
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

209 | P a g e  

www.ijacsa.thesai.org 

Meter-YOLOv8n: A Lightweight and Efficient 

Algorithm for Word-Wheel Water Meter Reading 

Recognition 

Shichao Qiao, Yuying Yuan*, Ruijie Qi 

School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, Shandong, China 

 

 
Abstract—To address the issues of low efficiency and large 

parameters in the current word-wheel water meter reading 

recognition algorithms, this paper proposes a Meter-YOLOv8n 

algorithm based on YOLOv8n. Firstly, the C2f component of 

YOLOv8n is improved by introducing an enhanced inverted 

residual mobile block (iRMB). It enables the model to efficiently 

capture global features and fully extract the key information of 

the water meter characters. Secondly, the Slim-Neck feature 

fusion structure is employed in the neck network. By replacing 

the original convolutional kernels with GSConv, the model's 

ability to express the features of small object characters is 

enhanced, and the number of parameters in the model is reduced. 

Finally, Inner-EIoU is used to optimize the bounding box loss 

function. This simplifies the calculation process of the loss 

function and improves the model's ability to locate dense 

bounding boxes. The experimental results show that, compared 

with the original model, the precision, recall, mAP@0.5, and 

mAP@0.5:0.95 of the improved model have increased by 1.7%, 

1.2%, 3.4%, and 3.3% respectively. Meanwhile, the parameters, 

FLOPs, and model size have decreased by 0.56M, 2.6G, and 

0.7MB respectively. The improved model can better balance the 

relationship between detection performance and computational 

complexity. It is suitable for the task of recognizing word-wheel 

water meter readings and has practical application value. 

Keywords—Word-wheel water meter; YOLOv8n; global 

features; slim-neck; loss function 

I. INTRODUCTION 

The word-wheel water meter is a common flow 
measurement instrument widely used in tap water metering, 
playing a crucial role in helping water utility companies 
monitor users' water consumption. Due to its simple structure, 
low cost, and strong anti-interference capability, it is widely 
used in residential communities and industrial workshops. 
Traditionally, meter reading is performed manually by staff 
who visually observe the meter readings and record them by 
hand. This method is labor-intensive and highly repetitive, 
consuming significant human and material resources [1], [2]. 
Additionally, it is susceptible to environmental factors and 
psychological variations of the staff, leading to errors such as 
misreadings and omissions. In recent years, object detection 
algorithms have continuously advanced, especially deep 
learning-based methods, which have significantly improved 
accuracy. The use of computer vision technology for fast and 
accurate reading of word-wheel water meters has become a 
research hotspot [3]. 

The methods for recognizing the readings of word-wheel 
water meters can be divided into two types. One is the optical 
character recognition (OCR) method. This method first locates 
the reading area of the water meter, then segments the reading 
area using image segmentation technology, and finally 
employs a convolutional neural network to recognize the 
readings in the segmented area. However, this method has high 
requirements for image quality and a slow processing speed, 
making it difficult to meet the reading recognition needs of 
character wheel water meters in complex scenarios. Another 
method is to directly perform character detection on the water 
meter image to read the water meter reading. It omits the 
intermediate positioning and segmentation steps, making the 
overall recognition process more concise and efficient. When 
dealing with a large number of water meter images, direct 
detection can save more time and computational resources and 
improve the reading efficiency. Considering the two methods 
comprehensively, in order to enable the model to complete 
rapid detection in an environment with limited resources, this 
paper uses an object detection algorithm to directly recognize 
the readings of the word-wheel water meters [4]. 

Object detection algorithms can be categorized into single-
stage and two-stage algorithms. Common two-stage algorithms 
include R-CNN, Fast R-CNN [5], and Faster R-CNN [6]. In 
two-stage algorithms, a large number of candidate boxes are 
first generated, followed by object classification and bounding 
box regression. Since classification and regression need to be 
performed on numerous candidate regions, the training and 
inference speed of these algorithms is relatively slow. In 
practical applications, especially in scenarios requiring real-
time detection, this slower detection speed can become a 
limiting factor. 

Single-stage detection algorithms include SSD [7] and the 
YOLO series [8]. These algorithms perform dense predictions 
on the input image through a single network, achieving both 
object detection and localization in one step. Compared to two-
stage algorithms, single-stage algorithms require lower 
computational costs and offer better real-time performance. 
The YOLO algorithm features an integrated design, enabling it 
to process images at dozens of frames per second or even 
higher speeds. This allows for fast localization of water meters 
and reading recognition, making it particularly suitable for 
applications with high-speed processing requirements. 

In order to achieve accurate and rapid reading of the 
readings of word-wheel water meters, this paper proposes a 
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lightweight word-wheel water meter reading recognition 
algorithm based on YOLOv8n. The main contributions of this 
paper are as follows: 

 Based on the publicly available water meter dataset, a 
word-wheel water meter dataset in real-world scenarios 
has been constructed. It includes complete characters 
and transitional characters, totaling twenty categories. 
This dataset takes into account various unfavorable 
factors in the real environment, such as light and noise, 
providing a data foundation for future research. 

 To address the issues of low accuracy and a large 
number of parameters in the reading recognition of 
word-wheel water meters, this paper proposes the 
Meter-YOLOv8n algorithm for word-wheel water 
meter reading recognition. The detection accuracy and 
efficiency are improved through the use of C2f-iRMBS, 
Slim-Neck, and Inner-EIoU. 

 Comprehensive experiments have been carried out on 
the word-wheel water meter dataset, and a visual 
analysis of the test results has been conducted. It proves 
the detection performance and generalization ability of 
the improved algorithm, which is more suitable for the 
task of reading recognition of word-wheel water meters. 

This paper is structured as follows: Section II introduces 
the related work in the field of word-wheel water meter 
reading. Section III describes the improved algorithm for 
reading of word-wheel water meters. Section IV introduces the 
dataset of word-wheel water meters, the evaluation metrics, 
and the experimental environment. Section V describes the 
experimental results and visual analysis. Section VI analyzes 
the deficiencies of the existing work and the directions for 
future exploration. 

II. RELATED WORK 

A. YOLOv8 Algorithm 

As one of the most renowned algorithms in the YOLO 
series, YOLOv8 is particularly suitable for application 
scenarios that require fast real-time object detection, such as 
autonomous driving [9], video surveillance [10], and drone 
monitoring [11]. YOLOv8 inherits the structural concept of 
YOLOv5 [12] and is mainly composed of three parts: the 
backbone network, the neck network, and the head network. 

YOLOv8 preprocesses images using mosaic augmentation, 
adaptive anchor box calculation, and adaptive grayscale 
padding. It employs an anchor-free approach to directly predict 
object centers, thereby improving the speed of Non-Maximum 
Suppression (NMS) [13]. The backbone is responsible for 
extracting image features and primarily consists of modules 
such as Conv, C2f, and SPPF. The neck section integrates and 
transmits features using a Path Aggregation Network (PAN) 
structure [14]. The head is responsible for object detection and 
classification tasks, including a detection head and a 
classification head. Loss computation is divided into two parts: 
classification loss and regression loss. The classification loss is 
trained using Binary Cross-Entropy Loss (BCE Loss), while 
the regression loss combines Distribution Focal Loss (DF 
Loss) and CIoU Loss. 

YOLOv8 is divided into five different sizes, namely n, s, 
m, l, and x, according to the depth and width of the network. 
Taking into comprehensive consideration the size and 
complexity of the algorithm, this paper selects YOLOv8n as 
the baseline algorithm for improvement. 

B. Reading Recognition of Word-Wheel Water Meters 

To improve the reading recognition accuracy of word-
wheel water meters and enhance the representation of 
transitional characters, Cai et al. [15], proposed an efficient 
automatic meter localization and recognition method. First, 
they performed a coarse-to-fine detection of the entire meter to 
locate the reading region. Then, they used a projection-based 
method to segment the reading area, and finally, a BP neural 
network was employed to recognize the segmented meter 
region. Jawas et al. [16], localized the meter using contour 
information, segmented the reading region, and then applied 
OCR technology to recognize the meter characters. Chen et al. 
[17], used an improved U-Net network to locate the dial's 
reading region in large-scale water meter images. They then 
segmented individual characters based on the structural 
features of the dial and finally performed reading recognition 
using an improved VGG16 network. Men et al. [18], proposed 
a water meter reading recognition region segmentation method 
based on an improved U~2-Net. They designed a modified 
Double-RSU module based on the RSU module, which 
increases the depth and complexity of the network, thereby 
enhancing the model's generalization ability and robustness. 

To improve recognition efficiency and achieve rapid 
acquisition of water consumption data, Li et al. [19], proposed 
a novel lightweight concatenated convolutional network. This 
network replaces a certain number of standard 3×3 convolution 
operations with 1×1 convolutions, resulting in a more efficient 
and lightweight network with better overall performance. Zou 
et al. [20], utilized a geometric method to perform rotational 
correction on water meter images and then employed the 
WDPDet network to identify the reading region of the water 
meter. This network is capable of handling complex and 
variable scenes. Zhang et al. [21], applied homography 
transformation to geometrically correct the deformed reading 
region. In the transformation stage, new recognition markers 
and probability vectors were added between each digit to 
address the issue of digit rotation. Li et al. [22], adopted an 
improved YOLOv4 object detection algorithm for reading 
recognition, expanding the receptive field and reducing the loss 
of original information by introducing a focus structure. 
Additionally, they enhanced the network’s ability to fuse multi-
scale features and improved the representation of transitional 
characters by constructing cross-stage partial connection 
modules. Wang et al. [23], proposed the GMS-YOLO 
algorithm for water meter reading recognition, replacing 
standard convolutions in the C2f module with Grouped Multi-
Scale Convolution (GMSC) to enable the model to acquire 
receptive fields at different scales, thereby enhancing its 
feature extraction capability. Moreover, they integrated the 
Large Separable Kernel Attention (LSKA) mechanism into the 
SPPF module to improve the perception of small-scale 
features. Finally, the SIoU bounding box loss function was 
used instead of CIoU, strengthening the model’s object 
localization ability and accelerating convergence speed. 
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Although the above-mentioned methods have made 
significant progress in the research of word-wheel water meter 
reading recognition, they still face the following challenges. 

Due to environmental factors and changes in shooting 
angles, the proportion of effective characters in water meter 
images is relatively small, and image distortion may occur. 
This leads to a decrease in recognition accuracy, and 
sometimes false detections and missed detections may also 
occur. In order to improve the detection ability of small object 
characters and distorted characters, we have integrated shift-
wise conv based on the inverted residual mobile block (iRMB) 
[24] and designed a lightweight and efficient C2f-iRMBS 
module. It can extract the feature information of water meter 
characters more efficiently. 

Deep learning algorithms rely on stacked multi-layer 
convolutional networks, which have complex structures and 
require a large amount of computational resources. To reduce 
the size of the model, we have introduced the Slim-Neck [25] 
structure into the neck network. The GSConv module and the 
VoVGSCSP module can simplify the network structure, reduce 
the computational complexity of the network, and improve the 
reading efficiency of word-wheel water meters. 

In order to solve the problem of overlapping detection 
boxes of water meter characters, accelerate the training 
efficiency of the model and improve the convergence speed of 
the model, the Inner-EIoU loss function is used to replace the 
complete intersection over union loss (CIoU loss). This 
enhances the model's ability to locate dense characters. 

III. PROPOSED ALGORITHM 

A. Meter-YOLOv8n 

Aiming at the problems of low accuracy, false detections, 
and missed detections that occur in the practical application of 
deep learning algorithms, this paper proposes a detection 
algorithm named Meter-YOLOv8n, which is specifically 
designed for the task of identifying the readings of word-wheel 
water meters. 

The design objectives of the Meter-YOLOv8n algorithm 
are twofold: firstly, in real-world scenarios, it aims to improve 
the detection accuracy of both the complete characters and 
transitional characters on water meters. Secondly, it seeks to 
reduce the computational complexity of the algorithm so that it 
can be deployed in more environments. The network structure 
of Meter-YOLOv8n is shown in Fig. 1. 

 

Fig. 1. Network structure of Meter-YOLOv8n.

B. C2f-iRMBS 

1) iRMB: In the task of object detection, the attention 

mechanism can help the algorithm improve its efficiency and 

accuracy when dealing with complex data. In the images of 

word-wheel water meters, the background occupies a large 

proportion, and there are relatively many small object 

characters that need to be detected. iRMB is a lightweight 

attention mechanism designed for small object tasks, taking 

into account the advantages of both dynamic global modeling 

and static local information fusion. iRMB can better capture 

the feature information of the objects to adapt to objects of 

different scales. Moreover, it can effectively increase the 

receptive field of the model and enhance the model's ability for 

downstream tasks. The structure of iRMB is shown in Fig. 2. 

Firstly, the combined multi-layer perception (CMLP) is 
used to generate the attention matrices Q and K. A dilated 
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convolution is employed to generate the attention matrix V. 
Then, the window self-attention mechanism is applied to Q and 
K for long-range interaction. Immediately afterwards, a 
depthwise separable convolution (DWConv) is utilized to 
model the local features. Finally, a compression convolution is 
used to restore the number of channels, which is then added to 
the input to obtain the final result. 

 

Fig. 2. Structure of iRMB. 

2) Shift-wise conv: The process of the shift-wise operation 

is shown in Fig. 3. 

 

Fig. 3. Schematic diagram of shift-wise conv. 

Large-kernel convolution can efficiently capture features in 
a larger scope, which helps understand the global structure and 
relationships in the input data. However, the large convolution 

kernel of large-kernel convolution results in poor ability of the 
algorithm to process detailed information. Moreover, large-
kernel convolution needs to process a larger input data range, 
so the computational complexity increases, leading to longer 
training and inference times. To address the above issues, this 
paper adopts a shift-wise operation. By means of the sparsity 
mechanism, it ensures that the convolutional neural network 
(CNN) can capture both long-and short-range dependencies, 
enabling small convolution kernels to capture global features 
more efficiently. 

3) C2f-iRMBS: Word-wheel water meters are often 

installed underground or in remote corners, and they are 

affected by unfavorable factors such as dust, light, and water 

mist. When reading the word-wheel water meters in real-world 

scenarios, there are problems such as image deformation and 

the easy loss of object information. Based on iRMB, this paper 

integrates shift-wise conv to construct a new module, iRMBS, 

and combines it with C2f to design the novel C2f-iRMBS 

module, as shown in Fig. 4. In the iRMBS module, shift-wise 

conv is used to optimize the ordinary convolution, enabling the 

model to capture global features more efficiently, better learn 

information such as the scale of the object and the background, 

and reduce the number of parameters while improving the 

detection performance. 

The improved C2f-iRMBS module is used to replace the 
C2f in the backbone network, so that the network can correctly 
capture the key information of the features such as the small 
size and occlusion of the water meter characters even in 
complex and changeable real-world scenarios, and it has 
stronger robustness and generalization ability. 

 

Fig. 4.  Structure of C2f-iRMBS. 

C. Slim-Neck Structure 

YOLOv8n employs FPN and PAN structures for feature 
fusion. However, generating multi-scale feature maps using 
FPN and PAN requires multiple convolution and upsampling 
operations, which increases computational cost and demands 
more memory to store these feature maps, ultimately slowing 
down inference speed. Additionally, FPN and PAN structures 
can lead to incomplete transmission of feature information 
across different levels, particularly causing information loss or 
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blurring during cross-layer information aggregation, which 
negatively impacts the detection performance for small objects. 
To reduce model complexity while maintaining accuracy, this 
paper introduces the Slim-Neck structure in the neck network, 
replacing the Conv and C2f modules with GSConv and 
VoVGSCSP modules. 

1) GSConv: In the neck layer, the GSConv is used. At this 

stage, the channel dimension C  has reached its maximum 

value, while the height H  and width W  have reached their 

minimum values. As a result, there is minimal redundant 

information, and no compression is needed. The structural 

diagram of the GSConv is shown in Fig. 5. 

 

Fig. 5. Structure of GSConv. 

In the GSConv, the input feature map 1F  undergoes 

downsampling through a 3×3 convolution to obtain the feature 

map 2F . Then, 2F  passes through a depthwise convolution 

(DWConv) to produce the feature map 3F . Next, 2F  and 3F  are 

concatenated along the channel dimension to form a new 

feature map 4F . Finally, a Shuffle operation is performed, 

returning an output 5F  with reordered channels. The 

computation formula for GSConv is shown in Eq. (1). 

2 2 21 /2, 1 /2( ( ( ) ( ( ) )))GCS C C CF Shuffle Cat F F  
       (1) 

In Eq. (1), 1F  represents the input feature map with 1C  

channels,   denotes the convolution operation,   represents 

the depth wise convolution operation, and GCSF  represents the 

output feature map with 2C  channels obtained through the 

GSConv. 

2) VoVGSCSP: VoVGSCSP utilizes grouped spatial 

context supervision to better capture character information at 

different scales in water meter images, thereby improving 

detection accuracy. The structure of VoVGSCSP is shown in 

Fig. 6. 

Firstly, a 1×1 conv is applied to the input feature map with 
a channel size of 1C for feature extraction, reducing the channel 

dimension to half of the original input. The resulting feature 
map is then fed into the GS Bottleneck. The GS Bottleneck 
follows the residual network concept, where the input feature 
map undergoes two GSConv operations. The output is then 
concatenated with the feature map obtained through a 1×1 
convolution, producing the module’s output. Finally, 
VoVGSCSP concatenates the branch output with the GS 
Bottleneck output and applies a 1×1 convolution to obtain a 

feature map with a channel dimension of 2C . The computation 

formula for VoVGSCSP are shown in Eq. (2) and Eq. (3). 

2 11 1 /2( ( ( ) )) ( )out GSC GSC C CGSB F F F F  
        (2) 

1( ( , ( )))out outVoVGSCSP Concat GSB F 
          (3) 

In Eq. (2) and Eq. (3), 1F  represents the input feature map 

with 1C  channels,   represents the convolution operation, 

outGSB denotes the output of the GS Bottleneck module, and 

out
VoVGSCSP  represents the final output of this module. 

 

Fig. 6. Structure of VoVGSCSP. 

D. Inner-EIoU 

In the task of recognizing readings from word-wheel water 
meters, accurately locating water meter characters is essential, 
including predicting the coordinates of bounding boxes and the 
positions of center points. Choosing an appropriate bounding 
box loss function ensures that the model can precisely predict 
character locations, thereby improving detection accuracy and 
localization precision. 

The YOLOv8n model uses CIoU as the bounding box 
regression loss function. However, CIoU involves numerous 
parameters and has a high computational cost, making it less 
effective in precisely localizing highly overlapping detection 
boxes. To enhance training efficiency and convergence 
accuracy, this paper adopts Inner-EIoU as the bounding box 
regression loss function. Inner-EIoU introduces a scale factor 
ratio, which controls the size of an auxiliary bounding box for 
loss computation. The auxiliary bounding box is shown in Fig. 
7. 

gtb  and b  represent the ground truth box and the predicted 

box, respectively. 
( , )gt gt

c cx y
 denotes the centroid coordinates of 

the ground truth box, 
( , )c cx y

 denotes the centroid coordinates 

of the predicted box. 
gtw  and 

gth  represent the width and 

height of the ground truth box, respectively, while w  and h  
represent the width and height of the predicted box, 
respectively. 
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Fig. 7. Auxiliary bounding box drawing.

The calculation formula of Inner-EIoU is shown in Eq. (4). 

inner

Inner EIoU EIoUL L IoU IoU   
          (4) 

In Eq. (4), EIoUL  represents the EIoU loss function, IoU 

represents the intersection over union ratio between the 
predicted bounding box and the ground truth bounding box, 

and the definition of innerIoU  is shown in Eq. (5). 

inner inter
IoU

union


                           
(5) 

The ratio is the scale factor for generating the auxiliary 
bounding box, and its value range is usually [0.5, 1.5]. The 
definitions of inter and union are shown in Eq. (6) and Eq. (7). 
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The definitions of 
gt

lb , gt

rb , 
gt

tb , 
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bb , lb , rb , tb  and bb  are 

shown in Eq. (8) to Eq. (11).
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            (11) 

Inner-EIoU takes into account not only the overlapping 
area but also geometric information such as the distance and 
angle between the predicted bounding box and the ground truth 
bounding box. This enables the model to adjust the position 
and orientation of the predicted bounding box more precisely 
during the training process, improving the detection accuracy 
for small objects, dense objects, and objects with irregular 
shapes. 

IV. DATASET AND EXPERIMENTAL DESIGN 

A. Dataset 

In this experiment, the dataset publicly available in the 
CCF Big Data and Computational Intelligence Contest is 
adopted. It is named the Automatic Water Meter Reading 
dataset in Real-world Scenarios. To improve the generalization 
ability of the dataset, and while ensuring that the water meter 
reading area can be recognized, this paper uses seven different 
data augmentation methods combined randomly to enhance the 
images in the dataset. The seven data augmentation methods 
used in the experiment are: 1) adding Gaussian noise; 
2) changing the color temperature; 3) setting random 
brightness; 4) applying Gaussian blur; 5) random cropping and 
padding; 6) random rotation between -45° and +45°; 7) random 
scaling. The augmented dataset consists of a total of 3680 
images with a size of 960×540 pixels. Some images from the 
dataset are shown in Fig. 8. 

We used the LabelImg image annotation software to 
annotate the valid characters in water meter images. During the 
annotation process, we observed that the characters in the 
reading area might be in a transitional state. To achieve more 
precise readings, we introduced 10 new labels to represent 
transitional characters based on the complete characters. The 
annotated content includes 20 labels, ranging from "0" to "19", 
where "0 to 9" represent complete characters and "10 to 19" 
represent transitional characters. The individual characters of 
the water meter and their corresponding labels are shown in 
Fig. 9. The dataset was divided into training, testing, and 
validation sets in a 7:1:2 ratio for the experiments. 
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Fig. 8. Example diagram of the dataset. 

 

Fig. 9. The label corresponding to a single character in the dataset. 

B. Evaluation Metrics 

In the experiment of this paper, precision (P), recall (R), 
mAP@0.5 and mAP@0.5:0.95 are used to measure the reading 
recognition performance of the improved algorithm for the 
word-wheel water meter. 

Precision refers to the proportion of actual positive samples 
among all the samples predicted as positive. Recall refers to the 
proportion of samples that are correctly predicted as positive 
among all the actual positive samples. The calculation formulas 
are shown in Eq. (12) and Eq. (13). 

FPTP

TP
P




                       (12) 

FNTP

TP
R




                      (13) 

TP(True positive) represents the number of samples that are 
actually positive and predicted as positive, FP(false positive) 
represents the number of samples that are actually negative but 
predicted as positive, and FN(false negative) represents the 
number of samples that are actually positive but predicted as 
negative. 

mAP represents the mean average precision. mAP@0.5 is 
calculated by computing the average precision of each category 
when the Intersection over Union (IoU) threshold is 0.5, and 
then taking the average of the average precisions of all 
categories. mAP@0.5:0.95 represents the average mAP at 

different IoU thresholds (ranging from 0.5 to 0.95 with a step 
size of 0.05), which is used to evaluate the detection 
performance of the model. The higher the mAP value is, the 
better the performance of the algorithm in the task of 
identifying the word-wheel water meter. The calculation 
formula are shown in Eq. (14) and Eq. (15). 






N

1

AP
N

1
mAP

i

i

                         (14) 

d(R)(R)PAP
1

0 ii

                      (15) 

FLOPs (Floating-Point Operations) refer to the number of 
floating-point operations, which is an important indicator for 
measuring the computational complexity and computational 
workload of deep learning models. Through the value of 
FLOPs, one can intuitively understand the computational 
complexity of the model. The larger the FLOPs value is, it 
indicates that the model needs to perform more floating-point 
operations during operation, the computational cost is higher, 
and it may require more computational resources and longer 
computation time. 

C. Experimental Environment 

The CPU of the experimental operating environment is an 
Intel(R) Xeon(R) Platinum 8255C 2.50GHz 12-core processor, 
with 43GB of memory. The GPU is an NVIDIA RTX 3090, 
and the video memory is 24GB. The operating system is 
Ubuntu 20.04, and the acceleration environment is CUDA 
11.3. The programming language is Python 3.8, and the deep 
learning framework is Pytorch 1.11.0. The experimental 
parameter settings are shown in Table I: 

TABLE I.  PARAMETERS OF THE EXPERIMENT 

Parameter Name Parameter Value 

Input resolution 640×640 

Epochs 230 

Batch size 8 

Initial learning rate (Lr0) 0.01 

Weight_decay 0.0005 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to verify the effectiveness of the improved 
algorithm, this paper conducts comparative experiments and 
ablation experiments on the dataset of word-wheel water 
meters. During the training process, the same experimental 
equipment and experimental parameters are adopted, and the 
obtained experimental results are compared and analyzed. 

A. Performance Comparison Before and After the Algorithm 

Improvement 

In this paper, the original YOLOv8n algorithm and the 
improved algorithm Meter-YOLOv8n were used to train on the 
same dataset of word-wheel water meters, resulting in the 
YOLOv8n model and the Meter-YOLOv8n model. The 

Image:

Label: 0 1 2 3 4 5 6 7 8 9

Image:

Label: 10 11 12 13 14 15 16 17 18 19

(b) Transitional characters

(a) Complete characters
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changing trends of various evaluation indicators during the 
training process are shown in Fig. 10. Compared with the 
YOLOv8n model, the improved Meter-YOLOv8n model has 
improvements in multiple evaluation indicators, which proves 
the superiority of the Meter-YOLOv8n model. 

As can be seen from Fig. 10, the improved model 
converges faster, indicating that the improved module 
effectively reduces the computational cost and resource 
consumption. The design of the improved model structure is 
more reasonable, enabling the model to perform better in the 
task of identifying the readings of word-wheel water meters. 
Compared with the original model, the improved model has 
improvements in precision, recall, and mAP, and the improved 
model also converges faster. 

 

Fig. 10. The changing trends of various indicators before and after the 

algorithm improvement. 

In order to explore the specific improvements of the 
improved model on the complete characters and transitional 
characters in the dataset, an experimental comparison is 
conducted between the improved model and the original 
YOLOv8n model. The experimental results of these two 
models on the test dataset of word-wheel water meters are 
shown in Table II. 

TABLE II.  TEST RESULTS OF THE MODEL BEFORE AND AFTER THE 

IMPROVEMENT 

Model Class P(%) R(%) 
mAP@ 

0.5(%) 

mAP@ 

0.5:0.95(%) 

YOLOv8n 

Complete 
characters 

95.5 88.6 95.3 81.5 

Transitional 

characters 
91.9 85.8 90.5 74.1 

All 93.7 87.2 92.9 77.8 

Meter- 

YOLOv8n 

Complete 
characters 

96.1 90.2 97.0 83.5 

Transitional 

characters 
94.7 88.0 95.6 76.7 

All 95.4 89.1 96.3 80.1 

Table II compares the performance of the model before and 
after the improvement. Based on the experimental results of the 
two categories, namely complete characters and transitional 
characters, it can be concluded that the improved model has 
improvements in all indicators. The mAP@0.5 and 
mAP@0.5:0.95 of complete characters have increased by 1.7% 
and 2.0% respectively, while the mAP@0.5 and 
mAP@0.5:0.95 of transitional characters have increased by 
5.1% and 2.6% respectively. The improvement range of 
various indicators of transitional characters is relatively large, 
indicating that the improved model has enhanced the 
expressive ability for transitional characters. 

B. Comparative Experiments of the C2f Module 

In order to improve the feature extraction ability of the 
backbone network and simplify the feature extraction process, 
this paper proposes several different improvement schemes for 
the C2f module, which are as follows: 1) Use the original C2f 
module. 2) Replace the convolution module in the Bottleneck 
structure of C2f with ODConv, named C2f-ODConv. 3) Add 
the attention mechanism in CloFormer that fuses global and 
local features to the Bottleneck of C2f, named C2f-CloAtt. 4) 
Integrate SCConv into the C2f module, named C2f-SCConv. 5) 
Replace the Bottleneck in C2f with Dilated Re-parameterized 
Block module from UniRepLKNet, named C2f-DRB. 6) 
Replace the Bottleneck in C2f with the Diverse Branch Block, 
named C2f-DBB. 7) Introduce the Faster Block module into 
the C2f module, named C2f-Faster. 8) Combine the iRMB 
attention mechanism and shift-wise conv to obtain the 
lightweight C2f-iRMBS module, and replace the Bottleneck 
structure in C2f with it, named C2f-iRMBS. These 
improvement strategies are trained using the same dataset 
under the same experimental environment. The experimental 
results are shown in Table III. 

TABLE III.  EXPERIMENTAL RESULTS OF DIFFERENT C2F MODULES 

Model mAP@0.5(%) Params(M) FLOPs(G) 

C2f 92.9 3.15 8.7 

C2f-ODConv [26] 92.3 3.07 5.8 

C2f-CloAtt [27] 94.7 3.77 9.3 

C2f-SCConv [28] 93.6 3.96 9.5 

C2f-DRB [29] 90.6 2.60 6.4 

C2f-DBB [30] 93.1 4.28 11.2 

C2f-Faster [31] 94.2 2.71 6.7 

C2f-iRMBS 94.4 2.72 6.7 

As can be seen from Table III, C2f-ODConv significantly 
reduces the computational complexity and improves the 
computational efficiency. However, the mAP@0.5 drops by 
0.6%, indicating that C2f-ODConv needs to strike a balance 
between computational complexity and mAP. C2f-CloAtt 
increases the mAP@0.5 to 94.7%, but the FLOPs increase 
significantly, raising the requirements for computational 
resources. C2f-SCConv improves the mAP of the model, but it 
also suffers from the problem of excessive reliance on 
computational resources, which is not conducive to practical 
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applications. C2f-DRB reduces the FLOPs, but the mAP@0.5 
also drops, degrading the detection performance of the model. 
C2f-DBB has excessively high computational complexity and 
FLOPs, with mediocre overall performance. Both C2f-Faster 
and C2f-iRMBS improve the mAP of the model and reduce the 
number of parameters and FLOPs. This proves that C2f-Faster 
and C2f-iRMBS can well balance the relationship between 
computational complexity and mAP. Compared with other 
improvement strategies, C2f-iRMBS increases the mAP by 
1.5% and reduces the number of parameters and FLOPs by 
0.43M and 2.0G respectively. It can improve the detection 
accuracy and efficiency of word-wheel water meters and is 
more suitable for the task of word-wheel water meter reading 
recognition. 

C. Comparative Experiments of different Loss Functions 

In order to verify the impact of different loss functions on 
the model's detection performance, this paper conducts 
comparative experiments using models with several bounding 
box loss functions, namely CIoU, SIoU, EIoU, and Inner-
EIoU. The ratio values of Inner-EIoU are set to 0.7, 0.8, 0.9, 
and 1.1 respectively. The experimental results are shown in 
Table IV. 

TABLE IV.  EXPERIMENTAL RESULTS OF DIFFERENT LOSS FUNCTIONS 

Loss 

function 
ratio P/% R/% mAP@0.5/% 

CIoU - 93.7 87.9 92.9 

SIoU - 93.6 86.5 92.6 

EIoU - 94.0 88.1 93.1 

Inner-EIoU 0.7 94.3 88.2 93.2 

Inner-EIoU 0.8 94.6 88.3 93.3 

Inner-EIoU 0.9 94.7 88.6 93.7 

Inner-EIoU 1.1 94.4 88.2 93.4 

From the experimental results in Table IV, it can be seen 
that when Inner-EIoU is selected as the loss function of the 
model, the detection performance is the best. When the ratio is 
set to 0.9, precision, recall, and mAP@0.50 achieve the 
optimal values. Therefore, Inner-EIoU is selected as the 
bounding box loss function in this paper, and the ratio is set to 
0.9. 

D. Ablation Experiment 

In order to verify the contribution of the improved module 
to the improved model, an ablation experiment was conducted 
on the dataset of word-wheel water meters. By gradually 
introducing the improved module and evaluating the 
performance of the model, the results of the ablation 
experiment are shown in detail in Table V. YOLOv8n 
represents the baseline model. YOLOv8n-C represents 
YOLOv8n + C2f-iRMBS. YOLOv8n-S represents YOLOv8n 
+ Slim-Neck. YOLOv8n-CS means YOLOv8n + C2f-iRMBS 
+ Slim-Neck. Meter-YOLOv8n represents YOLOv8n + C2f-
iRMBS + Slim-Neck + Inner-EIoU. 

The baseline model, YOLOv8n, achieves a precision of 
93.7%, a recall of 87.9%, a mAP@0.5 of 92.9%, and a 
mAP@0.5:0.95 of 76.8%. It has 3.15M parameters, 8.7G 
FLOPs, a model size of 6.3M, and an FPS of 83 F/S. Overall, 
its performance is average. After introducing C2f-iRMBS, 
mAP@0.5 and mAP@0.5:0.95 improved by 1.5% and 0.7%, 
respectively, while the number of parameters and FLOPs 
decreased by 0.43M and 2.0G, respectively. This indicates that 
C2f-iRMBS enhances the detection performance by capturing 
richer character feature maps through branch structures and 
shift operations while reducing model parameters and 
computational cost. 

With the Slim-Neck structure improving the neck network, 
mAP@0.5 and mAP@0.5:0.95 increased by 1.2% and 0.4%, 
respectively, while parameters and FLOPs decreased by 0.14M 
and 1.6G, respectively. This suggests that Slim-Neck 
effectively integrates features across different scales and levels, 
improving detection efficiency. 

When both C2f-iRMBS and Slim-Neck are introduced 
simultaneously, mAP@0.5 and mAP@0.5:0.95 increased by 
3.0% and 2.8%, respectively, while parameters and FLOPs 
decreased by 0.57M and 2.6G, demonstrating their strong 
compatibility. This enables the model to better balance 
detection performance and computational cost. 

By integrating all modules, the resulting Meter-YOLOv8n 
model achieves an accuracy of 95.4%, a recall of 89.1%, a 
mAP@0.5 of 96.3%, and a mAP@0.5:0.95 of 80.1%. It has 
2.59M parameters, 6.1G FLOPs, a model size of 5.6M, and an 
FPS of 87 F/S. Experimental results confirm that Meter-
YOLOv8n enhances the detection performance of word-wheel 
water meters while maintaining a lightweight design, with each 
improvement module playing a positive role. 

TABLE V.  RESULTS OF ABLATION EXPERIMENT 

Model 
P 

(%) 

R 

(%) 

mAP@0.5 

(%) 

mAP@0.5:0.95 

(%) 

Params 

(M) 

FLOPs 

(G) 

Size 

(MB) 

FPS 

(F/S) 

YOLOv8n 93.7 87.9 92.9 76.8 3.15 8.7 6.3 83 

YOLOv8-C 94.7 88.2 94.4 77.5 2.72 6.7 5.8 85 

YOLOv8n-S 94.1 88.0 94.1 77.2 3.05 8.1 6.1 84 

YOLOv8n-CS 95.3 89.1 95.9 79.6 2.58 6.1 5.6 87 

Meter-

YOLOv8n 
95.4 89.1 96.3 80.1 2.59 6.1 5.6 87 

mailto:mAP@0.5
mailto:mAP@0.5:0.95
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E. Comparative Experiment 

To verify the detection performance of the improved 
algorithm on the word-wheel water meter, the improved 
algorithm was compared with the currently popular single-
stage and two-stage algorithms, specifically including Faster 
R-CNN, DETR, YOLOv3, YOLOv4, YOLOv5s, YOLOv7-
tiny, YOLOv8s, YOLOv8n, YOLOv10n and YOLOv11n. The 
comparison results are shown in Table VI. 

According to the experimental results in Table VI, the 
number of parameters, FLOPs, and model size of the Faster R-
CNN, YOLOv3, and DETR algorithms are too large, and their 
detection performance is mediocre. Therefore, their application 
in real-world scenarios is somewhat limited. The YOLOv4 
algorithm has relatively high computational complexity and 
requires more computational resources, so it is not suitable for 

the task of word-wheel water meter reading recognition. The 
YOLOv7-tiny algorithm strikes a balance among performance, 
computational load, and model size, but its overall 
performance is just average. YOLOv5s and YOLOv8n have 
similar performance, but the model size and computational 
load of YOLOv5s are larger than those of YOLOv8n. The 
YOLOv10n and YOLOv11n algorithms have fewer parameters 
and FLOPs, but their detection performance is not satisfactory. 
The recognition accuracy and mAP of YOLOv8s are slightly 
higher than those of YOLOv8n, but its model size is more than 
three times that of YOLOv8n, leading to difficulties in 
deployment. Compared with other models, Meter-YOLOv8n 
has the highest mAP. Although its number of parameters is 
slightly higher than that of YOLOv10n, its FLOPs and model 
size are lower. Thus, it can quickly and accurately read the 
readings of word-wheel water meters in resource - constrained 
environments.

TABLE VI.  RESULTS OF COMPARATIVE EXPERIMENT 

Model P (%) R(%) mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) FLOPs (G) Size (MB) FPS (F/S) 

Faster R-CNN 92.8 86.1 90.9 75.7 43.95 133.6 106.2 37 

DETR [32] 93.5 86.9 92.3 76.8 42.30 122.3 113.3 38 

YOLOv3 [33] 82.3 73.1 85.6 69.7 10.33 45.6 78.6 45 

YOLOv4 [34] 92.9 86.1 91.1 76.2 9.96 33.7 32.9 65 

YOLOv5s 93.8 87.7 92.9 77.1 9.12 23.2 18.6 72 

YOLOv7-tiny 92.6 86.0 90.7 75.6 6.01 12.8 14.1 75 

YOLOv8s 94.0 88.1 93.1 77.1 11.1 28.5 42.1 62 

YOLOv8n 93.7 87.9 92.9 76.8 3.15 8.7 6.3 83 

YOLOv10n [35] 92.1 85.6 90.3 75.3 2.58 7.8 5.9 85 

YOLOv11n [36] 92.0 85.3 90.1 74.9 2.60 6.3 5.8 85 

Meter-YOLOv8n 95.4 89.1 96.3 80.1 2.59 6.1 5.6 87 
 

F. Visual Analysis 

1) Dataset visualization: The label distribution diagram 

after training on the word-wheel dataset is shown in Fig. 11. 

 

Fig. 11. Dataset visualization. 

From the bar chart, it can be seen that the number of 
samples in the "0" category is the largest, exceeding 3000. The 
number of samples of complete characters "1 to 9" is around 
500, and the number of samples of transitional characters "10 
to 19" is relatively small, approximately 250. From the x-y 
density plot and the width - height density plot, it can be seen 
that most of the object center points are concentrated near (0.5, 
0.5), forming an obvious dense area and exhibiting the 
characteristics of a Gaussian distribution. The width and height 
of most objects are relatively small, concentrated between 0.05 
and 0.15. From the overlapping box plot, it can be seen that 
most of the objects are located in the central area of the image, 
and the distribution of the bounding boxes is relatively 
symmetric. 

2) Heatmap visualization: In order to more precisely 

observe the degree of attention paid by the model to the 

effective characters of the water meter before and after the 

improvement, this paper uses Gradient-weighted Class 

Activation Mapping (Grad-CAM) to generate heatmaps for the 

YOLOv8n model and the improved model Meter-YOLOv8n. 

Grad-CAM plays a crucial role in the field of model 

interpretability. It enables researchers to determine whether the 

mailto:mAP@0.5
mailto:mAP@0.5:0.95
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model accurately focuses on the correct image features related 

to the recognition of water meter readings when processing 

images. By observing the different colored areas in the 

heatmaps, we can determine the contribution degree of 

different regions in the water meter image to the prediction 

results. The red and yellow areas indicate a higher contribution 

degree to the prediction results, the green areas indicate a lower 

contribution degree to the prediction results, and the blue areas 

indicate no contribution to the prediction results. The heatmaps 

before and after the model improvement are shown in Fig. 12. 

 

Fig. 12. Heatmap visualization. 

By comparing Fig. 12(b) and Fig. 12(c), it can be seen that 
the YOLOv8n model pays more attention to the edge 
information of the effective characters, which leads to a 
decrease in the recognition accuracy of the water meter by the 
model. As shown in Fig. 12(e), when the water meter image is 
affected by noise, the YOLOv8n model reduces its attention to 
the effective characters, and the blue area accounts for a 
relatively large proportion, resulting in situations of missed 
detection and false detection by the model. As shown in Fig. 
12(f), the improved model focuses more on the character 
information on the dial and suppresses the interference of other 
invalid characters on the dial. By observing the heatmap 
generated by Grad-CAM, it can be known that, compared with 
the YOLOv8n model, the image areas that the improved model 
focuses on when making decisions are more comprehensive, 
which improves its detection ability for complete characters 
and transitional characters. 

3) Results visualization: In order to more intuitively 

demonstrate the detection performance and generalization 

ability of the improved model, models with relatively good 

comprehensive performance are used to conduct inference 

verification on the validation set of word-wheel water meters. 

These models include YOLOv7-tiny, YOLOv10n, YOLOv8n, 

YOLOv8s, and the improved model Meter-YOLOv8n. The 

visualization of the experimental results is shown in Fig. 13. 

 

Fig. 13. Result visualization.
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In the absence of interference, YOLOv7-tiny and 
YOLOv10n can correctly recognize the complete characters on 
the word-wheel water meter, but they perform poorly in 
recognizing transitional characters. When the image is affected 
by unfavorable factors such as lighting and noise, the 
recognition accuracy of YOLOv7-tiny and YOLOv10n drops 
significantly, and YOLOv7-tiny experiences false detections 
and repeated detections. YOLOv10n, YOLOv8n, and 
YOLOv8s can accurately recognize both the complete 
characters and transitional characters of the water meter in an 
interference-free environment. However, when the image is 
affected by environmental interference, the recognition 
accuracy of these models for characters decreases, especially 
for transitional characters. The improved model Meter-
YOLOv8n can accurately recognize both the complete 
characters and transitional characters of the word-wheel water 
meter in different environments, and it has the highest 
recognition accuracy, fully verifying the detection performance 
and generalization ability of the improved model Meter-
YOLOv8n. 

VI. CONCLUSION 

This paper proposes a high-accuracy and lightweight word-
wheel water meter reading recognition model, Meter-
YOLOv8n, and introduces multiple improvements tailored to 
the characteristics of water meter images. The C2f-iRMBS 
module is introduced to replace the original C2f, simplifying 
the feature extraction network while enhancing the model’s 
ability to extract character information from water meters. To 
address the challenges of small object features being indistinct 
and highly similar to the background in water meter images, a 
Slim-Neck module is incorporated to enhance multi-scale 
feature fusion of small objects, thereby improving detection 
accuracy. Additionally, the Inner-EIoU loss function replaces 
the original CIoU loss function, enhancing the performance of 
bounding box regression. Through comparative experiments, 
ablation studies, and visualization analysis, the improved 
model achieves a 3.4% increase in mAP@0.5 compared to the 
original model, while reducing the number of parameters by 
0.56M and FLOPs by 2.6G. The proposed improvements 
achieve a better balance between detection accuracy and model 
complexity. The Meter-YOLOv8n model has improved the 
recognition accuracy of word-wheel water meters while 
reducing the computational load and model size. It is more in 
line with the characteristics of edge devices, which have 
limited resources but require high detection accuracy. This has 
laid a solid foundation for its deployment on edge devices. 

In future work, we will collect more images of word-wheel 
water meters from different brands and environments, and 
increase the number of transitional characters in the dataset. 
We will take the actual deployment on low-power edge 
hardware such as Raspberry Pi or NVIDIA Jetson Nano. 
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