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Abstract—Multi-unmanned aerial vehicle path planning 

encounters challenges with effective obstacle avoidance and 

collaborative operation. The study proposes a swarm planning 

technique for unmanned aerial vehicles, based on an improved 

jump point algorithm. It introduces a geometric collision detection 

strategy to optimize path search and employs the dynamic window 

method to constrain the flight range. Additionally, the study 

presents conflict avoidance strategies for multi-unmanned aerial 

vehicle path planning and establishes collision fields for unmanned 

aerial vehicles to achieve collaborative path planning. In single 

unmanned aerial vehicle path planning, the research model 

exhibits the lowest control errors in the X, Y, and Z axes, with the 

Y-axis error being 0.05m. In static planning, the model boasts the 

shortest planning time and length, with 1002ms and 17.85m in 

multi-obstacle planning, respectively. In multi-unmanned aerial 

vehicle path planning, the research model effectively avoids local 

optimal problems in local conflict scenarios and re-plans the route. 

During testing on a 29m×29m grid map, the research technology 

successfully avoids obstacles and re-plans routes. However, 

similar technological obstacles can cause interference and traps in 

local convergence, preventing re-planning. The research 

technology demonstrates good application effects in the path 

planning of unmanned aerial vehicle swarms and will provide 

technical support for multi-machine collaborative path planning. 

Keywords—Unmanned aerial vehicle swarm; path planning; 

jump point search algorithm; geometric collision detection; dynamic 
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I. INTRODUCTION 

With the development of unmanned aerial vehicle (UAV) 
technology, the potential application of multi-UAV cooperative 
planning in military reconnaissance, environmental monitoring, 
disaster rescue, and other fields is enormous. However, the 
planning for multiple UAVs is constrained by the control of 
these UAVs and the impact of obstacles, leading to poor 
coordination among the UAVs and challenges in meeting flight 
requirements. Therefore, scholars have conducted extensive 
research on collision planning techniques for UAV swarms to 
improve the effectiveness of UAV swarm planning [1]. Shen K 
et al. studied the problem of insufficient path planning (PP) for 
multi-warehouse UAVs and proposed a PP method that 
considers collision avoidance. This method optimized the route 
by establishing a multi-warehouse UAV PP model, taking into 
account factors such as UAV flight distance, time, and cargo 
loading capacity. Flight tests showed that this method could 
reduce UAV costs and improve technical planning efficiency 
[2]. Meng S et al. conducted research in the field of UAV 

detection. To improve the coordination effect of multiple 
UAVs, image denoising technology was introduced to optimize 
feature extraction and enhance the processing and analysis of 
object edge details. Tests showed that this technology could 
substantially raise the obstacle avoidance ability and crack 
object detection performance of UAVs [3]. Bui S T et al. 
conducted research on the insufficient adaptability of UAVs for 
takeoff, landing, and collision, and proposed a biomimetic 
propeller design for UAVs. This design was inspired by the 
flexibility and elasticity of dragonfly wings, which can adapt to 
collisions and quickly recover and hover. Tests showed that the 
proposed propeller had good adaptability and could effectively 
optimize the collision effect of UAVs [4]. Fahimi H et al. 
proposed a vision-based guidance algorithm to enhance the 
obstacle avoidance capability of UAVs. It was equipped with 
cameras inside the UAV, which detected object edge details 
through algorithms, optimized the captured image details using 
algorithms, and provided flight decisions for UAV obstacle 
avoidance. The results indicated that UAVs could effectively 
avoid obstacles in flight scenarios and improve the planning 
efficiency of UAVs [5]. 

At present, multi-UAV collaborative PP is a key focus of 
UAV development. Saeed R A et al. conducted research on PP 
for UAV swarms. To improve the obstacle avoidance and 
planning effectiveness of UAVs, a three-dimensional scene 
multi-UAV planning technology based on ant colony algorithm 
was proposed, and the technology was improved through 
conditional constraints and collision strategies. The results 
indicated that the technology had good planning performance 
[6]. Puente Castro A et al. studied the problem of insufficient 
PP for UAV swarms and proposed a solution based on artificial 
intelligence algorithms. The study conducted research on the 
latest UAV planning technologies, selected the latest 
technologies through classification and comparison, and 
summarized the limitations of current research. The results 
indicated that artificial intelligence planning scenarios were 
limited by computation and complex conditions, and had 
limited adaptability [7]. Dhuheir M A et al. proposed a 
distributed collaborative inference request and PP model to 
tackle the problem of insufficient reasoning in UAV PP. This 
model divided inference requests into multiple parts and 
executes them in different UAVs to reduce data transmission 
latency and interference. Experimental tests showed that this 
technology had good adaptability, but communication and 
collaboration still faced difficulties [8]. Sharma A et al. studied 
the PP problem for UAV swarm interception of multiple aerial 
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targets and proposed a solution based on swarm intelligence 
algorithm. The team conducted a comprehensive analysis and 
improvement of swarm intelligence algorithms such as particle 
swarm optimization (PSO) and ant colony optimization. In 
practical scenario testing, different algorithms had limited 
adaptability in complex environments and diverse target 
interception tasks, and the impact of dynamic obstacle 
scenarios needed to be considered [9]. Yu Z et al. proposed a 
new hybrid PSO algorithm for automatic PP of UAVs. This 
algorithm improved the global optimal solution update strategy 
and particle learning strategy of PSO algorithm by integrating 
simulated annealing algorithm, enhancing optimization ability 
and convergence speed. Experimental tests showed that the 
proposed technology could adapt well to the 3D scene planning 
effect of UAVs [10]. 

In summary, multi-UAV planning is the key to the 
development of UAV technology. However, PP for multiple 
UAVs is more complex, and how to avoid obstacles and 
coordinate the fleet is a technical challenge. At present, 
technologies such as ant colony algorithm, particle algorithm, 
and bat algorithm have good advantages in PP, but they still 
face problems such as high computational cost and insufficient 
planning for complex dynamic scenes in multi-UAV scenarios. 
Therefore, in order to solve the problem of insufficient PP for 
UAV swarms, an intelligent UAV swarm PP technology based 
on an improved Jump Point Search (JPS) algorithm is proposed. 
There are two innovations in this technology. Firstly, the 
introduction of geometric collision detection strategy in the 
research improves the shortcomings of JPS node search. 
Meanwhile, Dynamic Window Approaches (DWA) are 
introduced for obstacle avoidance optimization to enhance the 
accuracy of PP. Secondly, the research focuses on adding 
conflict avoidance strategies in multi-UAV PP, setting 
avoidance specifications through the division of collision fields, 
and enhancing the obstacle avoidance capabilities of UAV 
swarms. The research has two contributions. One is that the 
technology provides technical support for single UAV PP and 
improves its ability of obstacle avoidance and dynamic 
planning in complex environments. The second is that the 
research provides technical support for the cooperative 
operation of multiple UAVs, and helps the UAV cluster to 
effectively coordinate and avoid conflicts in complex tasks. 

II. METHODS AND MATERIALS 

A. Modeling of Single UAV PP Based on Improved JPS 

The process of UAV PP needs to consider various threats 
and limitations in the environment to avoid collisions during 
flight. Therefore, the PP modeling of single UAV based on 
improved JPS algorithm is studied. Aiming at the 
environmental threat and collision risk in UAV PP, the 
improved JPS algorithm is introduced as the global planning 
technology, and combined with DWA algorithm to optimize the 
local planning. The JPS algorithm, which is based on a grid 
map, employs the JPS strategy to identify feasible nodes and 
optimizes the path using a geometric collision detection 
strategy. DWA algorithm can adjust the speed and direction of 
UAV in real time and improve the effect of dynamic planning 
by constructing speed space and dynamic window. The entire 
technical process is shown in Fig. 1. 

 

Fig. 1. Single UAV PP technology. 

From Fig. 1, this technology uses the JPS algorithm as the 
global PP core, while adopting DWA as the local planning to 
improve the dynamic planning effect of UAVs. In the scope of 
UAV planning, JPS is used to obtain feasible nodes, based on a 
grid map, where each grid contains 8 adjacent nodes. The JPS 
algorithm needs to remove useless nodes based on the adjacent 
node pruning strategy in order to search for the best planned 

path [11]. The evaluation function  R n  is shown in Eq. (1). 

     R n g n h n    (1) 

In Eq. (1),  h n  represents the cost incurred from node n  

to the target node.  g k  represents the optimal actual path cost 

from the initial to the current node n . In actual UAV planning, 
the JPS algorithm is affected by the expansion direction of grid 
nodes, and its planning can only choose 8 speed directions, 
which will significantly limit its planning effectiveness [12]. In 
this regard, the study introduces geometric collision detection 
strategies to optimize its planned path, thereby providing more 
selectable paths for UAVs. Among them, if the optional path is 

defined as 
1 7 8( , , )n n n   , 

in  is the path node, and the 

original path is  1 2 8, , ,n n n  , then the collision 

detection strategy is expressed as Eq. (2) [13]. 
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In Eq. (2), （） is the detection function, 
in  and jn  both 

are nodes within the original path set N . The study employs a 

collision detection strategy to identify nodes in the original path 
where collisions occur, represented as 1, and those without 
collisions, represented as 0. The principle of collision detection 
strategy path optimization is shown in Fig. 2 [14]. 

Start

Heuristic A * 

algorithm for 

global node search

Remove useless 

planning nodes

Obtain the 

global optimal 

path

Extract sub 

target points

Decomposition of 

path planning tasks

Using DWA to 

analyze local tasks

Is it the 

best route?

End

Collision detection 

strategy detects 

more nodes

Output the final 

path planning 

result

JPS algorithm 

parameter 

initialization

Extended evaluation 

function

Dynamic threat detection

N

Y



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

252 | P a g e  

www.ijacsa.thesai.org 

Node 1

Node 4
Node 5

Node 2

Node 3

Node 6Node 7Node 8

UAV

Passable path

Shortest path 

planning

Obstacle Path

Y
 a

x
is

 (
m

)

X axis (m)
 

Fig. 2. Schematic diagram of collision detection strategy. 

According to Fig. 2, in the original path search, this strategy 
identifies optional paths through geometric collisions to avoid 
obstacles. In addition, the study introduces the DWA algorithm 
as a local obstacle avoidance planning technique for UAVs, 
which has fast response and low computational complexity. In 
UAV collision control, it is necessary to construct a UAV 
motion model, as shown in Eq. (3). 
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In Eq. (3),  nt  represents the angle between the UAV 

and the X-axis at time 
nt . ( ( ), ( )n nx t y t ) is the coordinate of 

the UAV at time 
nt . To satisfy the demands of UAV, it needs 

to satisfy motion model constraints, as shown in Eq. (4) [15]. 
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In Eq. (4), ( , )DS x y  represents the closest distance 

between the obstacle and the UAV.   indicates the linear 

velocity of the UAV.   is the angular velocity of UAVs. 
b  is 

the braking acceleration of the UAV's linear velocity. To ensure 
that the UAV maintains optimal planning performance within 
the constraint range, the DWA algorithm needs to construct a 
velocity space based on the UAV's own coordinates, as shown 
in Fig. 3 [16]. 
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Fig. 3. UAV speed space. 

In Fig. 3, a velocity space is established with the origin of 
the UAV as the coordinate, where the angular velocity is 
represented by the horizontal axis and the vertical axis is 
represented by the UAV linear velocity. When a UAV performs 

a flight mission, any cycle command is represented by ( , )v   

and the UAV velocity space is composed of multiple ( , )v  . 

The dynamic window is the speed range that the UAV can reach 
in the speed space [17]. The maximum dynamic window of the 

UAV is defined as 
mV , expressed as Eq. (5). 

  max min max{ , |0 , }mV             (5) 

In an effective planning process, the UAV's speed is limited 
to prevent collisions with objects; upon a collision, the speed 
will drop to zero. The maximum dynamic window of the 

aircraft within the safe range is set as safeV , as shown in Eq. (6) 

[18]. 

      max max, | 2 , , 2 ,safe b bV DS DS            (6) 

In Eq. (6),  ,DS v   is the distance between the UAV and 

the obstacle. 
maxb  represents the maximum angular velocity 

braking acceleration of the UAV. Besides, the maximum speed 
of the UAV planning is influenced by its own acceleration 
capabilities, which further narrows the range of the maximum 

dynamic window 
mV , particularly during obstacle avoidance 

when the speed is kept at a low level. [19]. Therefore, based on 

this, the dynamic window 
FV  is obtained as shown in Eq. (7). 

  max max max max{ , | , }ˆ
c b c a bF c c aV t t t t                         (7) 

In Eq. (7), 
c  represents the current angular velocity of the 

UAV, 
a is the maximum angular acceleration of the UAV, 

c  

is the current line velocity of the UAV, and 
maxa  represents 

the maximum linear acceleration of the UAV. Based on the 

above analysis, the optional velocity space 
rV  for the UAV 

planning process can be obtained, as shown in Eq. (8). 
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Fr sam feV V V V         (8) 

After determining the final optional speed space, the study 
assumes that the UAV's speed is short and constant, and 
therefore the impact of acceleration on the UAV can be ignored. 
In a shorter UAV planning time, if the UAV planning presents 
a straight line, the UAV trajectory prediction can be obtained 
based on the UAV motion model, as shown in Eq. (9) [20]. 

2 2 2( ) ( ) ( ) , 0F

i j i j

x x y y iF O F O r       (9) 

In Eq. (9), ),( j j

x yO O  is the center coordinate of the UAV's 

motion trajectory. 
Fr  represents the center coordinate radius of 

the UAV. 
i

xF  and 
i

yF  are the horizontal and vertical axis 

dynamics of the center coordinate point of the UAV. Based on 
the short and constant speed, the predicted trajectory of the 
UAV can be obtained, as shown in Eq. (10). 
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In Eq. (10), 
it  represents the predicted time. Next, the 

research needs to evaluate the predicted trajectory of UAVs. If 

the high score instruction 
max( , )v   of the UAV is taken as the 

next sampling control instruction of the UAV, the direction 
evaluation function is obtained as shown in Eq. (11). 

 max( , ) ( , ) ( , ) ( , )F v DS v vel v HD v              (11) 

In Eq. (11),   represents normalization processing.  ,  , 

and   are both evaluation weight coefficients. ( , )vel v  , 

( , )DS v  , and ( , )HD v   respectively represent speed, 

distance, and direction evaluation functions. 

B. PP Modeling Based on Multiple UAV Swarms 

The previous chapter completed the PP for a single UAV, 
and the control of UAV swarms has evolved from single-UAV 
to multi-UAV control, which is subject to more conditional 
constraints and involves more complex control. For the 
collision risk and complex planning requirements of multi-
UAV cooperative operation, the collision avoidance strategy 
and collision field division are introduced to solve the potential 
conflicts between UAVs. Upon analyzing the limitations of 
forward trajectory prediction and the dynamic window of 
UAVs, an optimization scheme based on detection radius and 
information sharing is proposed. A detailed conflict 
quantification standard is also formulated, encompassing 
avoidance rules in the front, back, left, right, and upward 
directions, thereby effectively enhancing the collaborative 

planning ability and obstacle avoidance performance of the 
UAV cluster. The multi-machine planning process requires 
collaborative work to avoid cluster collisions. The difference 
between single UAV and UAV swarm planning is shown in 
Fig. 4. 
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Fig. 4. UAV swarm PP and single UAV PP. 

According to the scenario of unmanned cluster planning 
depicted in Fig. 4, multiple UAVs must navigate to avoid 
obstacles while not interfering with other UAV operations, all 
under multiple constraints and within a more complex 
framework. The single machine planning method obviously 
does not meet the requirements of collaborative control 
between UAVs. Therefore, the study introduces UAV conflict 
avoidance strategies for UAV conflict control. In the conflict 
analysis of UAVs using the JPS algorithm, it is assumed that 
the forward trajectory prediction time for all individual 

machines in the UAV fleet is the same, which is 
it . When the 

predicted trajectory distance is lower than the safe distance set 
by the cluster system, it is considered as a flight conflict. If there 
is an overlap in the predicted trajectories of multiple UAVs, it 
indicates that the current UAV will have a flight conflict [21]. 
Considering that the dynamic window in UAV planning only 

predicts conflicts at forward time 
it , and does not consider the 

impact on the UAV's own farther distance, the study also 
introduces collision fields to solve this problem, as shown in 
Fig. 5. 

In Fig. 5, the red inner circle area represents the entire area 
of UAV safety conflict. UAVs in the red area will not collide, 

that is, 
1 20 d r r   . d  is the distance between the UAV 

and the center point, and 
1 2r r  is the radius distance between 

the two UAVs. When the UAV exceeds the detection range, 

that is, 
ruled r , 

ruler  is the detection radius of UAVs 1 and 2, 

and the green area indicates that the UAV is beyond the 
recognizable green range, and the UAV is in a low-risk conflict 
area. If the UAV is within the green range, it is an avoidance 
area, and there may be potential conflicts within this range. 
According to the detection of two UAVs moving in the same 

straight line, the detection radius 
ruler  can be obtained, as 

shown in Eq. (12). 

1 2 1 2( )
uler ir r r v v t       (12) 
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Fig. 5. Division of UAV collision field. 

In Eq. (12), 
1v  and 

2v  are the linear velocities of UAVs 1 

and 2, respectively. To ensure that UAVs can detect objects and 
escape in a timely manner before conflicts occur, research 

needs to use the maximum value of 
ruler  as the detection radius 

for all UAVs in the fleet. In addition, the inability to use 
velocity space to predict dynamic obstacle trajectories during 
UAV flight can lead to local optimal planning problems in 
UAV planning, as shown in Fig. 6 [22]. 

 

Fig. 6. Dynamic obstacle UAV planning scenario. 

From stage 1 in Fig. 6, the UAV will select a green safe 
trajectory for planning to avoid dynamic obstacles ahead. 
However, in the second stage, if the obstacle movement speed 
is equal to or greater than the planned speed of the UAV, it will 
result in its inability to effectively yield to the obstacle [23]. At 
this moment, the UAV can only decelerate and evade, awaiting 
the lifting of the speed space limit. The UAV can maintain its 
original planned route or turn right to take a detour. To avoid 
such problems, the research adds a cluster information 
exchange mechanism, which means that different UAV motion 
states are shared with each other, providing an effective 
selectable speed space for the next UAV in advance [24]. 
Meanwhile, flight planning is carried out according to conflict 
avoidance rules, including conflicts in the front, rear, left, and 
right directions. The quantification standard for forward 
conflicts is shown in Eq. (13). 

| |
36

cg


        (13) 

In Eq. (13), cg  represents the azimuth angle of unmanned 

aerial vehicl
cUAV e  relative to the current UAV gUAV . If 

cUAV  is located in front of gUAV , there will be two 

situations where the UAV flies in the same or opposite 

direction. Regardless of which scenario, 
cUAV  remains in its 

original state, while gUAV  uses left or right planning to avoid 

obstacles [25]. The quantification standard for the right side 
conflict is shown in Eq. (14). 

5

8 36
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         (14) 

In the right side conflict, 
cUAV  is located to the right of 

gUAV  and has the highest flight priority. Currently, UAV 

gUAV  needs to slow down or turn left to avoid. The left side 

conflict quantification standard is shown in Eq. (15) [26]. 

5

36 8
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       (15) 

In the left side conflict, 
cUAV  is located to the left of 

gUAV , which has the highest flight priority. The conflicting 

UAV 
cUAV  needs to slow down or turn right to avoid. The 

quantification standard for post burst is shown in Eq. (16). 

5
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In the rear conflict, 
cUAV  is located behind gUAV , and 

gUAV  also has the highest flight priority. It maintains its 

original flight state unchanged, while aircraft 
cUAV  takes the 

initiative to avoid to the left or right. 

UAV1

UAV2

UAV1

UAV2

rrule

r 1
+

r 2

Collision field

Planning strategy

Feasible 

areas

Obstacle 

areas

v v

Phase 1 Phase 2

Obstacle

Obstacle



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

255 | P a g e  

www.ijacsa.thesai.org 

III. RESULTS 

A. Single Machine PP Experiment 

Next, the research conducted experiments on the proposed 
UAV PP technology, setting the UAV flight experiment scene 
to various specifications of grid maps, including 30m×30m, 
38m×38m, etc. Meanwhile, in the implementation of UAV 
flight PP, experiments were conducted by dividing static and 
dynamic obstacle scenarios. The details of the experimental 
hardware setup are presented in Table I. 

In the experimental analysis, common UAV planning 
algorithms A* and JPS were introduced as tests to confirm the 
validity of different techniques in regard to control error, 
planning length, number of expansion nodes, and planning 

duration. The study selected a 38m×38m grid map environment 
for UAV flight control experiments, and the test outcomes are 
in Fig. 7. 

TABLE I DETAILS ABOUT THE EXPERIMENTAL SETUP 

Experimental environment Model 

Experimental System Platform Windows 11 

Experimental processor AMD 3800X 

Graphics card NVIDIA RTX3070 

Computer operating memory 32 RAM 

Hard disk capacity 1T 

Simulation experimental platform MATLAB 

 

 

Fig. 7. Experimental analysis of flight control error for a single UAV. 

Fig. 7(a) shows the control error of the UAV in the X-axis 
direction. According to the curve changes, at the 32nd hour of 
the UAV flight, the expected trajectory in the X-axis was -
0.020m, the research model was -0.0019m, while JPS and A* 
were 0.4984m and 0.4935m, respectively. Overall, the control 
error of the research model was lower, with an improvement of 
7.25% and 9.28% in accuracy compared to the JPS and A* 
control errors. Fig. 7(b) shows the analysis outcomes of the 
control error of the UAV in the Y-axis direction. At the 2nd and 
26th hours of flight, A* and JPS had significant deviations in 
control accuracy and predicted trajectory in the Y-axis 
direction. In the second hour, A* planning was unable to 
effectively screen out effective planning nodes, resulting in 

them exceeding the expected trajectory by 0.56m. Meanwhile, 
JPS also exceeded the expected trajectory by 0.25m. Only the 
research model controlled the error at 0.12m, resulting in better 
overall control accuracy. Fig. 7(c) shows the control error of the 
UAV in the Y-axis direction. Only the research model could 
follow the expected trajectory well, with an overall deviation 
controlled within the range of 0.05m. However, A* flight 
planning was the worst, such as in UAV turning scenarios at the 
4th and 8th hours, where A*'s following control was 
significantly insufficient. JPS also faced similar problems. 
Next, a 30m×30m grid map was selected for static scene 
planning testing, and the test results are shown in Fig. 8. 
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Fig. 8. Comparison of comprehensive effects of static PP for UAVs. 

Fig. 8(a) shows the comparison of obstacle crossing time. 
In the initial planning, A* took 1401ms, JPS was 1002ms, and 
the research model was 885ms. However, in the multi-obstacle 
planning, the overall time of the research model was the 
shortest, only 1002ms. The comparison of PP length is shown 
in Fig. 8(b). The research model had the lowest planning length 
in both the initial planning and multi-obstacle planning, which 
were 15.25m and 17.85m, respectively, while JPS and A* had 
planning lengths of 49.85m and 58.054m, respectively. 

Fig. 8(c) shows the comparison of the number of extended 
nodes in PP. The research model had a significantly lower 
number of extended nodes in PP, with 122.5 nodes in the 
research model, 124.5 nodes in A*, and 124.0 nodes in JPS. In 
multi-obstacle planning, the research model had 128.5 extended 
nodes, which was significantly lower than the other two 
techniques. This indicated that it had lower resource utilization 
and better planning efficiency in planning. Finally, a 38m×38m 
grid map was selected for PP testing, as shown in Fig. 9. 

 

Fig. 9. Static and dynamic obstacle PP test. 
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Fig. 9(a) shows the results of static environmental PP, 
where the UAV crossed obstacles from the starting point to the 
endpoint. The final planned length of the research model was 
59.2m, while JPS was 61.2m and A* was 63.2m. Fig. 9(b) 
shows the results of dynamic obstacle planning scenarios. The 
blue area represents dynamic obstacles, and the red area 
represents conflict points. According to the results, A* 
experienced two conflicts during the planning process, which 
led to an increase in both its planning length and time. 
Meanwhile, JPS also encountered conflicts with the first 
dynamic obstacle, necessitating avoidance maneuvers. The 
final planned lengths of JPS and A* were 68.2m and 70.2m, 
respectively. However, the research model effectively predicted 
the trajectory of dynamic obstacles and avoids waiting, with the 
shortest planned distance being 63.28m. 

B. UAV Swarm PP Experiment 

Next, the research continued to test the PP of multi-person 
airport scenery, with consistent experimental environments. 
The research compared DWA-JPS with DWA-JPS that 
combined conflict avoidance strategies (Ours). Firstly, the 
study selected local planning quantities for UAV conflict 
planning for testing, as shown in Fig. 10. 

Fig. 10(a) and 10(b) show the conflict planning results of 
DWA-JPS and Ours, respectively. In the DWA-JPS planning, 
both forward-moving UAVs opted to evade obstacles by 
veering left and right, which led to both UAVs altering their 
intended destinations and becoming trapped in local optima, 
rendering it impossible to re-plan their predestined trajectories. 
In Ours conflict planning, the two UAVs adopted a conflict 
avoidance strategy, successfully separated and detoured back to 
their original trajectory. Next, a 30m×30m grid map was 
selected for multi-UAV planning testing, as shown in Fig. 11. 

 

Fig. 10. Local conflict planning test. 

 

Fig. 11. Multi-UAV planning test. 
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Fig. 11(a) and 11(b) show the PP of Ours and DWA-JPS, 
respectively. There were significant differences in the planning 
angles between the two types of UAVs, but the number of 
expansion nodes in Ours planning was significantly lower. For 
example, in Ours planning, UAV 2 had 324 expansion nodes, 
while DWA-JPS had 501. Fig. 11(c) shows the results of time 
consumption and planning length. According to the results, the 
average time consumption in DWA-JPS planning was 55.2s, 

while Ours was 49.8s, indicating that the research model had a 
shorter planning time. In the comparison of planning lengths, 
the average planning length of Ours was 29.3m, while that of 
DWA-JPS was 55.3m. The planning technology proposed in 
the study performed better overall. Finally, the study selected 
19m×19m and 29m×29m grid maps for comparison of planning 
effects, as shown in Fig. 12. 

 

Fig. 12. PP test for 19m×19m and 29m×29m grid maps. 

Fig. 12(a) and 12(b) show the planning results of DWA-JPS 
and Ours on a 19m×19m grid map. In the DWA-JPS PP, there 
was a clear conflict at the intersection of three UAVs, causing 
UAV 2 to avoid the right and fall into local convergence, unable 
to reach the target location smoothly. Meanwhile, the collision 
between UAV 1 and UAV 3 resulted in waiting and avoidance, 
leading to an extension of the planned distance. In Ours 
planning, the conflict avoidance strategy adopted by the 
research model in the conflict area was studied, and the route 
planning was re-conducted. There was no local convergence in 
the UAV 2 area, and the avoidance strategy also allowed the 
remaining UAVs to bypass the conflict in a shorter time and 
return to the predetermined planned trajectory. Fig. 12(c) and 
12(d) show the planning results of DWA-JPS and Ours on a 
29m×29m grid map. In DWA-JPS planning, UAV 1 still chose 
to avoid to the left at the conflict point, causing it to fall into 
local convergence and unable to return to the designated 
planned trajectory. The long waiting time of UAV 3 at the 
conflict point also affected the planning effectiveness. Ours 

adopted an avoidance strategy at the conflict point, predicting 
the conflict ahead and avoiding the wait for conflicts, thus 
preventing the problem of local convergence in planning, with 
the best overall performance. Next, three UAV road planning 
scenarios (10m×10m, 19m×19m, 29m×29m and 38m×38m) 
were selected for experiments to compare the average 
planning time of UAV groups with different technologies. 
The results are shown in Table II. 

Table II shows the time-consuming comparison of road 
scenario planning for multi-UAV planning. Four planning 
scenarios were selected for comparison. Overall, Ours fleet 
planning was the best. For example, the average planning time 
of UAV 1 under four roads was 34.3s, while the average 
planning time of DWA-JPS was 39.0s. Especially in the more 
complex 38m×38m road planning, the average planning time of 
UAV 1, UAV 2 and UAV 3 in Ours was 34.3s, 34.2s and 34.0s, 
which was significantly better than 39.0s, 39.5s and 39.6s of 
DWA-JPS. 
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TABLE II COMPARISON OF AVERAGE PLANNING TIME OF UAV GROUP 

Planning road scenarios 
DWA-JPS (s) Ours (s) 

UAV1 UAV2 UAV3 UAV1 UAV2 UAV3 

10m×10m 12.5 11.6 12.8 9.3 9.7 9.5 

19m×19m 21.6 22.5 23.5 17.6 17.8 16.8 

29m×29m 52.3 53.5 52.8 47.5 45.5 46.8 

38m×38m 69.5 70.5 69.2 62.8 63.8 62.8 

Average comprehensive time 39.0 39.5 39.6 34.3 34.2 34.0 
 

IV. DISCUSSION AND CONCLUSION 

With the swift advancement of UAV technology, multi-
UAV collaborative PP has emerged as a study hotspot. To 
improve the effectiveness of multi-UAV PP, a multi-UAV PP 
technique based on an improved JPS algorithm was proposed 
and relevant experiments were conducted. 

In single UAV PP, taking the 38m×38m grid map 
environment as an example, compared with A* and JPS 
algorithms, the proposed model improved the accuracy of X-
axis control error by 7.25% and 9.28%, and had lower Y-axis 
control error. In static scene planning tests, the planning time 
was the shortest, and the PP length and number of extended 
nodes were better than the other two techniques. In dynamic 
obstacle planning scenarios, the proposed model could 
effectively predict the trajectory of dynamic obstacles, avoid 
waiting, and plan the shortest distance. The reason why the 
research technology was superior to traditional JPS and A* is 
that the introduction of geometric collision detection strategy 
improved the path search range. In addition, the introduction of 
DWA to predict the conflict range significantly improved the 
technical adaptability. 

In terms of PP for multiple UAV swarms, the research was 
based on distributed control clusters and introduced UAV 
conflict avoidance strategies for planning. By setting collision 
fields and conflict avoidance rules, the problem of mutual 
collision among UAV swarms during collaborative operations 
was effectively solved. The experiment compared DWA-JPS 
with Ours, and the results showed that in the local conflict 
planning test, Ours could smoothly separate and return to its 
original trajectory, while DWA-JPS fell into local optima. In 
the multi-UAV planning test of 30m×30m grid map, Ours 
planning showed significantly lower number of expansion 
nodes, shorter planning time, and better average planning 
length. In the comparison of planning effects on grid maps of 
different sizes, Ours adopted a conflict avoidance strategy in 
conflict areas, avoiding local convergence and planning getting 
stuck in local optima, resulting in the best overall performance. 

To sum up, the research technology performed well in the 
field of UAV planning, including: In the PP of single UAV, it 
significantly reduced the control error, shortened the length and 
time of PP, reduced the number of expansion nodes, and 
improved the effect of dynamic planning; In the multi UAV PP, 
the conflict between UAVs was effectively avoided, the local 
optimal problem was solved, the planning efficiency was 
improved, and the good cooperative operation ability was 
displayed. However, there are also shortcomings in the research 

technology, as it has not taken into account the influence of 
more dynamic objects in the air environment. In addition, more 
motion characteristics of UAVs have not been taken into 
account. In the future, it is necessary to fully consider the above 
issues and improve technological adaptability. 
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