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Abstract—To address the computational redundancy and 

robustness limitations of industrial grasping models in complex 

environments, this study proposes a lightweight capture detection 

framework integrating Mobile Vision Transformer (MobileViT) 

and You Only Look Once version 6 (YOLOv6). Three innovations 

are developed: 1) A cascaded architecture fusing convolution and 

Transformer to compress parameters; 2) A multidimensional 

attention mechanism combining channel-pixel dual enhancement; 

3) A Pixel Shuffle-Receptive Field Block (PixShuffle-RFB) 

decoder enabling sub-pixel localization. Experiments demonstrate 

that the model achieves 0.88 detection accuracy with 66 Frames 

Per Second (FPS) in simulations and 90.04% grasping success rate 

in physical tests. The lightweight design reduces computational 

costs by 37% versus conventional models while maintaining 

93.54% segmentation efficiency (2.85 milliseconds inference). This 

multidimensional attention-driven approach effectively improves 

industrial robot adaptability, advancing capture detection 

applications in high-noise manufacturing scenarios. 

Keywords—Capture detection; YOLOv6; multidimensional 

attention; MobileViT; industrial robot; lightweight 

I. INTRODUCTION 

With the rapid growth of demand for industrial production 
automation, robots have become a key force driving 
productivity leaps and factory automation. Robot grasping 
detection technology combines machine vision with robots, and 
can improve object recognition and grasping efficiency on the 
production line through intelligent algorithms. According to the 
differences in grasping algorithm logic, robot grasping 
detection can be broken into rule-based grasping design and 
learning-based grasping design [1]. Rule-based grasping 
detection utilizes geometric models and physical properties to 
determine the optimal grasping point by analyzing object shape 
and force closure conditions [2]. Learning-based grasping 
detection relies on a large amount of data training to 
automatically learn object features and grasping strategies, 
adapting to unknown objects and complex environments [3]. 
However, with the increasingly complex production 
environment and processing tasks, traditional robot grasping 
and detection methods are no longer able to meet practical 
needs. For example, support vector machines have low 
efficiency in processing large-scale data and poor detection 
accuracy for complex shaped objects [4]. The random forest 
decision tree model is too large, resulting in poor real-time 
performance and making it difficult to deploy applications on 
embedded devices [5]. Gaussian mixture models are sensitive 

to initial parameters, have long training times, and are difficult 
to quickly adapt to environmental changes [6]. These issues 
seriously affect the accuracy and real-time performance of 
robot grasping. Therefore, the current industrial grasp detection 
faces a dual challenge: 1) the traditional model has insufficient 
feature discriminative power under complex background 
interference, leading to the accumulation of localization bias; 
2) there is a significant contradiction between real-time 
detection demand and model computational load, and it is 
difficult for the existing methods to balance accuracy and 
efficiency. This restricts the ability of automated production 
lines to efficiently process shaped workpieces, and there is an 
urgent need to establish a new paradigm of lightweight and 
highly robust gripping detection. 

In response to the above challenges, starting from the 
effective acquisition of object position and optimization of 
grasping pose, the research focuses on the basic logic and 
problems of single-stage real-time object detection algorithm 
You Only Look Once Version 6 (YOLOv6) and Multi-
Dimensional Attention Fusion Network (MDAFN) modules, 
and improves them by proposing a Lightweight YOLOv6 with 
MDAFN for Robotic Grasping Detection (L-YOLOv6-MA). 
The research aims to: 1) establish a lightweight feature 
extraction framework to solve the contradiction between real-
time performance and accuracy of traditional models; 
2) strengthen the feature discrimination ability for the complex 
texture interference problem; 3) realize sub-pixel level grasping 
bit-position estimation to provide an end-to-end solution with 
both high accuracy and low latency for dynamic industrial 
scenes. The innovations of the research are: 1) establishing 
Mobile Vision Transformer (MobileViT) and YOLOv6 hybrid 
architecture, realizing the complementary advantages of 
MobileViT and YOLOv6; 2) designing the channel-space dual-
domain attention mechanism to enhance the physical-semantic 
correlation of feature representations; 3) developing a multi-
scale receptive field decoder to overcome the problem of 
dynamic balance between the local features of the grasping 
point and the global context information, and providing a 
solution for industrial inspection and detection. The research is 
structured into four sections. The first section introduces the 
current research on the logic and algorithms of robot grasping 
detection worldwide. The second section starts from modules 
such as YOLOv6 and MDAFN to establish a precise and real-
time robot grasping detection model. The third section provides 
numerical examples and practical application analysis of the 
proposed algorithm model to verify its reliability. The final 
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section provides a comprehensive summary and analysis of the 
article. 

II. RELATED WORKS 

With the quick growth of information technology and the 
scaling up of various industries, the application of robots in 
fields such as workshop transportation and assembly line 
processing is showing a rapidly increasing trend. Robot 
grasping detection is the core of achieving factory automation 
and fine operations, and it is also an important application 
direction that smart industry needs to continuously expand and 
deepen. However, in practical work, the performance of robot 
grasping detection for complex tasks is not stable, so many 
researchers are improving this problem. Wang S et al. raised a 
Transformer-based robot vision grasping model for object 
feature capture and long-range dependency modeling. By 
combining local window attention mechanism to obtain local 
contextual information, the model could simultaneously handle 
local information and long-range visual concept relationships 
in complex scenes [7]. In response to the demand for grasping 
posture and quality evaluation in robot grasping tasks, Yu S et 
al. proposed a novel squeeze excitation residual U-shaped 
network, which combines residual blocks with channel 
attention mechanism to generate grasping postures and predict 
the quality score of each posture, improving grasping accuracy 
and time efficiency [8]. To address the issues of accurate and 
reliable estimation of grasping posture for complex shaped 
objects, Cheng H et al. designed a vision-based depth grasping 
detector, which uses a densely connected feature pyramid 
network and multiple two-stage detection units to achieve dense 
grasping posture, achieving accurate grasping posture detection 
and gripper opening measurement [9]. Jiang J et al. proposed a 
new framework for visually-guided tactile detection to solve the 
problem of robots grasping transparent objects. The 
segmentation network was utilized to predict the horizontal 
upper region on the transparent object as the detection area, 
which is detected by a high-resolution haptic sensor to obtain 
the precise contour, improving the detection accuracy and 
grasping success rate of the transparent object [10]. Aiming at 
the problem that industrial robotic arms lack high-precision 
visual recognition ability, Wu Y proposed a visual recognition 
optimization method based on neural network and Transformer 
model. By combining the feature extraction ability of the deep 
learning model and the attention mechanism, the object 
recognition and grasping localization accuracy of the robot 
could be improved, and the autonomous operation ability and 
adaptability of the robotic arm in industrial scenes could be 
enhanced [11]. 

In addition, for the problem of robot grasping pose 
estimation for complex objects in unstructured environments, 
Cheng H et al. proposed a novel depth model for anchorless 
fully convolutional grasping pose detection. The grasping pose 
was considered as a rotating bounding box on the image plane, 
and the six-channel image was directly output to represent the 
key points and geometric information of the grasping rectangle, 
which improved the accuracy and efficiency of the grasping 
detection [12]. Regarding the problem of robot grasping in 
chaotic scenes, Yu S et al. proposed a chaotic grasping network, 
which used a dual branch squeezing excitation residual network 

as the skeleton, utilized multi-scale features and refined the 
grasping area to improve the success rate of robot grasping in 
chaotic scene tasks [13]. Cao H et al. raised a novel grasping 
detection network to balance the accuracy and inference speed 
of deep learning models in general object grasping detection. 
The network used a grasping representation method based on 
Gaussian kernel to highlight the center point with the highest 
grasping confidence. By suppressing noise features and 
highlighting object features, the network improved the grasping 
success rate while ensuring the model running speed [14]. To 
solve the problem of significant object detection in robot visual 
perception under complex interference environment, Song K et 
al. raised a novel three mode image fusion strategy. By 
constructing an image acquisition system under variable 
lighting scenes, and using multi-level weighting to suppress 
interference, effective cross modal feature fusion was achieved, 
enabling the robot to quickly and accurately complete the target 
capture task [15]. Aiming at the problems of limited 2D 
grasping direction and poor real-time performance of 3D point 
cloud, Hui N M et al. proposed a grasping detection algorithm 
that fuses 2D image and 3D point cloud. An improved single-
stage multi-frame detector network is used to optimize the a 
priori frame scaling strategy to improve the target localization 
accuracy, and the target spatial position is extracted by the view 
cone transformation and point cloud segmentation algorithms, 
which improves the success rate and real-time performance of 
the capture, and reduces the time-consumption of the capture at 
the same time [16]. Aiming at the problem of differentiating 
color, shape and size for object sorting in industrial automation, 
Abdullah-Al-Noman M et al. proposed a robotic arm gripping 
system based on computer vision. Using PixyCMU camera and 
OpenCV image processing technology, combined with Arduino 
Mega controller and servo motor drive, the system realized 
multi-color object recognition and geometric feature detection. 
The system improved the color recognition accuracy and shape 
classification accuracy [17]. 

In summary, numerous researchers worldwide have noticed 
the problems that exist in robot grasping detection during 
operation and have conducted multiple research efforts to 
address these issues. However, the existing models have limited 
perception of multi-scale targets, rely on a single attention 
mechanism, and have insufficient global-local feature dynamic 
balancing ability, which restricts accurate grasping in industrial 
scenarios. In addition, accurate and real-time completion of 
robot grasping detection is a prerequisite for expanding the 
scale of robot use in environments such as factory workshops, 
and its importance is self-evident. However, in the above 
studies, there have been few optimizations focused on the 
computational complexity of model object detection and the 
noise processing of grasping detection. YOLOv6 has fast 
inference speed, high detection accuracy, and is suitable for 
various embedded platforms, with flexible deployment [18]. 
MDAFN can suppress noise, highlight object features, enhance 
target perception in complex backgrounds, and improve 
detection accuracy [19]. Therefore, based on YOLOv6 and 
MDAFN, combined with lightweight network MobileViT, 
Pixel Shuffle (PixShuffle), etc., an L-YOLOv6-MA robot 
grasping detection model is established. The research fuses 
lightweight YOLOv6 and MobileViT to achieve parameter 
compression, enhances the physical-semantic association of 
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features through channel-pixel dual-domain attention, and 
balances the local grasping points and global context 
information by combining the multi-scale sensing field 
decoder, to construct an end-to-end lightweight detection 
framework, which effectively improves the feature expression 
and localization accuracy under complex interference. The 
research aims to provide comprehensive and innovative 
solutions to the accuracy and efficiency issues of robot grasping 
and detection in actual factories or other environments. 

III. METHODS AND MATERIALS 

This section is divided into two parts. The first part provides 
a detailed explanation of YOLOv6, Efficient Repetitive 
Backbone (ERB), and MobileViT, and proposes an object 
detection module. The second part takes MDAFN as the core, 
combines multi-scale receptive field Receptive Field Block 
(RFBs), Pixshuffle, etc., proposes a grasping detection module, 
and finally constructs the L-YOLOv6-MA robot grasping 
detection model to improve the robot grasping performance 
under model control. 

A. Object Detection Module Based on YOLOv6 

An efficient and accurate target detection strategy is the key 
to achieving real-time object recognition and tracking 
performance in complex scenes, and it is also a prerequisite for 
achieving robot grasping detection performance. However, the 
target detection strategy of traditional robot grasping detection 
models usually has high computational complexity, slow 
response speed, and is difficult to adapt to rapid changes in 
dynamic environments. YOLOv6 enables efficient deployment 
on embedded devices, providing real-time object detection 
while maintaining high accuracy and low latency. Therefore, 
the research builds an object detection module based on 
YOLOv6 framework, and the basic architecture of YOLOv6 is 
shown in Fig. 1. 

ERB  Feature fusion Upsampling

Rep Block Conv Efficient decoupled head

Input

Rep-PAN Neck

 

Fig. 1. The architecture of YOLOv6 networks. 

In Fig. 1, the YOLOv6 backbone network adopts an ERB 
structure, which improves feature extraction capability and 
simplifies the model structure by using a simple repeated 
parameterized visual geometry group network structure. During 
training, ERB adopts a multi-branch structure to enhance 
performance, while during inference, it transforms into a single 
branch structure of Re-parameterized Block (Rep Blocks) to 
accelerate the prediction process [20]. The Neck section 
introduces a Re parameterized Path Aggregation Network 

(Rep-PAN) to enhance the ability of multi-scale feature fusion. 
The head adopts an efficient decoupling head design to separate 
classification and regression tasks, further improving detection 
accuracy and convergence speed [21]. However, when 
deploying YOLOv6 on small devices, there are problems such 
as large model size and high computational cost, which will 
lead to a decrease in its detection performance in low-resource 
environments. MobileViT combines the local feature extraction 
advantages of convolutional neural networks with the global 
information processing capabilities of visual transformers, 
enabling both lightweight design and efficient performance. 
Therefore, the study combines MobileViT for lightweight 
optimization of YOLOv6, and the network structure of 
MobileViT is shown in Fig. 2. 
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Fig. 2. The structure of MobileViT network. 

As shown in Fig. 2, the MobileViT network consists of 
ordinary convolutional layers, MV2, and MobileViT 
components. The ordinary convolutional layer is responsible 
for preprocessing the input image and extracting low-level 
features. MV2 is the inverse residual structure in MobileNetV2, 
used for efficient downsampling operations in the network. It 
extracts features through 1 * 1 convolution for dimensionality 
enhancement and 3 * 3 deep convolution, and then compresses 
and expands features through 1 * 1 convolution for 
dimensionality reduction. The MobileViT component is the 
core of MobileViT, consisting of multiple Transformers, 
including three steps: local feature extraction, global feature 
modeling, and feature fusion [22]. Among them, the expansion 
factor of MV2 module is 6, which is responsible for controlling 
the proportion of channel dimensioning. Too small an 
expansion factor will limit the feature expression ability, while 
too large a factor will increase the model complexity. The 
number of stacked Transformer layers in MobileViT is 3, which 
needs to be considered as a balance between global modeling 
capability and computational efficiency. In addition, the global 
pooling layer reduces the dimensionality of the feature map to 
obtain global features. The fully connected layer maps these 
global features to the final prediction output. Therefore, the 
proposed object detection module architecture is shown in 
Fig. 3. 

In Fig. 3, the input image is first subjected to feature 
extraction through the MobileViT network, which consists of 
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multiple MV2 modules. Each module is followed by a 
MobileViT component to downsample the feature map. The 
MobileViT component utilizes its lightweight design to 
effectively extract image features while maintaining a low 
number of parameters. After being processed by the MobileViT 
network, the feature maps enter YOLOv6 and undergo further 
feature fusion and processing through Simplified Spatial 
Pyramid Pooling-Fast (SimSPPF) and other convolutional 
layers and residual connections. The SimSPPF module is 
located in the Neck structure and replaces traditional parallel 
structures with serial pooling operations, reducing redundant 
calculations and improving the network's detection capability 
for targets of different sizes. The SimSPPF module is located in 
the Neck structure, which reduces redundant computations by 
replacing the traditional parallel structure with serial pooling 
operations. Its pooling kernel size is set to [5,9,13], where too 
large a kernel size blurs the small target details, while too small 
a kernel size does not effectively cover the large target context. 
The Neck structure of YOLOv6 adopts a multi-scale feature 
fusion strategy, which enhances the network's detection ability 
for targets of different sizes by horizontally connecting feature 
maps of different scales. Finally, the feature maps processed by 
Neck enter the efficient coupling head for object detection 
tasks. 

Input ...

↓2 ↓2 ↓2

MobileViT

3*3 3*3

3*3↓2

YOLOv6

 Feature fusion Upsampling

Rep Block Conv Efficient decoupled head

MV2 MobileViT

SimSPPF

 

Fig. 3. The architecture of the object detection module. 

B. Construction of Grab Detection Module and Robot Grab 

Detection Model 

Object detection provides visual information for robots by 
identifying objects in images and providing bounding boxes 
and categories. The proposed object detection module can 
achieve efficient object detection under low computing 
resource conditions. However, it cannot directly perform the 
grasping detection function. MDAFN can suppress noise 
features, enhance effective features, and improve the accuracy 
and robustness of capture detection during the fusion process of 
shallow and deep features. Therefore, the research focuses on 
MDAFN as the core and constructs a grasping detection 
module. The basic structure of MDAFN is denoted in Fig. 4. 

In Fig. 4, MDAFN is divided into two layers: pixel attention 
subnetwork and channel attention subnetwork. The pixel 
attention subnetwork utilizes a convolutional kernel size of 

3 * 3 convolutional layers. The convolutional kernel size needs 
to be weighed against the spatial context-awareness capability 
and computational overhead. A larger kernel enhances the 
perceptual field but increases the number of parameters. 
Through the convolutional layers and Sigmoid activation 
function, the pixel attention subnetwork assigns weights to each 
pixel to highlight key visual information. The channel attention 
subnetwork enhances important channels in the feature map 
through global average pooling and fully connected layers. 
Finally, the subnetwork weighted feature map is combined with 
the original input feature map to integrate pixel and channel 
level attention information through element wise 
multiplication, suppressing noise [23]. However, MDAFN has 
limited performance when dealing with complex backgrounds 
or overlapping targets, while RFB can provide richer contextual 
information. Therefore, research is being conducted to optimize 
the input of MDAFN using RFB. 
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Global 
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Fig. 4. The basic structure of MDAFN. 

RFB aims to enhance the adaptability of the network to 
multi-scale characteristics by constructing convolutional layers 
of different scales. The operation process is as follows: RFB 
first adjusts the number of channels through a 1 * 1 convolution 
operation, and then extracts multi-scale features through 
convolution kernels and dilated convolutions of different 
scales. Its expansion rate is set to [1,3,5] and the number of 
multibranch channels is configured as [64,128,256], 
respectively. The feature maps of different scales are then 
merged to obtain feature representations with rich multi-scale 
information [24]. In addition, Pixshuffle can achieve efficient 
upsampling operations while preserving image details and 
texture information. The operation process is as follows: 
Pixshuffle first uses convolutional layers to increase the number 
of channels in the feature map to the square of the target 
resolution multiple. Afterwards, the channels are rearranged 
and each pixel's multi-channel is converted into a 
corresponding image block to achieve an increase in resolution 
[25]. Therefore, the proposed grasping detection module 
architecture is shown in Fig. 5. 
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Fig. 5. The architecture of the grasp detection module. 

In Fig. 5, the network mainly contains downsampling 
blocks and a backbone network. In the downsampling block, 
the input image first passes through a 3 * 3 convolutional layer, 
followed by a Batch Normalization (BN) layer and a ReLU 
activation function, and then enters a round of decision-making. 
If the conditions are met, it enters the max pooling layer and 
enters the above structure again. After three iterations, the 
feature outputs that meet the conditions will enter the backbone 
network. Residual Block (ResBlock) is the first layer of the 

backbone network, which works together with RFB to extract 
more discriminative and robust features. Afterwards, the 
features enter MDAFN and fuse shallow and deep semantic 
features. Pixshuffle serves as an upsampling layer for the 
capture detection module to increase feature resolution. In 
summary, the overall operational process of L-YOLOv6-MA, 
which combines the object detection module and the grasping 
detection module, is shown in Fig. 6. 
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Fig. 6. The overall operation flow of L-YOLOv6-MA. 

As shown in Fig. 6, the operation process of the L-
YOLOv6-MA model includes two stages: object detection and 
grasping detection. In the object detection stage, YOLOv6 
serves as the basic framework and achieves model 
lightweighting through MV2, MobileViT components, etc., 

reducing model complexity and computational costs. Fast and 
accurate recognition of objects in an image is achieved by 
convolutional operations such as SimSPPF. In the capture 
detection stage, MDAFN is used as the core to enhance key 
information in the feature map through pixel and channel 
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attention subnetworks, thereby improving the accuracy of 
capture detection. By combining structures such as RFB, 
Pixshuffle, and downsampling blocks, the adaptability and 
resolution recovery performance of the network to targets of 
different scales and complex backgrounds are enhanced. The 
model ultimately outputs the predicted grasp quality, angle and 
width. 

IV. RESULTS 

To prove the performance and superiority of the proposed 
L-YOLOv6-MA model, simulation experiments and actual 
model performance experiments were conducted based on the 
theoretical foundation and algorithm analysis mentioned above. 
The study analyzed the experimental results in detail and 
compared their performance such as detection accuracy and 
real-time performance. 

A. Simulation Operation Experiment 

In the simulation experiment, Windows 10 was chosen as 
the operating system, and the NVIDIA Isaac Sim simulation 
platform was used to simulate the robot grasping task 
environment. Moreover, the study constructed a simulated 
robot using the Gazebo simulator and robot operating system. 
The study introduced Single Shot MultiBox Detector (SSD), 
Region Proposal Network (RPN), Hough Transform (HT), and 
Deep Residual Network (DRN), and compared them with the 
proposed L-YOLOv6-MA model, which was named L. The 
study first used the Microsoft Universal Object Context dataset 
as the object of capture detection, and conducted object 
detection efficiency experiments by comparing the object 
detection accuracy and Frames Per Second (FPS) of different 
algorithms. The experimental results are denoted in Fig. 7. 
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Fig. 7. Comparison of detection accuracy and FPS. 

According to Fig. 7(a), the target detection accuracy of HT 
was the lowest, between 0.60 and 0.69. Next was SSD, with an 
accuracy between 0.75 and 0.78. The average accuracy of RPN 
and DRN was 0.80 and 0.82, respectively. The target detection 
accuracy of L was the highest, ranging from 0.86 to 0.90. As 
shown in Fig. 7(b), L also had the highest FPS, with an average 
FPS of 66.00. Next was SSD, with an average FPS of 52.82. 
The FPS ranges of HT and DRN were 10.00 to 19.00 and 20.00 

to 30.00, respectively. The FPS of RPN was relatively low, with 
an average FPS of 8.36. The experimental findings indicated 
that the target detection efficiency of the proposed model was 
much higher than that of traditional methods. On this basis, the 
study explored the model's capture detection performance by 
comparing the image segmentation efficiency and running time 
of different algorithms. The experimental results are denoted in 
Fig. 8. 
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Fig. 8. Differences in segmentation efficiency and running time. 
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According to Fig. 8(a), the image segmentation efficiency 
of L was relatively high, ranging from 90.96% to 95.35%. Next 
was DRN, with an efficiency ranging from 82.32% to 88.41. 
The average efficiencies of SSD and RPN were 77.85% and 
84.06%, respectively. The image segmentation efficiency of 
HT was the lowest, ranging from 65.09% to 73.94%. According 
to Fig. 8(b), HT had the longest running time, with an average 
time of 22.96ms. Next was RPN, with an average time of 
13.01ms. The running times of SSD and DRN were between 

5.14ms and 9.91ms, and 10.75m and 14.11ms, respectively. 
The running time of L was the shortest, with an average time of 
only 2.85ms. The experiment findings denoted that the image 
segmentation efficiency of the proposed model was far superior 
to other methods. Subsequently, the Receiver Operating 
Characteristic Curve (ROC) and Area Under the Curve (AUC) 
of the comparative model were studied to further investigate the 
performance of the model. The experiment findings are shown 
in Fig. 9. 
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Fig. 9. Differences in ROC curves and AUC values. 

As shown in Fig. 9(a), when the false positive rate (FPR) 
was between 0 and 0.1, the growth rate of the model's true 
positive rate (TPR) was the highest. Afterwards, the growth of 
TPR gradually slowed down and reached its maximum value 
after the FPR was 0.6. When the FPR was the same, the TPR of 
L was the highest, and the TPR of HT was the lowest. For 
example, when the FPR was 0.5, the TPR of L was 0.99. At this 
time, the TPRs of SSD, RPN, HT, and DRN were 0.79, 0.85, 
0.71, and 0.89, respectively. According to Fig. 9(b), the AUC 
value of L was as high as 0.91. The AUC value of DRN was 
slightly lower, at 0.79. The AUC values of SSD and RPN were 
0.70 and 0.74, respectively. The AUC value of HT was the 
lowest, only 0.64. The experiment findings denoted that the 
comprehensive effectiveness of the raised model was much 
higher than traditional methods. 

B. Actual Model Performance Experiment 

Simulation running experiments are an important reference 
for measuring robot grasping models. However, due to the 
complexity and randomness of the factory environment and 
grasping task behavior, there are often differences between the 
actual performance of the model and the simulation results. 
Therefore, the study selected SSD and RPN as comparative 
algorithms for actual model performance experiments. The 
study selected a certain parts processing workshop as the actual 
experimental environment, and verified its practical promotion 
potential by exploring the performance of the model in the 
actual environment. The study first explored the actual target 
detection and image segmentation performance of the robot 
under model control for screwdrivers. The experiment results 
are denoted in Table I. 

TABLE I.  ACTUAL DETECTION AND SEGMENTATION FOR SCREWDRIVER 

Number of experiments Detection accuracy Segmentation efficiency (%) 

SSD RPN L SSD RPN L 

1 0.69 0.72 0.76 75.53 79.71 85.01 

2 0.74 0.74 0.78 74.75 74.54 79.32 

3 0.74 0.74 0.76 72.12 69.09 84.15 

4 0.71 0.75 0.78 74.49 73.78 81.62 

5 0.70 0.73 0.75 70.09 78.15 78.44 

6 0.71 0.73 0.82 72.71 73.08 81.43 

7 0.69 0.75 0.83 70.83 72.22 80.48 

8 0.70 0.76 0.79 73.61 74.61 86.45 

9 0.73 0.75 0.82 68.21 74.69 80.12 
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10 0.73 0.76 0.82 75.33 75.25 83.95 

11 0.74 0.73 0.77 74.89 77.13 82.03 

12 0.75 0.75 0.83 68.47 73.75 80.93 

13 0.68 0.77 0.77 74.46 71.33 83.35 

14 0.69 0.75 0.79 72.60 74.77 82.09 

15 0.70 0.72 0.79 76.50 75.00 83.80 

16 0.69 0.72 0.83 74.55 76.88 80.24 

17 0.70 0.74 0.83 78.81 75.57 79.17 

18 0.69 0.74 0.81 72.83 74.07 83.92 

19 0.73 0.71 0.77 73.69 75.61 84.82 

20 0.75 0.71 0.75 72.73 76.74 85.83 

Mean 0.71 0.74 0.79 73.36 74.80 82.36 

 

According to Table I, the actual object detection accuracy 
of SSD was relatively low, ranging from 0.68 to 0.75, with an 
average accuracy of 0.71. The actual accuracy range of RPN 
was 0.71 to 0.77, with an average accuracy of 0.74. The actual 
accuracy of L was relatively high, ranging from 0.75 to 0.83, 
with an average accuracy of 0.79. In addition, SSD had the 
lowest actual image segmentation efficiency, ranging from 
68.21% to 78.81%, with an average efficiency of 73.36%. The 
actual efficiency of RPN was 69.09% to 79.71%, with an 

average efficiency of 74.80%. The actual image segmentation 
efficiency of L ranged from 78.44% to 86.45%, with an average 
efficiency of 82.36%. The experiment findings denoted that the 
actual performance of the proposed model was much higher 
than traditional methods. On this basis, the grasping 
performance of robots controlled by comparative models on 
screwdrivers was studied, and the experimental results are 
shown in Fig. 10. 
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Fig. 10. Grasping accuracy and deviation for the screwdriver. 

As shown in Fig. 10(a), the success rates of SSD and RPN 
were relatively close when controlling the robot to grab the 
screwdriver. The success rates of the two were divided between 
70.28% and 79.75%, and 72.04% and 81.61%. At this point, the 
success rate range of L was 85.01% to 93.30%. According to 
Fig. 10(b), the success rate deviation of RPN was the smallest, 
ranging from -3.93% to 5.64%. Next was L, with a deviation 
range of -5.03% to 3.26%. The deviation of SSD was relatively 
large, ranging from -4.80% to 4.67%. The experiment findings 
denoted that under the proposed model control, the robot had 
the highest grasping success rate and relatively stable 
performance. Finally, the study designed robots controlled by 

different models to grasp 50 screws and explored the successful 
grasping times of different models. The experimental results are 
shown in Fig. 11. 

According to Fig. 11(a), when controlling the robot to grab 
screws, the SSD had the lowest success rate, between 25 and 
33. Next was RPN, with a success rate of 27 to 35. The success 
rate of L was the highest, between 35 and 43 times. According 
to Fig. 11(b), the absolute deviation of RPN success times was 
the lowest, between 0.48 and 3.52. Next was L, with an absolute 
deviation range of 0.14 and 4.14. The absolute deviation of SSD 
was the largest, ranging from 0.05 to 4.05. The experiment 
findings denoted that under the proposed model control, the 
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robot had the highest grasping efficiency and was relatively 
stable for smaller objects. From the above, the performance of 

the proposed model was much higher than traditional methods 
and had the potential for promotion and application. 
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Fig. 11. Grasping number and deviation for screw. 

V. DISCUSSION 

Aiming at the problem of low performance of traditional 
robot grasping detection models, this study focused on 
YOLOv6 and MDAFN as the core, constructed object detection 
modules and grasping detection modules, and proposed the L-
YOLOv6-MA model by combining the two. The study 
introduced components such as MobileViT and Pixshuffle to 
achieve lightweight design of the model while reducing 
environmental noise and improving model accuracy. The 
experiment findings denoted that the simulated object detection 
accuracy and FPS of the proposed model were between 0.86 
and 0.90, and 62.00 and 69.00, respectively. The average 
accuracy and FPS of other methods were 0.76 and 25.00, 
respectively. The simulation image segmentation efficiency 
and running time of the model were between 90.96% and 
95.35%, and 2.28ms and 3.75ms, respectively. The average 
efficiency and running time of other methods were 79.01% and 
13.80ms, respectively. The AUC value of the model was 0.91. 
The average AUC value of other algorithms was 0.72. In 
addition, the actual object detection accuracy and image 
segmentation efficiency range of the proposed model were 0.75 
to 0.83 and 78.44% to 86.45%, respectively. The average 
accuracy and efficiency of other algorithms are 0.73% and 
74.08%, respectively. The gripping rate and deviation range of 
the screwdriver under model control were between 85.01% and 
93.30%, and -5.03% and 3.26%, respectively. The average 
grasping rate and absolute deviation of other methods were 
75.52% and 2.15%, respectively. Moreover, the successful 
grasping times and absolute deviation range of screws under 
model control were 35 to 43 and 0.14 to 4.14, respectively. The 
average success rate and absolute elimination of other methods 
were 29.86 and 2.16, respectively. In summary, the core 
innovations of the L-YOLOv6-MA model are: 1) establishing 
a synergistic architecture between YOLOv6 and MobileViT to 
achieve efficient feature extraction in dynamic environments 
through lightweight reorganization; 2) constructing a channel-
pixel dual-domain attentional mechanism to strengthen the 

ability of grasping feature discrimination under complex 
background interference; 3) designing a multiscale fusion 
decoder that combines sense-of-field extension and subpixel 
localization to improve the accuracy of grasping position 
estimation. 

VI. CONCLUSION 

The contribution of the L-YOLOv6-MA model is that it 
effectively solves the problem of grasping robustness in 
complex scenarios by establishing a synergistic mechanism of 
lightweight adaptive feature extraction and multidimensional 
attention. The detection framework breaks through the 
efficiency bottleneck of traditional staged processing, provides 
a high-precision and low-latency solution for shaped part 
grasping, and significantly improves the flexible adaptation 
capability and deployment efficiency of automated production 
lines. 

While demonstrating notable advancements, this study has 
limitations: 1) Experimental validation primarily targets 
standard screw-type workpieces, requiring extended 
verification for reflective/flexible materials; 2) Synthetic data-
based training lacks real-world physical parameter integration; 
3) Hardware-specific deployment limits cross-platform 
adaptability, and there is insufficient coordination exists 
between visual detection and robotic motion control. Future 
work will focus on: 1) Developing multi-material grasping 
datasets enhanced by transfer learning to address generalization 
gaps; 2) Establishing a digital twin framework combining 
virtual simulation and physical parameters to refine predictive 
accuracy; 3) Creating hardware-agnostic deployment solutions 
for efficient edge computing adaptation across devices; 
4) Implementing visual-force closed-loop coordination to 
enable real-time grip adjustment and slip compensation. These 
improvements aim to bridge the simulation-to-reality gap while 
optimizing dynamic control synchronization, ultimately 
supporting robust industrial deployment across diverse 
production scenarios. 
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