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Abstract—This research focused on developing and 

implementing a fault detection model for photovoltaic (PV) 

systems in remote areas, utilizing a Fuzzy-Based Multiple Linear 

Regression (FMLR) approach. The study aimed to address the 

challenges of monitoring PV systems in locations with limited 

access to conventional power grids and technical resources. The 

fault detection system integrated environmental parameters such 

as solar radiation, temperature, wind speed, and rainfall, 

alongside PV system parameters like panel voltage, current, 

battery voltage, and inverter performance. Data collection and 

preprocessing were conducted over a specified period to identify 

operational patterns under both normal and faulty conditions, 

ensuring data accuracy through cleaning, normalization, and 

categorization. The research was conducted in Pandan Arang 

Village, Kandis District, Ogan Ilir Regency, South Sumatera, 

Indonesia, contributing to the improvement of reliability and 

sustainability of renewable energy sources in isolated 

communities. The total number of data points for 276 rows with 

6 attributes each was 1656 records. The MLR model was 

developed to predict the output power of the PV system, while 

fuzzy logic was employed to handle uncertainties in the data, 

offering a more flexible and adaptive decision-making process. 

The system applied fuzzy rules to determine the charging status 

(P3), categorizing it into Optimal Charging, Adjusted Charging, 

Charging Delay, or Fault Alert. The model was tested with real-

time data, and its performance was validated through 

comparison with manual inspections. The results showed that the 

FMLR-based fault detection system effectively identified faults 

and optimized the performance of the PV system, making it 

suitable for remote areas in South Sumatera. 

Keywords—Photovoltaic; multiple linear regression; fuzzy; 

fault detection; remote areas 

I. INTRODUCTION 

Solar energy has become one of the most promising 
renewable energy sources in addressing global challenges 
related to energy security and environmental sustainability [1]–
[3]. Photovoltaic (PV) systems have been widely implemented, 
particularly in remote areas where access to conventional 
power grids is limited. However, the effectiveness of PV 
systems heavily depends on the performance of solar panels, 
which can be influenced by various factors, including 
environmental conditions, dirt accumulation, shading, and 
component failures [4]–[6]. 

Fault detection in photovoltaic systems remains a major 
challenge in ensuring system efficiency and reliability. 
Undetected or delayed fault identification can lead to reduced 

energy production, extensive component damage, and 
increased maintenance costs [7], [8]. Therefore, an efficient 
and accurate method is required to detect faults in PV systems 
in real-time, especially in remote areas where technical 
resources and maintenance capabilities are limited [9]–[12]. 

The latest research trends focus on improving detection 
accuracy and enhancing PV system monitoring by integrating 
multiple data sources, including electrical performance 
indicators, environmental conditions, and system degradation 
metrics. Several key studies have significantly contributed to 
the advancement of fault detection g in photovoltaic (PV) 
arrays. Jordan & Hansen (2023) introduced a clear-sky 
detection approach using time-averaged plane-of-array 
irradiance to assess PV system health under clear-sky 
conditions, allowing for better identification of environmental 
factors affecting PV degradation using linear regression [13]. 

Jufri et al. (2019) developed a hybrid detection model 
combining regression analysis and Support Vector Machines 
(SVM) to detect abnormal conditions in PV systems. Their 
method enhanced fault prediction accuracy by incorporating 
daylight time and interaction variables between independent 
parameters, validated through multi-stage k-fold cross-
validation [14]. Heinrich et al. (2020) explored machine 
learning techniques, particularly Logistic Regression, to 
monitor cleaning interventions in PV modules, ensuring 
optimized maintenance scheduling [15]. 

Harrou et al. (2021) utilized Gaussian Process Regression 
(GPR) and Support Vector Regression (SVR) for fault data 
modelling, showcasing the flexibility and adaptability of 
kernel-based learning methods for real-time PV system 
monitoring [16].  Additionally, Kim et al. (2020) introduced 
multivariate analysis using least-square regression to detect PV 
system faults, integrating both electrical and environmental 
parameters to provide a structured statistical framework for 
system health assessment [17]. These studies demonstrate the 
evolution of fault detection methodologies, emphasizing the 
role of statistical, machine learning, and hybrid approaches in 
improving PV system reliability and efficiency. 

While previous studies primarily focused on machine 
learning and statistical regression techniques, a hybrid solution 
that integrates the strengths of fuzzy logic and multiple linear 
regression can be used for uncertainties decision [18]–[20]. 
This method is particularly advantageous in handling 
uncertainties in photovoltaic (PV) system operations in 
environmental conditions that vary significantly [21]–[23]. By 
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effectively modeling nonlinear relationships between multiple 
independent variables—such as temperature, solar irradiance, 
wind speed, humidity, and power output—and their influence 
on fault indicators, this approach enhances the accuracy of fault 
detection. 

Unlike traditional regression models that depend on fixed 
threshold values, Fuzzy-Based Multiple Linear Regression 
(FMLR) utilizes fuzzy membership functions to dynamically 
categorize data, allowing for greater flexibility in identifying 
faults within PV systems in South Sumatera’s diverse climatic 
conditions [24]–[26]. Moreover, this method improves fault 
classification by facilitating gradual transitions between fault 
states rather than the rigid categorizations typically employed 
in Support Vector Machines (SVM) and Logistic Regression, 
ensuring a more adaptive and resilient monitoring system for 
PV operations in the region [27]–[29]. 

The remainder of this paper is organized as follows: 
Section II provides a detailed literature review on the various 
fault detection methods used in PV system, with a particular 
focus on the integration of fuzzy logic and MLR. Section III 
outlines the research methodology, including data collection, 
preprocessing, and the design of the fault detection model. 
Section IV presents the experimental setup and the 
implementation of the photovoltaic system in the remote area. 
Section V discuss the results and validation of the proposed 
model, including comparisons with manual inspection data. 
Finally, Section VI concludes the paper by summarizing the 
findings and offering recommendations for future work in PV 
system fault detection. 

II. LITERATURE REVIEW 

A. Multiple Linear Regression 

Regression analysis is a statistical-based method used to 
analyze the relationship between independent variables (X) and 
a dependent variable (Y). In the context of fault detection in 
photovoltaic systems, Multiple Linear Regression (MLR) is 
often employed to assess the impact of multiple independent 
variables on system performance. The general equation is 
expressed as Eq. (1). 

𝑦 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛       (1) 

In the context of fault detection in photovoltaic systems, the 
dependent variable (Y) represents the system’s output or fault 
indicator, while the independent variables (X₁, X₂... Xₙ) include 
factors such as panel temperature, solar radiation, wind speed, 
and other operational parameters. The equation incorporates b₀ 
as the intercept (constant term) and b₁, b₂... bₙ as the regression 
coefficients, which indicate the relation to each independent 
variable on the dependent variable. 

B. Fuzzy Logic 

In photovoltaic fault detection, once all propositions have 
been evaluated, the output consists of a fuzzy set that 
represented the contribution of each rule to the final decision 
that is represented and expressed as Eq. (2). 

𝜇(𝑥𝑖) = (𝜇𝑠𝑓(𝑥𝑖  ), 𝜇𝑘𝑓(𝑥𝑖))  (2) 

Value of 𝜇𝑠𝑓(𝑥𝑖)  denoted the membership value of the 

fuzzy solution up to the i-th rule, indicating how well a specific 
condition aligns with the defined fuzzy rules for system 
performance evaluation. Meanwhile, 𝜇𝑘𝑓(𝑥𝑖) denoted the 

membership value of the fuzzy consequent up to the i-th rule, 
reflecting the degree to which the system's response or output 
is influenced by a given rule. 

The input for the defuzzification process in photovoltaic 
fault detection is a fuzzy set derived from the composition of 
fuzzy rules, while the output is a crisp numerical value that 
provides a definitive assessment of the photovoltaic system's 
performance. Given a fuzzy set within a specific range, a crisp 
output can be determined using a defuzzification method. 
When multiple rules contribute to the decision-making process, 
defuzzification is performed by calculating the centre of 
gravity (centroid method) to determine the most representative 
output value. This approach helps in accurately detecting faults 
in photovoltaic panels, inverters, and power output variations 
by translating fuzzy logic-based rule evaluations into precise 
system diagnostics. The final crisp decision can be obtained 
using centroid-based defuzzification, allowing for proactive 
fault identification and optimization of photovoltaic energy 
generation as presented in Eq. (3). 

𝐶 = 𝑚𝑎𝑥 (𝑎, 𝑏)   (3) 

where, C represents the most significant fuzzy membership 
value, aiding in the identification and classification of faults in 
photovoltaic operations. 

III. RESEARCH METHDOLOGY 

The research is initiated with a literature review and 
problem identification, which examined previous studies on 
fault detection in photovoltaic (PV) systems using artificial 
intelligence methods such as Fuzzy Logic and Multiple Linear 
Regression (MLR). This phase identified key challenges 
encountered by PV systems in remote areas and fault detection 
is depicted in Fig. 1. 

 

Fig. 1. Research phase. 

Data collection and preprocessing were carried out over a 
specified period to identify operational patterns of the 
photovoltaic (PV) system under both normal and faulty 
conditions. The process involved, cleaning the data by 
eliminating anomalies and noise to ensure its accuracy. 
Afterward, the data was normalized to ensure compatibility 
with the regression model and categorized based on the 
operational conditions of the PV system. The collected 
environmental parameters included solar radiation intensity, air 
temperature, humidity, wind speed, rainfall, and panel 
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temperatures (both top and bottom). The total number of data 
points for 276 rows with 6 attributes each was 1656 data. 

The development of the fault detection model for the 
photovoltaic (PV) system involved several stages, starting from 
the system setup to the implementation of the fault detection 
mechanism. Initially, the necessary hardware components, 
including photovoltaic panels, solar charge controllers, 
batteries, inverters, and MCBs, were configured. 
Environmental parameters such as solar radiation, temperature, 
wind speed, and rainfall, along with system parameters like 
current, voltage, power, and temperature at various points in 
the system, were continuously monitored. The fault detection 
system was designed to trigger alerts based on FMLR and 
presented in Fig. 2. 

 

 
 

 

Fig. 2. Photovoltaic fault detection based on FMLR. 

The research was conducted using an experimental method 
by implementing PV system integrated with fault detection. 
The study took place in Pandan Arang Village, Kandis District 
and Ogan Ilir Regency with its located in South of Sumatera.  
Data was collected over a specific period to identify 
operational patterns in both normal and faulty conditions. This 
data was preprocessed by eliminating anomalies, normalizing 
values for compatibility with the regression model, and 
categorizing it based on operational conditions.  

The fuzzy-based multiple linear regression (FMLR) model 
was designed to enhance the fault detection process in 
photovoltaic (PV) systems by analyzing the relationships 
between various environmental and system parameters. These 
parameters include temperature, solar irradiance, wind speed, 
humidity, and power output, which directly influence the 
performance of the PV system. The FMLR model incorporates 
fuzzy logic to handle uncertainties and nonlinearities in these 
parameters, offering a more flexible and dynamic approach 
compared to traditional methods. 

The model was trained using historical data collected from 
the PV system, which included instances of both normal 
operation and various types of faults. By processing this data, 
the model learned to identify distinct patterns associated with 
typical system behavior as well as fault conditions. The use of 
fuzzy logic rules allowed the model to adapt to varying 
operational conditions and gradually transition between 
different system states, rather than relying on rigid, predefined 
thresholds. This adaptability makes the FMLR model 
particularly useful for systems that operate in dynamic and 
unpredictable environments, such as those found in remote or 
off-grid locations. 

Once trained, the FMLR model was able to classify system 
conditions into several categories, each reflecting a different 
state of operation. These categories included “Optimal 
Charging”, where the system is functioning at peak efficiency, 
“Adjusted Charging”, which occurs when external factors such 
as weather conditions require adjustments to the charging 
process, “Charging Delay”, which is triggered when system 
temperatures are too high to ensure safe operation, and “Fault 
Alert”, which indicates that a significant fault has been 
detected, requiring immediate attention. 

The developed model underwent testing and validation 
using test data to assess its accuracy. The fault detection results 
were compared with manual PV system inspections to validate 
the model’s accuracy. The fault detection system was deployed 
and observed in a remote village in South of Sumatera for to 
detect fault conditions in real-time. 

IV. RESEARCH RESULT 

The identification process carried out through a site survey 
for the placement of the photovoltaic system resulted in the 
required photovoltaic (PV) components amounting to 6 x 200 
WP. The required solar charge controller (SCC) was 2 x 12V 
60A, while the battery capacity needed was 8 x 12V 100Ah. 
Additionally, a single inverter unit with a capacity of 12V 
6000-watt peak (WP) was used to support the system. The 
photovoltaic (PV) panels were installed on top of a water 
storage tank, arranged in parallel configuration using six 
panels. 

The installation of the PV system followed a parallel PV 
configuration, where the panels were placed on the roof 
(rooftop) above the water storage tank. The PV panels were 
connected to a miniature circuit breaker (MCB) as a protective 
device before being linked to the solar charge controller (SCC). 
The SCC was set according to the battery voltage to optimize 
charging efficiency. From the SCC, the energy was stored in 
batteries, which were then connected to the inverter. The 
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inverter was also linked to an MCB before converting DC 
(Direct Current) into alternating current (AC) to power the 
water pump. The proposed PV system as illustrated in Fig. 3. 

  
(a)     (b) 

 
(c)      (d) 

Fig. 3. PV system in remote areas (a) Solar panels (b) Solar panels 

integrated to water storage tank (c) IoT for environment paramater control (d) 

IoT for PV system control. 

The implementation of this system ensured that the 
photovoltaic system provided a stable energy supply for 
operating essential equipment in the remote area. The use of 
the Internet of Things (IoT) allowed real-time monitoring and 
control of the system, enabling efficient management of power 
generation and consumption. This approach contributed to 
improving access to renewable energy in isolated rural areas of 
South Sumatra, where conventional electricity sources were 
limited or unavailable. 

The photovoltaic fault detection for the PV system was 
designed to optimize the battery charging process by 
considering various environmental factors and the output 
power from solar panels. This system integrated sensors, an 
Arduino Mega, data storage, and fuzzy-based multiple linear 
regression (FMLR) to provide more accurate decisions 
regarding photovoltaic fault detection based on battery 
charging conditions. 

The DSS utilized sensors to collect real-time data on 
environmental parameters such as solar radiation, temperature, 
and battery voltage. These data were then processed using an 
Arduino Mega microcontroller, which acted as the main 
control unit for data acquisition and transmission. The multiple 
linear regression (MLR) approach was used to predict the 
output power of photovoltaic in panel 1 (P1) and panel 2 (P2) 
by utilizing six independent variables, including top panel 

temperature (X₁), bottom panel temperature (X₂), panel surface 
temperature (X₃), rain status (X₄), solar radiation intensity (X₅) 
and wind speed (X₆). The calculation P1 and p2 using MLR 
approach is presented in Eq. (4) and Eq. (5). 

P1 = −1.0389+(0.1656×X1) + (−0.0754×X2) + (−0.0688×X3) 

+ (0.4500×X4) + (−0.0025×X5) + (13.6189×X6) (4) 

P2 = −55.9447+(0.6757×X1) + (5.0193×X2) + (−3.5212×X3) 

+ (−0.9017×X4) + (0.2040×X5) + (4.6400×X6)(5) 

The fuzzy rules for predicting P₁ and P₂, along with other 
input data established several important steps. First, the fuzzy 
sets for the P₁ power output variable and the charging status 
(P3) variable were defined. Based on the MLR prediction, a 
fuzzy classification category was generated for predicting P₁ 
and P₂, which included three levels: Low, Medium, and High. 
The classification determined based on fuzzy set values in 
Table I. 

TABLE I.  FUZZY SET VALUES 

Variable Membership Value Range 

Top Panel Temperature (X₁) 

Low ≤ 25°C 

Medium 25°C < T ≤ 35°C 

High > 35°C 

Bottom Panel Temperature 

(X₂) 

Low ≤ 25°C 

Medium 25°C < T ≤ 35°C 

High > 35°C 

Air Temperature (X₃) 

Low ≤ 25°C 

Medium 25°C < T ≤ 35°C 

High > 35°C 

Rain (X₄) 
Rain 1 

No Rain 0 

Solar Radiation (X₅) 

Low ≤ 10 W/m² 

Medium 10 < W/m² ≤ 100 W/m² 

High > 100 W/m² 

Wind Speed (X₆) 

Low ≤ 1 m/s 

Medium 1 < m/s ≤ 3 m/s 

High > 3 m/s 

Power Output Panel 1 (P₁) & 
Power Output Panel 2 (P₂) 

Low ≤ 50 Watt 

Medium 50 < Watt ≤ 100 Watt 

High > 100 Watt 

The comparison graph between actual data and the multiple 
linear regression (MLR) model predictions illustrated the 
relationship between observed power output values and the 
predicted values generated by the model. The first graph 
presented the actual data for P₁ (x-axis) against the predicted P₁ 
values (y-axis), where the blue scatter points were closely 
aligned with the dashed diagonal line (y = x). This pattern 
indicated that the model had achieved high accuracy, with 
minimal error in predicting P₁. Meanwhile, the second graph 
compared actual P₂ data (x-axis) with its predicted values (y-
axis), where the green scatter points appeared more dispersed, 
though they still largely followed the y = x diagonal line. The 
visualizations provided insight into the prediction accuracy and 
reliability of the MLR model is depicted in Fig. 4. 
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(a)       (b) 

Fig. 4. Comparison of actual data and MLR model predictions for (a) panel 

P1 (b) panel P2. 

In a photovoltaic system, the value of the battery charging 
status (P3) functioned to regulate the battery charging level by 
considering various environmental factors and the operational 
conditions of the solar panels. This process used fuzzy logic, 
which enabled the system to dynamically adjust charging 
decisions based on input values that were not always precise or 
binary. Fuzzy logic worked by translating environmental 
variables such as temperature, solar radiation, wind speed, and 
rainfall into linguistic categories like low, medium, or high. 
Then, the system applied fuzzy rules in the form of IF-THEN 
statements, which determined P3 based on the combination of 
existing variables and represented through pseudocode, as 
shown in Fig. 5 (Algorithm 1). 

Algorithm 1: Decision Rule for PV Fault Detection 
BEGIN 

 INPUT P1, P2, X4, X1, X2, X3, X5, X6 

   
IF P1 == "low" AND P2 == "high" AND X4 == "no" AND X1 

== "high" AND X2 == "high" AND X3 == "high" AND X5 

== "high" AND X6 == "medium" THEN 
P3 = "Optimal Charging" 

END IF 

 
… 

 

IF P1 == "medium" AND P2 == "medium" AND X4 == "no" 
AND X1 == "medium" AND X2 == "high" AND X3 == 

"medium" AND X5 == "high" AND X6 == "medium" THEN 

P3 = "Optimal Charging" 
END IF 

 

IF P1 == "high" AND P2 == "high" AND X4 == "no" AND 
X1 == "high" AND X2 == "high" AND X3 == "high" AND 

X5 == "medium" AND X6 == "high" THEN 

P3 = "Optimal Charging" 
END IF 

 

 DISPLAY "Charging Status: ", P3 
END 

Fig. 5. Decision rule for photovoltaic fault detection. 

To understand P3 operated in the photovoltaic system, a 
logical representation was required to illustrate the relationship 
between input and output variables based on the defined fuzzy 
rules. Pseudocode could be used to illustrate how 
environmental variables such as panel power (P1, P2), rainfall 
(X4), panel temperature (X1, X2), air temperature (X3), solar 
radiation (X5), and wind speed (X6) interacted in determining 
the charging status (P3). Each observed variable combination 
was processed using IF-THEN rules. With the application of 

fuzzy rules, the system was able to optimize charging when 
environmental conditions were favorable, adjust the charging 
mode in response to external disturbances such as rain, and 
delay or reduce charging to prevent overheating if the panel 
temperature became too high. 

Based on the applied rules, the fuzzy inference system 
output in fault detection for photovoltaic operations was 
categorized into four main conditions. The “optimal charging” 
condition occurred when environmental conditions supported 
maximum charging, such as high solar radiation, panel 
temperature within a safe range, and sufficient wind speed to 
maintain panel temperature stability. The “adjusted charging” 
condition was applied when external factors influenced the 
charging process, such as rain, where the system adjusted the 
charging mode to remain efficient and safe. The “charging 
delay condition was implemented when panel temperature was 
too high, potentially causing overheating, leading the system to 
automatically delay charging to prevent component damage. 
The “fault alert” condition was triggered when the system 
detected issues that could cause malfunctions or damage, such 
as high panel temperature but low solar radiation, which could 
indicate problems with the panel or electrical system. 

In the defuzzification process, the input used was the fuzzy 
set obtained from the composition of fuzzy rules. This process 
aimed to determine a crisp value that represented the system 
output based on the distribution of membership degrees from 
the various rules that had been previously applied. One of the 
most commonly used defuzzification methods was the Center 
of Gravity (COG), where the output value was obtained by 
finding the central average of all values within the given range. 
This method calculated the balance point of the fuzzy 
membership distribution, ensuring that the final result reflected 
the most representative value based on the applied fuzzy rules. 

If the fuzzy inference system generated membership values 
for multiple output categories such as Optimal Charging, 
Adjusted Charging, and Charging Delay, then the 
defuzzification process determined a crisp value among these 
categories based on their membership weights. Thus, 
defuzzification enabled the system to translate fuzzy results 
into concrete actions, such as determining the charging level or 
detecting potential errors in the photovoltaic system. The 
structured output in the Arduino Command Line Interface 
(CLI) environment provided a clear representation of how the 
fuzzy-based decision support system (DSS) functioned in real-
time fault detection is presented in Fig. 6. 

 

================================================== 

             DSS FAULT DETECTION                   

================================================== 

 

Enter value for Top Panel Temperature (X1): 39.99 

39.99 

Enter value for Bottom Panel Temperature (X2): 

40.00 

40.00 

Enter value for Air Temperature (X3): 40.00 

40.00 

Is it Raining? (1 = Yes, 0 = No) (X4): 0 

0 

Enter value for Solar Radiation (X5): 500.00 

500.00 

Enter value for Wind Speed (X6): 4.03 
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-------------------------------------------------- 

PREDICTION: FUZZY-BASED MULTIPLE LINEAR REGRESSION 

-------------------------------------------------- 

Predicted MLR Value for P1: 53.4406 

Predicted MLR Value for P2: 151.7050 

Fuzzy Category for P1: Medium 

Fuzzy Category for P2: High 

 

-------------------------------------------------- 

               CHARGING STATUS                      

-------------------------------------------------- 

P3 Status: FAULT ALERT  

 

** WARNING ** 

Please check the **panel condition, environmental 

factors, and system configuration** for possible 

issues. 
 

Fig. 6. Output of Arduino CLI for fault detection. 

Fuzzy inference was a rule-based reasoning process used to 
determine the output based on input variables that had been 
classified into membership categories. In the fault detection 
system for IoT-based photovoltaic operations, the fuzzy 
inference method was applied to link input variables with the 
charging level and potential system disturbances based on 
environmental and operational conditions of the solar panels. 
The method used for fuzzy inference was the MIN-MAX 
method. Once all propositions had been evaluated, the output 
contained a fuzzy set that reflected the contribution of each 
proposition, as shown in Fig. 7. 

 

Fig. 7. Fuzzy inference. 

The output generated from the Arduino Command Line 
Interface (CLI) code represented the fault detection process in 
an IoT-based photovoltaic system using a fuzzy inference 
model and multiple linear regression (MLR). The system 
prompted the user to input environmental parameters, 
including top panel temperature (X1), bottom panel 
temperature (X2), air temperature (X3), rainfall status (X4), 
solar radiation (X5), and wind speed (X6). Based on these 
inputs, the system computed predicted power values (P1 and 
P2) using the MLR model and classified them into fuzzy 
categories such as Low, Medium, or High. The final step 
involved evaluating the charging status (P3) using predefined 
fuzzy logic rules. If an anomaly was detected, the system 
triggered a Fault Alert, indicating a potential operational issue 
within the photovoltaic system. The warning message advised 

further inspection of panel conditions, environmental factors, 
and system configurations to prevent potential failures or 
inefficiencies. 

V. CONCLUSION 

This research successfully developed and implemented a 
Fault Detection Model for photovoltaic (PV) systems in remote 
areas, utilizing the Fuzzy-Based Multiple Linear Regression 
(FMLR) approach. The model demonstrated its potential to 
address the challenges of monitoring PV systems in regions 
with limited access to conventional power grids and technical 
resources. By integrating environmental parameters such as 
solar radiation, temperature, wind speed, and rainfall, along 
with PV system parameters like panel voltage, current, battery 
voltage, and inverter performance, the system effectively 
tracked and evaluated the operational conditions of the 
photovoltaic system. The system was successfully deployed in 
Pandan Arang Village, Kandis District, Ogan Ilir Regency, 
South Sumatera, Indonesia, providing a reliable and sustainable 
solution for enhancing the efficiency of renewable energy 
sources in isolated communities. 

Data collection and preprocessing were carefully executed 
to ensure the quality and accuracy of the data, with anomalies 
removed, normalization applied, and data categorized based on 
operational conditions. The MLR model was used to predict 
the output power of the PV system, while fuzzy logic enabled 
the handling of uncertainties in data, offering greater flexibility 
in decision-making. The system utilized fuzzy rules to 
determine the charging status (P3), categorizing it into Optimal 
Charging, Adjusted Charging, Charging Delay, or Fault Alert, 
ensuring adaptive and responsive fault detection. The 
developed model was tested using real-time data, and its 
performance was validated against manual inspections, 
demonstrating its high accuracy and effectiveness in fault 
detection. 

Future research focused on further validating the proposed 
fault detection model by conducting long-term field studies in 
various geographical regions with different climatic conditions. 
This approach helped assess the model's robustness and 
adaptability in diverse environments. Additionally, the 
integration of advanced machine learning techniques, such as 
deep learning, was explored to improve the model's predictive 
accuracy and real-time fault detection capabilities. Future 
studies also investigated the optimization of energy storage and 
grid integration in remote PV systems to enhance the overall 
efficiency and sustainability of renewable energy solutions. 
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