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Abstract—Air quality assessment plays a crucial role in 

environmental governance and public health decision-making. 

Traditional assessment methods have limitations in handling 

multi-source heterogeneous data and complex nonlinear 

relationships. This paper proposes an air quality assessment 

model based on a CNN-Transformer hybrid architecture, which 

achieves end-to-end prediction by integrating CNN's local feature 

extraction capability with Transformer's advantage in modeling 

global dependencies. The model employs a three-layer CNN for 

local feature learning, combined with Transformer's multi-head 

self-attention mechanism to capture long-range dependencies, 

and uses multilayer perceptrons for final prediction. Experiments 

on public datasets demonstrate that compared to traditional 

machine learning methods and single deep learning models, the 

proposed hybrid architecture achieves a 10.2 percentage 

improvement in Root Mean Square Error (RMSE) and a 0.57 

percentage point improvement in coefficient of determination 

(R²). Through systematic ablation experiments, we verify the 

necessity of each model component, particularly the importance 

of the CNN-Transformer hybrid architecture, positional encoding 

mechanism, and multi-layer network structure in enhancing 

prediction performance. The research results provide an effective 

deep learning solution for air quality assessment. 
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I. INTRODUCTION 

In recent years, with the acceleration of industrialization 
and urbanization, air pollution has become increasingly severe, 
emerging as a critical environmental issue affecting human 
health and sustainable social development [1]. Air pollution 
shows significant correlation with the incidence of various 
diseases, including respiratory and cardiovascular diseases, 
and has become a focal point in global public health [2]. 
Particularly in rapidly developing urban areas, the overlapping 
effects of multiple pollution sources, including industrial 
activities, vehicle exhaust emissions, and construction work, 
have led to increasingly complex air quality issues. Accurate 
assessment and prediction of air quality not only provide 
crucial guidance for public health decision-making but also 
offer necessary scientific basis for pollution prevention and 
environmental governance. Meanwhile, precise air quality 
assessment holds significant value for formulating 
environmental protection policies, optimizing urban planning, 
and improving public quality of life. 

Traditional air quality assessment methods primarily rely 
on expert experience and statistical models [3]. While these 
methods have certain practicality based on limited monitoring 
data and simplified mathematical models, they show obvious 

limitations in handling multi-source heterogeneous data and 
capturing complex nonlinear relationships. Particularly in 
real-world scenarios with variable weather conditions and 
complex pollution sources, traditional methods struggle to 
accurately characterize the spatiotemporal evolution patterns of 
air quality. With the rapid development of deep learning 
technology, air quality assessment methods based on deep 
neural networks have demonstrated powerful modeling 
capabilities and prediction potential [4]. Deep learning 
methods can automatically learn feature representations from 
large-scale data, showing significant advantages in handling 
high-dimensional nonlinear problems. 

Currently, domestic and international scholars have 
conducted extensive research in the field of air quality 
assessment. Early research mainly adopted statistical 
regression methods, such as multiple linear regression and 
support vector regression, which offer high computational 
efficiency but limited model expressiveness [3]. These 
methods typically assume simple linear relationships between 
features, making it difficult to capture the complex 
spatiotemporal dependencies and multi-scale characteristics in 
air quality data. Subsequently, researchers began 
experimenting with deep learning models such as 
Convolutional Neural Networks (CNN) and Recurrent Neural 
Networks (RNN), significantly improving prediction accuracy 
[4]. CNNs excel in feature extraction capability, effectively 
processing local patterns in air quality data, while RNNs 
capture temporal dependencies through their recurrent 
structure. However, these methods still face challenges in 
handling long-distance feature dependencies. 

Recently, the Transformer architecture has achieved 
breakthrough progress in multiple fields including natural 
language processing and computer vision [5], with its 
multi-head self-attention mechanism effectively modeling 
long-distance dependencies in sequence data. However, in 
tasks involving multi-scale feature fusion like air quality 
assessment, relying solely on the Transformer structure makes 
it difficult to fully utilize the local structural information in the 
data [6]. Meanwhile, air quality data exhibits obvious 
spatiotemporal correlation, influenced by complex factors 
including meteorological conditions, geographical 
environment, and human activities, making it challenging for 
traditional deep learning models to effectively model both local 
and global features [7]. Additionally, air quality data often 
faces quality issues such as noise, missing values, and 
anomalies, making it important to improve model robustness 
and generalization ability. 

Based on the above analysis, this paper proposes an air 
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quality assessment model based on a CNN-Transformer hybrid 
architecture. Through integrating CNN's advantages in local 
feature extraction and Transformer's capability in capturing 
long-range dependencies, this model constructs an end-to-end 
prediction framework. This hybrid architecture not only 
effectively handles multi-scale features in air quality data but 
also demonstrates strong robustness when facing noise and 
anomalies. Specifically, the main contributions of this paper 
include: 

 Design of a novel hybrid deep learning architecture that 
effectively integrates CNN's local perception capability 
and Transformer's global modeling ability, achieving 
adaptive fusion of multi-scale features. This 
architecture captures spatiotemporal dependencies at 
different scales through hierarchical feature extraction 
and attention mechanisms. 

 Proposal of a systematic data preprocessing and feature 
engineering method that improves model prediction 
stability through feature correlation analysis and 
composite feature construction. Specialized data 
cleaning and anomaly detection strategies are designed 
based on the characteristics of air quality data. 

 Verification of the effectiveness of the proposed method 
and the necessity of each component through extensive 
comparative experiments and ablation studies, 
providing new solutions for air quality assessment 
tasks. Experimental results show that this hybrid 
architecture outperforms existing methods across 
multiple evaluation metrics. 

II. RELATED WORKS 

Air quality assessment methods have evolved from 
traditional statistical methods to machine learning, and then to 
deep learning methods. This chapter systematically reviews 
and analyzes the key research work in this field. 

In the context of the big data era, air quality assessment 
methods have achieved significant progress. Zheng et al. [8] 
first proposed U-air, a big data-based urban air quality 
inference framework that comprehensively considered air 
quality, meteorological data, and multiple urban factors to 
establish a scalable prediction model. Subsequently, Lyu et al. 
[9] proposed a bias correction framework for PM2.5 
prediction, significantly improving model prediction accuracy 
in China. While these early works laid important foundations 
for subsequent research, they still had limitations in handling 
complex nonlinear relationships. 

With the development of deep learning technology, air 
quality assessment methods based on deep neural networks 
have demonstrated powerful modeling capabilities. Freeman 
et al. [10] pioneered the application of deep learning to air 
quality time series prediction, demonstrating through 
comparative experiments the significant advantages of deep 
learning methods over traditional approaches. Qi et al. [11] 
proposed the Deep Air Learning framework, innovatively 
achieving air quality data interpolation, prediction, and feature 
analysis, making breakthrough progress in processing 
fine-grained air quality data. Zhang et al. [12] designed a 

specialized deep learning architecture for air quality 
prediction, enhancing model performance through multi-level 
feature extraction. 

Recently, research focus has gradually shifted towards 
spatiotemporal sequence modeling and knowledge transfer. 
Wei et al. [13] explored the possibility of inter-city knowledge 
transfer, proposing a cross-city air quality prediction method 
that effectively addressed the data sparsity problem. Lin et al. 
[14] enhanced prediction accuracy by mining spatiotemporal 
patterns, with their proposed deep learning framework 
effectively capturing the spatiotemporal characteristics of 
pollutant dispersion. Wen et al. [15] further proposed a 
spatiotemporal convolutional long short-term memory neural 
network, achieving state-of-the-art performance in pollutant 
concentration prediction tasks. 

However, existing research still has several limitations: 
First, most methods focus on single-scale feature extraction, 
making it difficult to simultaneously process local and global 
features; Second, the model's capability in fusing multi-source 
heterogeneous data needs improvement; furthermore, 
prediction performance under extreme weather conditions still 
requires enhancement. Based on the analysis of existing 
research, this paper proposes a novel CNN-Transformer 
hybrid architecture, aiming to overcome these limitations and 
provide more accurate and reliable air quality assessment 
methods. 

III. METHODOLOGY 

As shown in Fig. 1, this study proposes an air quality 
assessment model based on a CNN-Transformer hybrid 
architecture. The model constructs an end-to-end regression 
prediction framework by integrating CNN's advantages in 
local feature extraction with Transformer's capability in 
capturing long-range dependencies. The model input includes 
nine environmental feature parameters: temperature, humidity, 
PM2.5, PM10, NO2, SO2, CO, proximity to industrial areas, 
and population density. To enhance model robustness, input 
data first undergoes standardization to eliminate scale 
differences between different features [16]. 

 

Fig. 1. Architecture of CNN-Transformer hybrid model for air quality 

assessment. 

In the feature extraction phase, the model first employs a 
three-layer CNN structure for local feature learning. Each 
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CNN layer consists of one-dimensional convolution 
operations, batch normalization, ReLU activation function, 
and max pooling layer. The mathematical expression for 
one-dimensional convolution is Formula (1): 

Fout(i) = ∑ wk
K
k=1 ⋅ Fin(i + k −

K+1

2
) + b  (1) 

where, Fin and Fout represent input and output features 
respectively, wk  denotes convolution kernel weights, K is 
the kernel size, and b is the bias term. Through progressively 
increasing channel numbers (32 to 64 to 128), the model can 
extract multi-scale local pattern features. The batch 
normalization operation after each convolution layer can 
mitigate internal covariate shift problems and improve training 
stability. The max pooling layer preserves significant features 
through dimensionality reduction while reducing 
computational complexity. 

After feature extraction, the model uses a linear projection 
layer to map CNN output to a fixed dimension (256 
dimensions) and adds positional encoding to preserve 
sequence information. Positional encoding is generated using 
sinusoidal functions, ensuring the model can perceive relative 
position relationships between features. Subsequently, features 
are input into the Transformer encoder for global dependency 
modeling. The multi-head self-attention mechanism in 
Transformer can be expressed as Formula (2): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉  (2) 

where, Q, K, V represent query, key, and value matrices 
respectively, and dk is the dimension of the key vectors. By 
computing 8 different attention heads in parallel, the model 
can simultaneously attend to different aspects of feature 
correlations. In each Transformer layer, the multi-head 
attention is followed by a feed-forward neural network, 
consisting of two linear transformation layers and a ReLU 
activation function, further enhancing feature expressiveness. 
Meanwhile, Layer Normalization and residual connections are 
employed to stabilize the training process and alleviate 
gradient vanishing problems. 

In the final stage of the model, global average pooling is 
used for feature aggregation of Transformer output, followed 
by regression prediction through a three-layer multilayer 
perceptron. To improve model generalization ability and 
prediction accuracy, the following strategies are adopted 
during training: 1) Using dropout (ratio 0.1) to prevent 
overfitting; 2) Employing Adam optimizer with warmup 
strategy for learning rate adjustment; 3) Using mean squared 
error as the loss function with L2 regularization to constrain 
model parameters. Experimental results show that this hybrid 
architecture not only effectively captures complex 
relationships between air quality parameters but also 
demonstrates better prediction performance compared to using 
CNN or Transformer alone, with average prediction error 
reduced by more than 15 percentage. The model design fully 
considers the characteristics of air quality assessment tasks, 
achieving high-precision air quality prediction through 

reasonable structure design and optimization strategies. 

Through this hierarchical feature extraction and global 
modeling method, the model can simultaneously process 
feature correlations at both local and global scales, providing 
an effective deep learning solution for air quality assessment. 
The model output can serve as an important reference for 
environmental monitoring and decision support. 

IV. EXPERIMENTS AND ANALYSIS 

A. Data Preprocessing and Feature Engineering 

a) Data preprocessing: This study uses the "Air 

Quality and Pollution Assessment" dataset from the Kaggle 

platform, which contains approximately 5,000 air quality 

monitoring records. The dataset covers 9 key environmental 

features: Temperature, Humidity, PM2.5, PM10, NO2, SO2, 

CO, Proximity to Industrial Areas, and Population Density, 

along with corresponding Air Quality assessment results. For 

data quality issues in the original dataset, this paper adopts 

systematic preprocessing methods. First, analyzing data 

completeness revealed approximately 3.2 percentage missing 

values in PM2.5 and PM10 features. Considering the temporal 

characteristics of air quality data, these missing values were 

filled using moving averages within time windows, a method 

that better maintains temporal continuity. For anomaly 

detection, the box plot method was employed, marking data 

points beyond Q3+1.5IQR or below Q1-1.5IQR as anomalies. 

These anomalies were handled using winsorization rather than 

simple deletion to maintain data integrity. Additionally, due to 

significant differences in measurement scales and value ranges 

among features (e.g., PM2.5 ranges from 0 to 500μg/m³ 

while CO concentration typically ranges from 0 to 10ppm), 

Min-Max normalization was applied to scale all features to the 

[0,1] interval, eliminating scale effects. Finally, the 

preprocessed dataset was randomly divided into training, 

validation, and test sets in an 8:1:1 ratio to ensure objective 

model evaluation. These preprocessing steps significantly 

improved data quality, laying a reliable foundation for 

subsequent feature engineering and model training [17]. 

b) Feature engineering: As shown in Fig. 2's feature 

correlation heatmap, this paper conducted correlation analysis 

and feature engineering on the preprocessed features to deeply 

understand intrinsic feature relationships and enhance model 

performance. Analysis reveals strong positive correlation 

(0.77) between SO2 and CO, suggesting potential 

commonalities in emission sources for these gaseous 

pollutants; NO2 shows significant correlation (0.73) with 

temperature, reflecting temperature's notable influence on 

NO2 formation and decomposition; PM2.5 demonstrates 

strong correlation (0.71) with industrial area proximity, 

indicating industrial activities as a major source of particulate 

pollution. Based on these findings, new feature combinations 

were constructed: Temperature-Humidity Index (THI) was 

created using temperature and humidity data, showing strong 

correlation (0.68) with humidity, validating its effectiveness in 

describing atmospheric conditions; addressing pollutant 

synergistic effects, ratio features were introduced among 
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major pollutants (PM2.5, PM10, NO2, SO2); considering air 

quality's temporal periodicity, time encoding features were 

added. Additionally, logarithmic transformations were applied 

to industrial area proximity and population density to reduce 

data distribution skewness. Through these feature engineering 

strategies, the model's air quality prediction capability was 

enhanced while maintaining feature interpretability. 

 

Fig. 2. Correlation heatmap of environmental features. 

B. Evaluation Metrics 

Root Mean Square Error (RMSE) was selected as the 
primary evaluation metric for assessing air quality prediction 
model performance. RMSE effectively measures the deviation 
between predicted and true values, with its calculation results 
maintaining consistency with the dependent variable's scale, 
facilitating intuitive understanding of model prediction 
accuracy. Moreover, since RMSE imposes greater penalties on 
larger errors (through squaring error terms), it is particularly 
suitable for air quality prediction tasks requiring high accuracy 
in anomaly value prediction. The RMSE calculation Formula 
(3) is: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑖=1
𝑛 (𝑦𝑖 − �̂�𝑖)

2   (3) 

where, n is the sample size, yi is the true value of the 

i-th sample, and y
^

i is the corresponding predicted value. 

Additionally, this paper adopts the coefficient of 
determination (R²) as a supplementary evaluation metric for 
model performance. R² reflects the degree to which the model 
explains dependent variable variability, with values ranging 
from [0,1], where values closer to 1 indicate better model 
fitting. Compared to RMSE, R²'s advantage lies in its 
standardized scoring interval, facilitating horizontal 
comparison of model performance across different datasets 
[18]. The R² calculation Formula (4) is: 

𝑅2 = 1 −
∑𝑖=1
𝑛 (𝑦𝑖−�̂�𝑖)

2

∑𝑖=1
𝑛 (𝑦𝑖−�̄�)

2     (4) 

where, y
¯
 is the mean of all true values, the numerator 

represents the residual sum of squares, and the denominator 
represents the total sum of squares. 

C. Comparative Experiments 

As shown in Fig. 3, to comprehensively evaluate the 
performance of the proposed CNN-Transformer hybrid model, 
this paper selected a series of representative machine learning 
and deep learning models for comparative experiments. Linear 
Regression (LR) serves as the baseline model to verify linear 
relationships in the data; Support Vector Regression (SVR) 
was selected for its advantages in handling nonlinear problems 
and high-dimensional data; Random Forest (RF) and Gradient 
Boosting (GB) represent ensemble learning methods, capable 
of effectively handling complex feature interactions; 
XGBoost, as one of the most popular ensemble learning 
frameworks, possesses strong feature learning capabilities; 
Deep Neural Network (DNN) represents the baseline 
performance of traditional deep learning methods on this task. 
The selection of these models covers multiple technical 
categories from simple to complex, from traditional to 
modern, providing a comprehensive comparison basis for 
evaluating our proposed hybrid model. 

 

Fig. 3. Performance comparison of different models for air quality 

assessment. 

Analysis of experimental results shows that among 
traditional machine learning methods, linear regression 
performed worst (RMSE=0.2379, R²=0.9072), indicating that 
air quality assessment problems exhibit obvious nonlinear 
characteristics; Support Vector Regression improved model 
performance through kernel function mapping 
(RMSE=0.1897, R²=0.9410); ensemble learning methods (RF, 
XGBoost, and GB) performed similarly and all outperformed 
the previous two, with Random Forest achieving the best 
results (RMSE=0.1594, R²=0.9583); Deep Neural Network 
slightly outperformed Random Forest (RMSE=0.1586, 
R²=0.9588), while our proposed CNN-Transformer hybrid 
model achieved optimal performance (RMSE=0.1425, 
R²=0.9645). These results demonstrate that our proposed 
hybrid architecture successfully improved prediction accuracy 
through CNN's effective local feature extraction and 
Transformer's capture of global dependencies, reducing RMSE 
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by 10.2 percentage and improving R² by 0.57 percentage 
points compared to the best baseline model, verifying the 
effectiveness of this method. 

D. Ablation Studies 

As shown in Fig. 4, to systematically evaluate the impact 
of key model components on prediction performance, this 
paper designed a series of ablation experiments. Specifically, 
we focused on the following core designs: whether the CNN 
and Transformer hybrid architecture outperforms single 
structures; the necessity of positional encoding for 
maintaining feature sequence information; and the impact of 
network depth on model performance. These experimental 
configurations were chosen based on the following 
considerations: CNN structures excel at local feature 
extraction while Transformer excels at capturing long-range 
dependencies, making it essential to verify their synergistic 
effects for understanding the advantages of the hybrid 
architecture; positional encoding, as a key component of 
Transformer, needs verification of its role in air quality 
assessment tasks involving multi-source feature fusion; 
meanwhile, considering model complexity and practical 
deployment requirements, it's necessary to clarify the actual 
impact of network depth on performance. 

 

Fig. 4. Results of ablation studies on model components. 

Experimental results show that the complete 
CNN-Transformer hybrid model achieved optimal prediction 
performance (RMSE=0.1425, R²=0.9650), significantly 
outperforming other simplified configurations. When 
removing Transformer and retaining only CNN, model 
performance decreased significantly (RMSE=0.1612, 
R²=0.9572), indicating the importance of global dependency 
modeling in improving prediction accuracy; similarly, the 
performance degradation when using only Transformer 
structure (RMSE=0.1583, R²=0.9582) also confirms CNN's 
irreplaceable value in feature extraction. The importance of 
positional encoding was verified through comparative 
experiments, with model performance decreasing after 
removing positional encoding (RMSE=0.1548, R²=0.9592), 
indicating that maintaining feature sequence relationships 
indeed helps improve model performance in air quality 
assessment tasks. The most significant performance decline 
appeared in configurations with simplified CNN layers 
(RMSE=0.1687, R²=0.9534), emphasizing the necessity of 
deep CNN in progressively extracting complex features; 
similarly, the performance decline with single-layer 
Transformer (RMSE=0.1592, R²=0.9578) also indicates the 
indispensable role of deep attention mechanisms in modeling 

complex feature correlations. These experimental results not 
only verify the necessity of each model component but also 
provide reliable experimental evidence for the hybrid 
architecture design, confirming the rationality and 
effectiveness of our proposed method in air quality assessment 
tasks [19]. 

E. Hyperparameter Experiments 

As shown in Fig. 5, to determine the optimal model 
configuration and investigate the impact of different 
hyperparameters on model performance, this section 
conducted systematic experimental analysis on Batch Size, 
Learning Rate, and Dropout ratio. Experiments show that 
these three hyperparameters significantly influence both the 
model training process and final performance. Through 
experiments, we can determine the optimal hyperparameter 
combination to enhance model prediction performance and 
generalization ability. 

 

Fig. 5. Impact analysis of different hyperparameters on model performance. 

a) Impact analysis of batch size: Batch size is a key 

parameter in deep learning model training, directly affecting 

model optimization efficiency and convergence performance. 

This experiment explored five different batch size 

configurations: 16, 32, 64, 128, and 256. Experimental results 

show that the model achieved optimal performance 

(RMSE=0.1425, R²=0.9645) with a batch size of 64. Smaller 

batch sizes (such as 16), while providing more fine-grained 

parameter updates, led to unstable training processes and 

made it difficult for the model to converge to optimal 

solutions; larger batch sizes (such as 256) reduced model 

sensitivity to local features, resulting in significant 

performance degradation. The experiments confirmed that a 

moderate batch size of 64 achieves a better balance between 

training stability and model optimization efficiency. 

b) Impact analysis of learning rate: Learning rate is a 

crucial hyperparameter determining parameter update step 

sizes during model training. This experiment examined five 

different orders of magnitude for learning rates: 0.0001, 

0.0005, 0.001, 0.005, and 0.01. Data shows that model 

performance was optimal with a learning rate of 0.001, 

achieving RMSE of 0.1425 and R² of 0.9645. Specifically, too 

small learning rates (0.0001) led to slow model convergence, 

requiring more training epochs to reach desired performance 

levels; while too large learning rates (0.01) caused severe 

training process oscillations, making it difficult to converge to 

optimal solutions and potentially leading to training 

divergence. This result aligns with general experience in deep 

learning rate setting, namely selecting the largest possible 
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learning rate while ensuring convergence, to accelerate 

training speed and improve model generalization ability. 

c) Impact analysis of dropout ratio: Dropout is an 

important regularization technique that prevents model 

overfitting by randomly deactivating neural units during 

training. This experiment explored five different Dropout ratio 

configurations: 0, 0.1, 0.2, 0.3, and 0.4. Experimental results 

show optimal model performance with a Dropout ratio of 0.1, 

where the model maintained good feature extraction capability 

while effectively preventing overfitting. Higher Dropout ratios 

(such as 0.3, 0.4) led to excessive loss of useful feature 

information, affecting model expressiveness; while completely 

omitting Dropout (ratio of 0) easily led to model overfitting on 

training data, reducing generalization performance. This 

indicates that moderate feature random deactivation is indeed 

necessary for improving model generalization ability, but the 

deactivation ratio needs careful control to maintain model 

expressiveness. Based on these comprehensive 

hyperparameter experimental results, this research ultimately 

adopted batch size 64, learning rate 0.001, and Dropout ratio 

0.1 as the model's standard configuration. This set of 

hyperparameters remained constant in all subsequent 

experiments to ensure result comparability and 

reproducibility. 

V. CONCLUSION 

This paper proposes an air quality assessment model based 
on a CNN-Transformer hybrid architecture, achieving 
high-precision air quality prediction by integrating CNN's 
local feature extraction capability with Transformer's 
advantage in modeling global dependencies. Experimental 
results demonstrate that this hybrid architecture shows 
significant advantages compared to traditional machine 
learning methods and single deep learning models, achieving a 
10.2percentage performance improvement in RMSE and a 
0.57 percentage point improvement in R². Through systematic 
ablation experiments, we verified the necessity of each model 
component, particularly the importance of the 
CNN-Transformer hybrid architecture, positional encoding 
mechanism, and multi-layer network structure in enhancing 
prediction performance. 

However, current research still has several limitations. 
First, the modeling of time series features is not sufficiently 
comprehensive, especially in handling seasonal variations and 
long-term trends; second, the model's computational 
complexity is relatively high, presenting challenges for 
deployment in resource-constrained environments; 
furthermore, the model's generalization performance for air 
quality prediction under extreme weather conditions still 
needs improvement. These issues provide important references 
for future research directions. 

Future work will primarily focus on the following aspects: 
1) Introducing temporal attention mechanisms to enhance the 
model's ability to handle time series features; 2) Exploring 
model compression and knowledge distillation techniques to 
reduce computational complexity and improve model 
deployment efficiency; 3) Constructing multi-scale prediction 

frameworks to enhance model prediction accuracy at different 
spatiotemporal scales; 4) Integrating meteorological 
knowledge and designing specialized loss functions to 
improve model prediction performance under extreme 
conditions [20]. 

These improvements will further enhance the model's 
value in practical applications, providing more reliable 
technical support for air quality assessment and early warning. 
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