
performance on earlier tasks while learning new ones and 
respectively mitigating the famous problem of continual deep 
learning known as the catastrophic forgetting dilemma [10], as 
shown in Fig. 3. 

For example, Fig. 3 shows the performance of a baseline 
model and a continual learning model across sequential tasks 
𝑇1 𝑇2 𝑇3 . . .  𝑇𝑖−1. The baseline model suffers a sharp decline 
in earlier task performance (catastrophic forgetting), while the 
continual learning model maintains better stability. 
Furthermore, continual learning must navigate the delicate 
balance between maintaining model stability—preserving 
knowledge from earlier tasks and ensuring sufficient plasticity 
to adapt and learn new information as it becomes available, 
which is another challenge in continual learning known as the 
stability-plasticity dilemma. 

 

Fig. 3. Task performance over time (Catastrophic forgetting). 
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B. Catastrophic Forgetting 

Catastrophic forgetting is a main challenge in building 
continual deep learning models. It refers to the drastic decline 
in a neural network's performance on previously learned tasks 
when it is trained on new tasks [2], [10]. This phenomenon 
occurs because deep learning models typically share a common 
set of parameters θ across all tasks. When trained on a new 
task  𝑇i+1, the optimization process updates θ to minimize the 
loss for the new task, inadvertently overwriting information 
critical to earlier tasks. For instance, consider a model trained 
sequentially on two tasks: 

1) Task 1 (𝑇1 ): Loss function 𝐿1(θ)  with dataset 𝐷1 =
{(𝑥1 𝑦1)} 

2) Task 2 (𝑇2 ): Loss function 𝐿2(θ)  with dataset 𝐷2 =
{(𝑥2 𝑦2)} 

During training on 𝑇1 , the model learns parameters θ∗  by 
minimizing 𝐿1(θ), as shown in Eq. (2). 

𝜃𝑇1
∗ = 𝑎𝑟𝑔 

𝑚𝑖𝑛
𝜃
 𝐿1(𝜃)            (2) 

When training begins on 𝑇2, the model minimizes 𝐿2(θ), as 
shown in Eq. (3). 

𝜃𝑇2
∗ = 𝑎𝑟𝑔 

𝑚𝑖𝑛
𝜃
 𝐿2(𝜃)         (3) 

However, the gradients 𝛻𝐿2(θ) used to optimize 𝑇2  often 
conflict with  𝛻𝐿1(θ). This results in updates to θ that degrade 

the performance on  𝑇1, i.e., 𝐿1(θ𝑇2
∗ ) >  𝐿1(θ𝑇1

∗ ). As a result, 

catastrophic forgetting become a central challenge in 
advancing the field of continual learning in deep learning tasks 
as it undermines the main goal of continual learning, which is 
to maintain long-term performance across all encountered 
tasks. Therefore, the next section will address several types of 
research that have been proposed recently to address and 
mitigate the catastrophic forgetting dilemma to unlock the full 
potential of continual deep learning [2], [10]. 

C. Stability-Plasticity Dilemma 

The stability-plasticity dilemma is a core challenge in 
continual deep learning. It refers to the trade-off between: 

1) Stability: The ability of a model to retain and preserve 

knowledge from previously learned tasks [11]. 

2) Plasticity: The ability of a model to adapt to new tasks 

and incorporate new knowledge effectively [11]. 

In continual deep learning, achieving a balance between 
these two opposing forces is critical. Excessive stability can 
lead to rigidity, where the model fails to adapt to new tasks. On 
the other hand, excessive plasticity can cause catastrophic 
forgetting, where new learning overwrites previously acquired 
knowledge [13]. For instance, consider a sequence of 𝑁 tasks 

𝑇1 𝑇2 𝑇3 . . .  𝑇𝑁, where each task 𝑇𝑖  has its dataset 𝐷𝑖  and loss 
function 𝐿𝑖(θ), with θ denoting the shared model parameters. 
The objective in continual learning is to minimize cumulative 
loss, as shown in Eq. (4). 

  𝐿(θ) = ∑ 𝐿𝑖(θ)
𝑁
𝑖=1               (4) 

To address the stability-plasticity dilemma, the following 
constraints are defined: 

3) Stability constraint: For previously learned tasks 

𝑇𝑗(𝑗 < 𝑖), the loss should not increase beyond a threshold 𝜖, as 

shown in Eq. (5). 

 𝐿𝑗(𝜃) ≤  𝐿𝑗 (𝜃𝑇𝑗
∗ ) +  𝜖           (5) 

where,  θ𝑇𝑗
∗  is the parameter configuration after training on 

task 𝑇𝑗. 

4) Plasticity constraint: The model must minimize the 

loss for the current task 𝑇𝑖 , as shown in Eq. (6). 

𝜃 = 𝑎𝑟𝑔 
𝑚𝑖𝑛
𝜃
 𝐿𝑖(𝜃)              (6) 

 where, the gradient updates for θ  often result in 
interference between tasks. If the gradients for 𝑇𝑖  conflict with 
𝑇𝑗, the performance on earlier tasks degrades. 

As a result, maintaining a balance between these two forces 
(stability and plasticity) ensures that the model's parameter 
space retains important information for older tasks, typically 
through regularization or rehearsal, and it also enable the 
model to adapt to new tasks and incorporate new knowledge 
effectively [11], [13]. 

III. MITIGATING CATASTROPHIC FORGETTING APPROACHES 

As mentioned above, continual learning in deep neural 
networks faces two intertwined challenges: maintaining a 
balance between stability and plasticity and addressing 
catastrophic forgetting. Several approaches have been proposed 
to tackle these two challenges as shown in Fig. 4 categorized 
broadly into regularization-based, knowledge-distillation-
based, Bayesian-based, gradient-based, architecture-based, 
replay-based, and other hybrid methods. 

In this research, the main objective is to focus on the 
gradient-based approach including its definition, strengths, 
weakness points, and its recent models including Gradient 
Episodic Memory (GEM) [14], Averaged Gradient Episodic 
Memory (A-GEM) [15] and Orthogonal Gradient Descent 
(OGD) [16]. Additionally, the research presents how the 
gradient-based approach differs from the other approaches 
based on factors such as the core idea, memory requirements, 
computational efficiency, and flexibility. 
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Fig. 4. Mitigating catastrophic forgetting approaches taxonomy. 

A. Gradient-Based Approach 

The gradient-based approach is a prominent methodology 
in continual deep learning, designed to address the challenge of 
catastrophic forgetting by carefully adjusting the gradient 
updates when a model learns new tasks. The key idea is to 
modify the gradient direction to minimize interference with 
previously learned tasks, ensuring a balance between retaining 
old knowledge and learning new information [14]. This 
approach operates within the optimization process, ensuring 
that parameter updates for new tasks do not disrupt the 
knowledge gained from previous ones. By focusing on the 
dynamics of gradients during training, it provides a flexible and 
efficient framework for tackling forgetting without relying on 
extensive memory storage or architectural changes. For 
instance, if a neural network first trained on Task A, where the 
goal is to classify points into two categories (e.g. red and blue) 
based on their positions in a 2D plane. After mastering Task A, 
the network is asked to learn Task B, which involves 
classifying points into two different categories (e.g. green and 
yellow) based on a new data distribution. Without careful 

control, when the network learns Task B, the gradients 
calculated for this task might overwrite what was learned for 
Task A, causing catastrophic forgetting. Gradient-based 
approaches solve this by modifying how the network updates 
its parameters. Let’s illustrate this with Gradient Episodic 
Memory (GEM): 

1) Memory of task A: GEM keeps a small memory buffer 

of examples from Task A (e.g. a few red and blue points). 

These points represent the knowledge of Task A that the 

model should not forget. 

2) Gradient check: When the model computes the 

gradient to learn Task B, GEM checks if this gradient would 

increase the loss on the stored Task A examples. If it does, 

GEM modifies the gradient to ensure that the loss on Task A 

examples does not worsen. 

3) Adjusted gradient update: The model updates its 

parameters using the adjusted gradient, which balances 

learning for Task B while preserving performance on Task A. 
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Fig. 5. Key factors for comparing continual learning approaches. 

After learning Task A, the optimal parameter region for 
Task A is identified (a "safe zone" in the parameter space). 
When learning Task B, the new gradient points toward the 
optimal parameters for Task B. However, if this update would 
move the parameters out of the "safe zone" for Task A, GEM 
adjusts the gradient direction to stay within a region that 
satisfies both tasks [14]. This adjustment can be 
mathematically represented as a projection, as shown in 
Eq. (7). 

𝑔𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑔 − 
𝑔⊤𝑚

𝑚⊤𝑚
 𝑚               (7) 

where, 𝑔 is the gradient for Task B, 𝑚 is the gradient from 
memory examples of Task A. And finally, 𝑔𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is the new 

gradient that minimizes interference with Task A. Think of it 
like walking a path (Task B) while staying within a marked 
boundary (Task A). Instead of walking straight ahead (ignoring 
the boundary), GEM adjusts your step to ensure you remain 
within the boundary while moving forward. By modifying the 

gradient updates this way, the model learns Task B without 
significantly forgetting Task A, achieving a balance between 
stability (retaining old knowledge) and plasticity (learning new 
knowledge). Gradient Episodic Memory (GEM) is a key 
example of this approach. It adjusts gradients during training to 
ensure that the loss on stored samples from previous tasks does 
not increase, preserving past knowledge [14]. Averaged 
Gradient Episodic Memory (A-GEM) simplifies GEM by 
using averaged gradients across stored samples, reducing 
computational overhead while maintaining performance [15]. 
Orthogonal Gradient Descent (OGD) further refines this by 
projecting the gradients of new tasks onto spaces orthogonal to 
gradients of old tasks, minimizing interference [16]. 

Furthermore, to better understand the position of gradient-
based methods, it is essential to compare them with other 
approaches, including replay-based [17], regularization-based 
[18], knowledge-distillation-based [19], Bayesian-based [20], 
architecture-based [21], and hybrid methods [22], across 
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multiple factors as shown in Fig. 5. One of the most important 
factors is catastrophic forgetting mitigation, which measures 
how well an approach retains previously learned knowledge 
while integrating new information. Replay-based, knowledge-
distillation-based, and gradient-based methods are particularly 
effective in this aspect. Another critical factor is the stability-
plasticity tradeoff, which reflects an approach's ability to 
balance learning new tasks while preserving old ones. 
Regularization-based and architecture-based methods focus 
more on stability, while gradient-based and replay-based 
methods offer a better balance between stability and plasticity. 
Memory requirements vary significantly among continual 
learning approaches. Replay-based methods require high 
memory usage since they store past examples, whereas 
regularization-based and Bayesian-based methods demand far 
less memory. Gradient-based approaches generally have 
moderate memory requirements. Similarly, computational 
efficiency plays a crucial role, as some methods require 
extensive processing power. 

Regularization-based and Bayesian-based approaches are 
generally efficient, while replay-based and architecture-based 
methods tend to have higher computational costs due to data 
storage or network expansion. Another important consideration 
is task-free capability, which determines whether a method can 
learn continuously without predefined task boundaries. 
Knowledge-distillation-based and gradient-based approaches 
perform well in this aspect, while regularization-based and 
Bayesian-based approaches typically struggle with task-free 
learning. Closely related is flexibility, which measures how 
well an approach adapts to different continual learning settings, 
such as class-incremental or domain-incremental learning. 
Replay-based, knowledge-distillation-based, and gradient-
based approaches are highly flexible, whereas regularization-
based and architecture-based approaches tend to be more 
constrained. Sample efficiency is another key factor that 
determines how well a method can learn from a limited number 
of training examples. Replay-based and gradient-based 
methods perform well in this regard, as they either revisit 
stored data or adjust learning strategies dynamically. Finally, 
scalability is crucial for applying continual learning to large 
datasets and real-world applications. Regularization-based, 
Bayesian-based, and gradient-based methods tend to scale 
better, whereas architecture-based methods struggle due to 
high computational costs and network expansion constraints. 
Each of these factors plays a crucial role in determining the 
best continual learning approach for a given application. Some 
methods excel in retaining past knowledge, while others 
prioritize efficiency or adaptability. The ideal approach often 
depends on the specific constraints of the task, whether it 
requires high memory efficiency, task-free learning, or the 
ability to scale to large datasets. 

B. Gradient Episodic Memory (GEM) 

Gradient Episodic Memory (GEM) is a continual learning 
model designed to mitigate catastrophic forgetting. Its core 
component is an episodic memory 𝑀𝑡, which retains a subset 
of previously encountered examples from task t. For ease of 
implementation, integer task descriptors are used to index the 
episodic memory. Since integer task descriptors do not 
inherently support strong forward transfer (i.e., zero-shot 

learning), GEM instead prioritizes minimizing negative 
backward transfer by efficiently utilizing memory storage. In 
practice, the learner has a fixed memory capacity of  𝑀. If the 
total number of tasks 𝑇, is known in advance, memory can be 
evenly distributed across tasks, allocating 𝑚 =  𝑀/𝑇 slots per 
task. However, if  𝑇 is unknown, 𝑚 can be gradually reduced 
as new tasks are introduced. A simple strategy for memory 
management involves storing the most recent 𝑚 examples from 
each task, though more sophisticated techniques, such as 
constructing a coreset per task, could improve efficiency [14]. 
The model parameters denoted as  𝜃 ∈  𝑅𝑝 , define the 
predictor 𝑓𝜃 , and the loss function is evaluated on the stored 
examples from task 𝑘, as shown in Eq. (8). 

 𝐿(𝑓𝜃  𝑀𝑘) =
1

|𝑀𝑘|
 ∑ 𝐿(𝑓𝜃(𝑥𝑖  𝑘) 𝑦𝑖)(𝑥𝑖 𝑘 𝑦𝑖)∈ 𝑀𝑘

         (8) 

The performance of the Gradient Episodic Memory (GEM) 
model is evaluated using three benchmark datasets (MNIST 
Permutations, MNIST Rotations, and Incremental CIFAR100), 
and the results highlight GEM's strong performance compared 
to state-of-the-art methods. However, there are three key areas 
for potential improvement. First, GEM does not utilize 
structured task descriptors, which could facilitate positive 
forward transfer and enable zero-shot learning. Second, 
advanced memory management strategies, such as constructing 
task-specific coresets, were not explored in this study. Third, 
GEM requires a separate backward pass for each task during 
training, leading to increased computational overhead. 
Addressing these limitations presents promising research 
opportunities for extending learning models [14]. 

C. Averaged Gradient Episodic Memory (A-GEM) 

Although GEM demonstrates strong effectiveness in a 
single epoch setting, its performance improvements come at 
the cost of significant computational overhead during training. 
At each update step, GEM constructs the matrix 𝐺  using all 
stored samples from the episodic memory, making the inner 
loop optimization computationally expensive, particularly 
when the memory size 𝑀 and the number of tasks increase. To 
address this efficiency challenge, a more computationally 
feasible variant of GEM, known as Averaged GEM (A-GEM) 
is introduced [15]. Unlike GEM, which ensures that the loss for 
each previous task—approximated using episodic memory 
samples—does not increase at each training step, A-GEM 
instead seeks to maintain a non-increasing average episodic 
memory loss across all prior tasks. The objective of A-GEM is 
shown in Eq. (9). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜃  𝑙(𝑓𝜃  𝐷𝑡)  𝑠. 𝑡  𝑙(𝑓𝜃  𝑀) ≤ 𝑙(𝑓𝜃
𝑡−1 𝑀)     (9) 

The performance of the Averaged Gradient Episodic 
Memory (A-GEM) model is evaluated using four datasets 
stream (MNIST Permutations, CUB Split, AWA Split, and 
CIFAR). The experimental results shows that A-GEM offers 
the best balance between final average accuracy and 
computational/memory efficiency. It is approximately 100 
times faster and requires 10 times less memory than GEM 
while outperforming regularization-based approaches in 
accuracy. Additionally, leveraging compositional task 
descriptors enhances few-shot learning across all methods, 
with A-GEM often achieving the best results. However, 
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experiments reveal a notable performance gap between lifelong 
learning (LLL) methods, including A-GEM, trained 
sequentially and the same model trained in a non-sequential 
multi-task setting, despite exposure to the same data. While 
task descriptors improve few-shot learning, the limited cross-
task transferability among methods suggests that eliminating 
forgetting alone is insufficient for effective knowledge transfer. 
Future research will focus on addressing these challenges [15]. 

D. Orthogonal Gradient Descent (OGD) 

Catastrophic forgetting occurs in neural networks when 
gradient updates for a new task modify the model without 
preserving knowledge from previous tasks. To address this 
issue, the Orthogonal Gradient Descent (OGD) method is 
introduced, which adjusts the update direction to retain crucial 
information from earlier tasks. The key principle of OGD, as 
illustrated in Fig. 4, is to constrain parameter updates to remain 
within the orthogonal subspace of past task gradients, thereby 
mitigating interference and preserving learned representations 
[16]. 

 

Fig. 6. The Key principle of OGD [16]. 

An illustration in Fig. 6 demonstrates how Orthogonal 
Gradient Descent (OGD) adjusts gradient directions to prevent 
interference between tasks. Here, 𝑔  represents the original 
gradient computed for task 𝐵, while 𝑔̃ is its projection onto the 
orthogonal subspace relative to the gradient ∇𝑓𝑗(𝑥; 𝑤𝐴

∗) from 

task 𝐴. Constraining updates within this orthogonal subspace 
(depicted in blue) enables the model parameters to move 
toward a region of lower error (shown in green) that benefits 
both tasks [16]. 

E. Recent Models 

As shown in Table II, several types of research have been 
proposed to improve performance in overcoming and 
mitigating catastrophic forgetting in continual deep learning 
using a gradient-based approach. 

Utility-based Perturbed Gradient Descent (UPGD), 
introduced by Elsayed et al. (2023), is an online learning 
algorithm designed for continual learning agents. It mitigates 
forgetting by preserving important weights and features while 
selectively perturbing less critical ones based on their utility. 
Empirical results demonstrate that UPGD effectively reduces 
forgetting and maintains network plasticity, allowing modern 

representation learning techniques to function efficiently in a 
continual learning setting. This novel approach enables 
learning agents to operate over extended periods by 
implementing utility-aware update rules that safeguard 
essential parameters while adjusting less significant ones. 
These rules help address key challenges in continual learning, 
such as catastrophic forgetting and declining plasticity. 
Experimental evaluations confirm that UPGD enhances 
network adaptability and facilitates the reuse of previously 
learned features, making it particularly suited for environments 
requiring rapid adaptation to evolving tasks [23].  

Adversarial Augmentation with Gradient Episodic Memory 
(Adv-GEM), showed by Wu et al. (2024), enhances data 
diversity by leveraging gradient episodic memory. This method 
strengthens existing continual reinforcement learning (RL) 
algorithms, improving their average performance, reducing 
catastrophic forgetting, and facilitating forward transfer in 
robot control tasks. The framework is designed for easy 
expansion, allowing for further enhancements. Future research 
will aim to optimize augmentation efficiency, validate the 
approach across various real-world scenarios, and develop 
adaptive strategies to handle different task complexities 
effectively [24]. 

Asymmetric Gradient Distance (AGD) metric and 
Maximum Discrepancy Optimization (MaxDO) strategy, 
proposed by Lyu et al. (2023), are used in Parallel Continual 
Learning (PCL) effectively to reduce training conflicts and 
suppresses forgetting of completed tasks. PCL involves 
training multiple tasks simultaneously with unpredictable start 
and end times, leading to challenges such as training conflicts 
and catastrophic forgetting. These issues arise due to 
discrepancies in the direction and magnitude of gradients from 
different tasks. To address this, PCL is formulated as a 
minimum distance optimization problem among gradients, and 
an Asymmetric Gradient Distance (AGD) metric is introduced 
to measure gradient discrepancies. AGD accounts for both 
gradient magnitudes and directions while allowing a tolerance 
for minor conflicting gradients, thereby mitigating imbalances 
in parallel training. Additionally, a Maximum Discrepancy 
Optimization (MaxDO) strategy is proposed to minimize the 
largest gradient discrepancy across tasks. Extensive 
experiments on three image recognition datasets demonstrate 
the effectiveness of this approach in both task-incremental and 
class-incremental PCL settings [25]. 

Unified Gradient Projection with Flatter Sharpness for 
Continual Learning (UniGrad-FS), proposed by Li et al. 
(2024), enhances CL performance. The core idea is to apply 
efficient gradient projection in regions with minimal gradient 
conflicts, making the method widely compatible with gradient-
based optimizers. For evaluation, UniGrad and UniGrad-FS are 
integrated into two state-of-the-art baselines, WA and MEMO, 
leading to performance improvements of +2.09 per cent and 
+1.72 per cent, respectively, in a 20-step CIFAR100 
benchmark. Further experiments on CIFAR100 and Tiny-
ImageNet confirm the method’s effectiveness and simplicity 
across various settings, demonstrating its potential as a general 
solution for CL [26]. 
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TABLE II GRADIENT BASED MODELS PERFORMANCE 

Models 

Results 

Datasets 

Accuracy (%) / Tasks (𝑻 ) 

𝑻  𝑻  𝑻  𝑻𝟒 𝑻𝟓 

Average Accuracy (ACC) 

 

𝑷( ) ≔
 

𝑵
∑𝒑 ( )

𝑵

 = 

 

GEM [14] 

 

89% 83% 79% 86% 84% 84% MNIST Permutations 

88% 89% 82% 80% 74% 82% MNIST Rotations 

71% 68% 52% 57% 65% 63% Incremental CIFAR100 

A-GEM [15] 

 

99% 97% 93% 90% 87% 93% Permuted MNIST 

69% 57% 60% 63% 61% 62% Split CIFAR 

Adv-GEM [24] 
 

80% 72% 76% 70% 72% 74% MW4 (EWC + Adv-GEM) 

90% 85% 92% 87% 86% 88% MW4 (PackNet + Adv-GEM) 

75% 70% 68% 74% 73% 72% CW10 (EWC + Adv-GEM) 

90% 88% 91% 87% 89% 89% CW10 (PackNet + Adv-GEM) 

OGD [16] 
 

90% 87% 92% 90% 86% 89% Permuted MNIST 

91% 82% 79% 73% 63% 77% Rotated MNIST 

98% 99% 98% 98% 99% 98% Split MNIST 

UPGD [23] 

 

80% 75% 78% 74% 78% 77% MNIST 

78% 72% 74% 76% 75% 75% EMNIST 

60% 66% 62% 68% 64% 64% CIFAR10 

GradMA [33] 

 

99% 97% 98% 97% 99% 98% MNIST 

80% 78% 81% 77% 79% 79% CIFAR10 

66% 62% 65% 60% 62% 63% CIFAR100 

52% 50% 45% 55% 48% 50% Tiny-ImageNet 

RWM [30] 93% 92% 93% 94% 95% 93% CLEAR 

TS-ACL [31] 
 

90% 87% 85% 89% 89% 88% UCI-HAR 

94% 90% 93% 91% 92% 92% UWave 

99% 97% 98% 99% 97% 98% DSA 

55% 60% 58% 55% 57% 57% GRABMyo 

85% 83% 86% 82% 84% 84% WISDM 

SharpSeq (SS) [32] 

 

56% 59% 64% 62% 63% 60% ACE2005 

62% 61% 62% 61% 60% 61% MAVEN 

Continual Relation Extraction via Sequential Multi-task 
Learning (CREST), introduced by Le et al. (2024), designed to 
mitigate catastrophic forgetting in continual relation extraction 
(CRE) using a customized multi-task learning framework. 
CREST addresses the challenge of differing gradient 
magnitudes across objectives, effectively bridging the gap 
between multi-task learning and continual learning. Extensive 
experiments on multiple datasets show that CREST 
significantly enhances CRE performance and outperforms 
existing state-of-the-art multi-task learning frameworks. These 

results highlight its potential as a promising solution for 
continual learning in relation extraction [27]. 

Continual Flatness (C-Flat) method, proposed by Bian et al. 
(2025), is designed to balance the trade-off between sensitivity 
to new tasks and stability in preserving memory, addressing 
catastrophic forgetting in continual learning (CL). It achieves 
this by promoting a flatter loss landscape optimized for 
CL.   C-Flat is a plug-and-play approach that can be seamlessly 
integrated into any CL method with minimal implementation 
effort [28]. 
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VERSE, proposed by Banerjee et al. (2024), introduces a 
novel streaming approach that processes each training example 
only once, requires a single data pass, supports class-
incremental learning, and enables real-time evaluation. The 
method relies on virtual gradients to adapt to new examples 
while preserving generalization to past data, mitigating 
catastrophic forgetting. Additionally, an exponential moving 
average-based semantic memory is incorporated to enhance 
performance. Experimental results on diverse datasets with 
temporally correlated observations confirm the method’s 
effectiveness, demonstrating superior performance compared 
to existing approaches [29]. 

Radian Weight Modification (RWM), presented by Zhang 
et al. (2024), a continual learning approach for audio deepfake 
detection. RWM categorizes classes into two groups: genuine 
audio, which exhibits compact feature distributions across 
tasks, and fake audio, which has more dispersed distributions. 
These distinctions are quantified by using in-class cosine 
distance, guiding RWM in applying a trainable gradient 
modification direction tailored for different data types. 
Experimental comparisons with mainstream continual learning 
methods demonstrate that RWM excels in both knowledge 
retention and mitigating forgetting in deepfake detection [30]. 

TS-ACL, introduced by Fan et al. (2024), is an analytical 
continual learning framework designed for time series class-
incremental pattern recognition, addressing catastrophic 
forgetting through gradient-free recursive regression learning. 
This approach not only enhances learning efficiency but also 
ensures privacy preservation. Experimental evaluations across 
five benchmark datasets demonstrate that TS-ACL surpasses 
existing methods, achieving an optimal balance between 
stability and plasticity. Additionally, it maintains both the non-
forgetting and weight-invariant properties, making it a highly 
robust solution. Its efficiency and minimal computational 
requirements make TS-ACL particularly well-suited for 
resource-constrained environments such as edge computing 
[31]. 

SharpSeq (SS), proposed by Le et al. (2024), is a novel 
framework designed to seamlessly integrate state-of-the-art 
gradient-based multi-objective optimization methods into 
continual event detection systems. It effectively tackles 
challenges such as imbalanced training data and the unique 
constraints of continual learning, leading to significant 
performance improvements in event detection over time. 
Comprehensive empirical benchmarks confirm SharpSeq’s 
effectiveness and adaptability, demonstrating its applicability 
beyond event detection to a wide range of continual learning 
tasks across various domains. This work establishes a strong 
foundation for future research, highlighting the potential of 
multi-objective optimization in advancing continual learning 
methodologies [32]. 

GradMA (Gradient-Memory-based Accelerated), presented 
by Luo et al. (2023), is a method designed to mitigate 
catastrophic forgetting in federated learning (FL), particularly 
in scenarios with data heterogeneity and partial participation. It 
achieves this by simultaneously refining the update directions 
of both the server and workers. On the worker side, GradMA 
utilizes the gradients from the previous local model, the 

centralized model, and the parameter differences between the 
current local model and the centralized model as constraints in 
a quadratic programming (QP) formulation, enabling adaptive 
correction of the local model’s update direction. Meanwhile, 
on the server side, GradMA integrates memorized accumulated 
gradients from all workers as QP constraints to enhance the 
centralized model’s update direction. Additionally, theoretical 
convergence analysis is provided under a smooth non-convex 
setting, and extensive experiments validate the effectiveness of 
GradMA in reducing forgetting while improving FL 
performance [33]. 

IV. DISCUSSION 

Through the analysis of gradient-based continual learning 
approaches, it becomes evident that while these methods offer 
significant progress toward mitigating catastrophic forgetting, 
they are not without trade-offs. A recurring challenge is 
balancing computational efficiency with memory usage, 
particularly when episodic memory buffers are employed. 
Moreover, the performance of many models in highly dynamic, 
non-stationary environments remains inconsistent. In practice, 
real-world continual learning applications such as autonomous 
agents, real-time surveillance, and personalized healthcare  
demand models that are both scalable and resilient to noisy or 
imbalanced data. The research also highlights that no single 
approach fully resolves the stability-plasticity dilemma, and 
that hybrid strategies integrating gradient projection with 
rehearsal, regularization, or adaptive memory may be 
necessary. We believe future progress lies in the development 
of lightweight, task-agnostic architectures that can dynamically 
adapt while maintaining a strong capacity for long-term 
retention and generalization. 

V. CONCLUSION 

The research presents a comprehensive review of gradient-
based approach for mitigating catastrophic forgetting in 
continual learning. Through an in-depth analysis of key 
concepts such as continual learning (CL), catastrophic 
forgetting challenge, and stability and plasticity dilemma. Next, 
the research highlights the strengths, limitations, and 
comparative performance of the most common gradient-based 
models including Gradient Episodic Memory (GEM), 
Averaged Gradient Episodic Memory (A-GEM), and 
Orthogonal Gradient Descent (OGD). The findings confirm 
that gradient-based methods effectively reduce forgetting by 
strategically adjusting model updates to preserve prior 
knowledge while integrating new information. 

Despite the strong potential of gradient-based approaches in 
continual learning, they come with notable limitations. First, 
many of these methods (e.g., GEM, A-GEM, OGD) rely on 
storing samples from previous tasks, which increases memory 
requirements and may not be scaled efficiently in memory-
constrained environments. Second, their performance may 
degrade in real-world scenarios where data distributions are 
non-stationary, unpredictable, or imbalanced. These 
environments require high robustness, which some gradient-
based models currently lack. Third, there is a growing need for 
novel and hybrid approaches that combine the strengths of 
gradient projection with adaptive techniques such as attention 
mechanisms, reinforcement learning, or dynamic memory 
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allocation to better handle varying task complexities and 
improve scalability. 

Furthermore, despite the progress in continual learning, 
challenges remain in achieving an optimal balance between 
stability and plasticity, improving computational efficiency, 
and enhancing scalability to real-world applications. Future 
research should explore hybrid approaches that integrate 
gradient-based learning with replay-based and regularization-
based methods, optimize memory utilization, and investigate 
new architectures that promote long-term knowledge retention 
without excessive computational costs. By addressing these 
challenges, continual learning can unlock its full potential, 
enabling deep learning models to adapt efficiently in dynamic 
and evolving environments. 
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