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Abstract—In machine learning studies, feature selection 

presents a crucial step especially when handling complex and 

imbalanced datasets, such as those used in road traffic injury 

analysis. This study proposes a novel multitasking feature 

selection methodology that integrates the Grey Wolf Optimizer, 

knowledge transfer, and the CatBoost ensemble algorithm to 

enhance the performance and interpretability of road accident 

severity prediction. The main objective of this study is to identify 

critical features impacting the prediction of severe injury cases in 

road accidents. The proposed framework integrates several steps 

to handle the complexities related to feature selection. The fitness 

function of the Grey Wolf Optimizer model is designed to 

prioritize the classification accuracy of the severe injury class. To 

mitigate early convergence of the model, a knowledge transfer 

mechanism that generates new wolf instances based on a historical 

record of wolves used previously is integrated within a 

multitasking process. To evaluate the prediction performance of 

the generated feature subsets, the CatBoost algorithm is employed 

in the evaluation step to assess the effectiveness of the proposed 

approach. By Integrating these three step methodology which 

combine metaheuristic feature selection technique with knowledge 

transfer through a multitasking process, the proposed framework 

enhances generalization, reduces prediction models complexity 

and handles imbalanced distributions. It proposed a feature 

selection model that overcomes key limitations of traditional 

methods. Applied to real-world road crash data, the methodology 

significantly improves the identification of factors impacting the 

severity of injuries. Experimental results demonstrate enhanced 

model performance, reduced complexity, and deeper insights into 

the factors contributing to traffic injuries. These findings highlight 

the potential of advanced machine learning techniques in 

improving road safety analysis and supporting data-driven 

decision-making. 
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I. INTRODUCTION 

Machine learning (ML) advancements have created 
interesting opportunities to solve complex problems in recent 
research studies. The large amount of collected data serves as an 
important source of information to train ML models. However, 
many datasets are subject to a common problem where certain 
classes, often the most critical, are significantly 
underrepresented. The analysis of such imbalanced datasets 
remains a persistent challenge. 

This study aims to leverage advancements in machine 
learning techniques to identify factors associated with severe 
injuries in road traffic accidents. Through a detailed analysis of 

crash-related data, this work seeks to enhance the understanding 
of injury mechanisms and support the development of more 
effective safety policies and real-time intervention strategies. 

In road safety studies, datasets often exhibit imbalanced data 
problems, and a large number of features are collected. 
Predicting severe injury resulting from road crashes often 
involves dealing with imbalanced data distributions. The 
underrepresentation of minority classes in such datasets, 
combined with the use of a large number of features, can impact 
the training and generalization capabilities of traditional 
machine learning models. It also impacts the complexity of ML 
models and could lead to overfitting. Guyon explains that 
domains with a large numbers of input features are susceptible 
to the curse of dimensionality and multivariate methods may 
lead to overfitting [1]. The reduction of the number of features 
can lead to more robust models by mitigating overfitting and 
enhancing generalization [2]. 

By isolating the most relevant features and reducing the 
dimensionality of datasets, feature selection improves the 
interpretability of prediction models and ensures better focus on 
minority class prediction. However, traditional feature selection 
methods often face challenges to balance the needs of minority 
classes in high-dimensional data, complex interactions between 
features can hinder models from identifying the critical variables 
that influence the accuracy of classification. For instance, in 
road crashes case studies, datasets consists of different feature 
domains including driver characteristics, crash dynamics, 
vehicle attributes, and environmental conditions. These various 
features can interact in non-linear ways, which make it difficult 
for conventional techniques to effectively identify the most 
relevant features [3]. 

These challenges are particularly pressing in the context of 
road traffic crashes, which remain a global issue, claiming 1.35 
million lives and causing around 50 million injuries annually [4]. 
Such incidents are a leading cause of death, especially among 
individuals aged 15 to 29, and understanding the factors that 
influence injury severity is essential for developing effective 
safety interventions. However, the complex and multifaceted 
nature of road crash data makes it difficult to accurately identify 
the critical variables, further underscoring the need for advanced 
methodologies like the one proposed in this study. 

This study proposes a novel feature selection methodology 
that leverages advanced machine learning models. The proposed 
framework includes the metaheuristic Grey Wolf Optimizer 
(GWO), knowledge transfer techniques throw a multitasking 
process, and the CatBoost ensemble algorithm as a predictor 
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model. To ensure the effectiveness of the model application in 
the case study of injury severity prediction in road accidents, a 
specific implementation of the fitness function of the Grey Wolf 
Optimizer algorithm is elaborated.  By combining these 
techniques with a specific focus on the accuracy of severe injury 
predictions, the proposed framework aims to improve the 
identification of key factors influencing severe injury outcomes 
in road crashes, and overcome the limitations of traditional 
approaches. 

This paper is organized as follows: The second section 
presents a literature review of feature selection and machine 
learning methodologies and techniques, with a focus on road 
accident feature analysis case studies. The third section outlines 
the proposed methodology for feature selection using a 
multitasking framework. The fourth section details the 
experiments conducted using the proposed feature selection 
framework. The fifth section presents the experimental results 
and their interpretations. Finally, the last section summarizes the 
work presented in this paper and highlights areas for future 
exploration. 

II. RELATED WORK 

A. Feature Selection Techniques in Machine Learning 

Feature selection (FS) step presents an important role in 
improving the performance of classification studies, especially 
when using complex and imbalanced datasets where, the 
presence of underrepresented classes can impact the 
performance of learning model. FS methods can be divided into 
two categories of approaches: data-centric and algorithm-
centric. Data-centric techniques adjust data distribution to 
mitigate class imbalance effects through synthetic 
oversampling, instance weighting, or hybrid resampling 
strategies that integrate data augmentation with feature selection 
[5]. To minimize overfitting risks of these techniques, recent 
research has introduced adaptive synthetic sampling based on 
feature relevance and the assignment of instance-specific 
weights [6]. On the other hand, algorithm-centric methods 
introduce additional techniques to traditional feature selection 
paradigms (filter, wrapper, and embedded techniques) by 
incorporating cost-sensitive learning [7], alternative ranking 
criteria, or hybrid metaheuristics [8], to improve feature 
selection robustness in skewed distributions. Despite significant 
advancements in feature selection techniques and results, many 
challenges persist related to the identification of complex feature 
interactions, the reduction of computational time for model 
training and prediction in real-time applications, and early 
convergence which impacts the models ability to generalize 
learning in the presence of imbalanced class distributions. 
Emerging research introduce new feature selection techniques 
based on deep learning to dynamically weigh features [9]. 
Reinforcement learning-based feature selection models are used 
to iteratively refine feature subsets based on classification 
performance in imbalanced settings [10]. Another emerging 
technique called evolutionary computations aim to explore 
optimal feature subsets through population-based search 
strategies, such as Genetic Algorithms, Particle Swarm 
Optimization [11], and Grey Wolf Optimizer [12]. 

The points outlined below presents a detailed overview of 
cited feature selection methods and their relevance in selecting 

key factors influencing the performance of minority classes’ 
prediction. 

1) Filter-based methods: These methods use statistical 

measures to evaluate features independently of the model. 

Common techniques are: 

 Pearson and Spearman correlation which assess the 
statistical relationship between features and the target 
variable [1]. 

 Chi-square test which evaluates the statistical 
dependence between categorical features, comparing the 
observed data with the expected values [13]. 

 Two-Way ANOVA which is a statistical test used to 
identify the significant impact of features between two 
data groups (input and target). The test helps determine 
whether to accept or reject the null hypothesis [13]. 

2) Wrapper-based methods: Wrapper-based methods use 

machine learning algorithms to evaluate different feature 

subsets through three main steps: Generation of feature subsets, 

training and evaluation of the chosen machine learning model 

for each subset, and the identification of the best subset that 

represents the relevant features impacting the target variable 

[14]. Common wrapper-based techniques include forward 

selection, backward elimination, stepwise selection, recursive 

feature elimination (RFE) [15] and genetic algorithms [16]. 

These methods are model-specific, which allows them to 

optimize feature selection based on the model’s performance. 

However, they tend to be computationally expensive and are 

susceptible to overfitting [1]. 

3) Embedded methods: Under the third category of 

embedded methods, feature selection is seamlessly integrated 

into the machine learning algorithm itself. These methods not 

only identify relevant features but also actively suppress the 

influence of less informative ones, offering a highly efficient 

solution to feature selection. Key techniques include: 

 L1 and L2 Regularization (Lasso and Ridge): These 
methods incorporate regularization terms into the loss 
function, shrinking the coefficients of less significant 
features and promoting sparse, interpretable models. 

 Decision Trees and Random Forests: These algorithms 
inherently measure feature importance by analyzing how 
frequently a feature contributes to optimal node splits. In 
Random Forests, the Gini index is commonly employed 
to quantify this importance, ensuring robust feature 
evaluation [17]. 

 Ensemble Methods: Advanced techniques such as 
gradient boosting and CatBoost go further by quantifying 
feature contributions to the overall model performance. 
This enables precise ranking of features based on their 
predictive power [1]. 

4) Hybrid methods: To identify the most relevant and 

coherent features, many researchers combine in practice 

multiple feature selection techniques. This combination of 

feature selection techniques is referred to as hybrid methods. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

282 | P a g e  

www.ijacsa.thesai.org 

Bhyuian used Chi-square, Two-way ANOVA, and regression 

analysis to identify nine key factors impacting road crash 

severity from a set of fourteen features [13]. In a similar context 

or road accident severity prediction, Alkheder employed 

Chi- square automatic interaction detector trees, Bayesian 

networks, and linear SVM to identify risk factors and improve 

classification performance, achieving a testing accuracy of 66% 

for correct predictions [18]. Kashifi used SHAP analysis and 

the Gated Recurrent Convolution Network model to identify 

complex relationships in road accident data [19]. 

The combination of feature selection techniques in hybrid 
methods is valuable in complex domains such as road crash 
injury prediction. It can enhance the robustness of feature 
selection and improve model performance. 

Despite advancements of feature methods such as filter, 
wrapper, and embedded techniques, these approaches present 
several limitations related to computational inefficiency, 
sensitivity to noise, and the risk of suboptimal feature subsets 
due to local minima entrapment [1], [20]. 

To overcome these limitations, metaheuristic algorithms 
have emerged as powerful alternatives using efficient global 
search strategies. Among these algorithms, the Grey Wolf 
Optimizer, which is inspired by the social hierarchy and 
cooperative hunting behavior of grey wolves, demonstrated its 
ability to balance exploration and exploitation [21]. The concept 
of this algorithm aims to identify optimal feature subsets, it 
consists of dynamically updating candidate solutions based on a 
fitness function to assess the relevance of generated candidates. 
However, due to its random initialization of candidate solutions, 
the standard GWO model may face stagnation in later iterations 
and sensitivity to initial parameter settings. This necessitates 
further enhancements to improve its robustness and adaptability, 
such as hybridization with machine learning techniques [22], 
[23]. 

B. Road Accident Features Analysis 

Feature selection is closely linked to the choice of data 
architecture model during the data collection phase. Data 
architecture determines the number of collected features, 
consistency, and detail of features. Well-chosen features can 
lead to accurate and meaningful insights, while poor feature 
selection may result in misleading conclusions. 

In road crash studies, key features for accident analysis have 
been refined over the years by road safety experts. The European 
Road Assessment Program (EuroRAP) established standardized 
protocols to display the safety level of a road, offering a common 
framework for communication [24]. Regular updates are 
recommended to adjust the evolving nature of road and 
environmental factors, vehicle characteristics, and driver 
profiles. These features also vary depending on the national 
context and the specific road safety strategies in place, adapting 
to the unique challenges and priorities of each region. However, 
during the data engineering phase, data analysts often create 
additional features to highlight new aspects that are not 
adequately represented by the original, collected features. These 
engineered features provide a deeper understanding of the data, 
revealing hidden patterns and relationships. 

To cover sector-specific aspects of this study, an analysis of 
data dictionaries of road crash injury studies has been conducted 
to identify the key characteristics of the data architecture model 
for road crash injury datasets and elaborate a specific feature 
engineering map for road crashes datasets (see Fig. 1). 

 

Fig. 1. Feature engineering map for road crashes datasets. 

The presented road crash feature map highlights four main 
characteristics of the architecture of a road accident data 
inventory: 

 Number of features: The number of features varies 
significantly across studies, ranging from as few as 8 to 
as many as 50 features. A key measure is introduced to 
differentiate between Big and Small Datasets, referring 
to the volume of data, whether large-scale or limited in 
scope. 

 Content of features: The features are typically classified 
into four broad categories: road features, vehicle 
features, driver features, and environmental features. 

 Feature value format: Features vary in their data format, 
including categorical, numerical, and Boolean types. 

 Precision of feature description: The level of detail in 
feature descriptions, particularly for categorical values, 
differs significantly. Some studies provide specific and 
detailed descriptions (e.g., road surface type, weather 
conditions), while others are less detailed (e.g., broad 
classifications of road conditions). Holistic/Atomic Data: 
Indicating whether the dataset includes broad, 
comprehensive features (holistic) or more granular, 
individual characteristics (atomic). 
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The proposed feature engineering map serves two main 
purposes: 

 Pre-use Tool: It can be applied before the creation of a 
road accident dataset. In this phase, the map helps to 
identify the key features that need to be collected or 
derived, guiding the data acquisition process. This 
ensures that the dataset is built with relevant and 
meaningful features from the outset, facilitating a more 
efficient and effective analysis later on. 

 Post-use Tool: Once a road accident dataset has been 
created and data is collected, the map can be utilized to 
classify the dataset based on the identified features. It 
helps in evaluating the quality of the features and the 
dataset as a whole, allowing for the selection of 
appropriate machine learning techniques. Based on the 
results from the feature engineering map, relevant 
algorithms and models can be chosen to enhance 
prediction accuracy, handle data imbalances, or optimize 
for specific outcomes. 

III. METHODOLOGY 

To perform the prediction capability of machine learning 
models using feature selection techniques, this paper proposed a 
multitasking feature selection framework using knowledge 
transfer and metaheuristic optimization algorithm. The proposed 
framework implements a feature selection process using the 
Grey Wolf Optimization, a metaheuristic optimization 
algorithm inspired by the hunting behavior of wolves. It aims to 
identify the most relevant features for a classification task. The 
proposed framework performs multiple tasks (feature selection 
iterations) where it optimizes feature subsets independently. For 
each task, the fitness function of GWO based on precision of 

severe injuries class evaluates the selected features using cross-
validation and a CatBoost classifier. 

To enhance the computational performance of the model, a 
knowledge transfer method is incorporated in the model by 
storing the historical wolves (feature subsets) evaluated in 
previous tasks and the best historical performance achieved by 
a feature subset which is represented by a wolf instance. Before 
each initialization of the wolf instance parameters, the model 
checks the historical wolves list, and generates new instance of 
wolf. This technique enhances the computational performance 
by avoiding redundant computations of used wolves. 

One of the major limitation of wolf optimizer algorithm is 
the risk of stagnation in later iterations. To avoid this problem, 
the multitasking process is introduced in the proposed model. 
Combined to the knowledge transfer method described before, 
each task explores the historical list of wolves, generates new 
instances of wolves achieving a better performance than the 
stored best feature subset. This technique countermeasure an 
eventual fast convergence of the model. 

Given the issue of imbalanced data and the strong 
representation of the non-severe accident class, the fitness 
function in the proposed model is designed to prioritize the 
precision of the severe injuries class. This configuration allows 
the model to focus its performance on improving the prediction 
of the minority class, which will result in feature subsets that 
primarily impact the severe injuries class. 

Finally, the best feature subset is used to train a final model 
and evaluate its performance on a test set, focusing on precision 
for classifying the severe injuries class. 

Fig. 2 presents the framework of the proposed multitasking 
feature selection model.

 

Fig. 2. Framework of the proposed multitasking feature selection model. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

284 | P a g e  

www.ijacsa.thesai.org 

A. Grey Wolf Optimizer Processing 

The proposed model employs Grey Wolf Optimization as the 
core of the multitasking feature selection framework. Inspired 
by the social hierarchy and hunting strategy of grey wolves, the 
search process of this metaheuristic algorithm is guided by four 
types of wolves called alpha, beta, delta, and omega. The alpha 
wolves represent the best solutions, while beta and delta are used 
to refine the search, and omega wolves explore new possibilities. 
The Grey Wolf Optimizer algorithm updates the positions of 
candidate solutions in a manner similar to the encircling, 
chasing, and attacking behaviors observed in wolf groups [21]. 
This allows the model to ensure an optimal selection of relevant 
features by balancing exploration (searching for new solutions) 
and exploitation (refining the best solutions). 

GWO uses a fitness function to evaluate the score of selected 
wolves. The default fitness function is designed for general-
purpose optimization tasks relying on minimizing an error 
function or maximizing an objective function without domain-
specific adaptations. In this work, the proposed fitness function 
is tailored specifically to prioritize generated wolves involving 
the most performant classification accuracy of severe injury 
class. CatBoost classifier is used as the evaluation component in 
the classification step. In addition, cross-validation is employed 
to assess generalization ability and prevent overfitting. This 
specific adaptation of the fitness function of the Grey Wolf 
Optimizer algorithm ensures that the most informative features 
impacting severe injuries are retained, leading to a more accurate 
classification process and aligning the feature selection process 
with the specific objectives of this study. 

B. Multitasking Feature Selection 

The second layer of the proposed framework consists of a 
multitasking process. This layer aims to enhance the robustness 
of the Grey Wolf Optimizer process and address its limitations 
related to the risk of stagnation in later iterations. In standard 
GWO, the search process may converge prematurely depending 
on the initially generated candidates. This may result to 
suboptimal feature subsets if diversity among candidate 
solutions is not ensured. The proposed framework integrates a 
process of multiple optimization tasks that run iteratively. Each 
task initializes the initial parameters and can then generate a new 
space of feature subsets. Inspired by multitasking evolutionary 
computation [25], this mechanism strengthens the exploration 
process operated by the Grey Wolf Optimizer. It enhances the 
overall feature selection process by ensuring that different 
feature subsets spaces are explored to identify a final subset that 
is both optimal and robust for classification. 

C. Knowledge Transfer Processing 

The third layer of the proposed framework aims to improve 
the efficiency of the multitasking layer by incorporating a 
knowledge transfer mechanism between the iterative tasks. The 
GWO algorithm randomly initialize the positions of candidate 
solutions (wolves), which represents potential solutions in a 
search space. The major limitation of using only the first layer 
of feature selection with GWO and multitasking is that tasks 
could be initialized with similar initial candidate solutions. This 
process may lead to a repetition of tasks that adds unnecessary 
computational time without providing additional value. The role 
of the knowledge transfer layer introduced in this framework is 

to transfer exploration information from previous tasks to 
subsequent ones, providing additional factors that refine the 
initialization of the Grey Wolf Optimizer parameters. 

The knowledge-transfer layer records two main data types: 
the historical list of wolves explored in previous tasks, and a list 
of the best-performing solutions encountered earlier. When a 
new task begins, it first examines the data provided by the 
knowledge-transfer layer and then generates new instances of 
wolves, with the aim of improving classification performance 
based on the previously stored best subsets. By incorporating 
this knowledge, the optimization process benefits from the 
accumulated experiences of earlier tasks, leveraging them to 
find better feature subsets more efficiently. 

Algorithm 1 describes the proposed framework including 
GWO processing, fitness function, multitasking feature 
selection and knowledge transfer mechanism. 

Algorithm 1: Multitasking FS processing 

Input: 

    X, y: Original dataset. 

    num_tasks: Number of optimization tasks. 

    num_wolves: Number of wolves (binary feature 

selection vectors). 

    max_iter: Maximum number of iterations. 

Output: 

    𝑆𝐹: Best Feature Subset; 

    Model: Trained CatBoostClassifier. 

Initialize 

Compute 

Split X and y into training (X_trainval, y_trainval) 

and test sets (X_test, y_test); 

Define fitness_function(selected_features): 

 | Extract selected columns from X_trainval                   

| based on the binary vector; 

 |   Train CatBoostClassifier using cross-validation 

 |   on the selected features; 

 | Compute and return the mean precision score       

| for class of severe injuries; 

Initialize  

best_global_precision = 0 and previous_wolves = ∅; 

For each task t = 1 to num_tasks do 

    | Initialize wolves as random binary vectors        

    | (num_wolves × num_features); 

    | Set local best fitness = 0; 

 | For iteration i = 1 to max_iter do 

 |  | For each wolf w = 1 to num_wolves do 

 | | | If wolf w exists in       

| | | previous_wolves: 

 | | | Regenerate wolf w randomly; 

 | | | End 

 | | | Compute Fitness(w) = 

 | | | fitness_function(wolf w); 

 | |  | Add wolf w to previous_wolves; 

 | |  | End 

 | | End  

 | | Identify alpha, beta, delta as the top 3 

 | | wolves based on fitness; 

 | | For each wolf w = 1 to num_wolves do 

 | | | Update wolf w's position using 

 | | | GWO update formulas with 

 | | | alpha, beta, delta; 

 | | End  
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 | | Update local best fitness if a better 

 | | solution is found; 

 | End 

 | If task's best fitness > best_global_precision,  

Update best_global_precision and 𝑆𝐹; 

 | End 

End 

Select features from X_trainval and X_test based on 

𝑆𝐹; 

Train final CatBoostClassifier on the selected 

features of X_trainval; 

Evaluate the model on X_test and compute the final 

precision score for class 1; 

Return 𝑆𝐹 and trained Model. 

IV. EXPERIMENTATION 

A. Data Description 

To verify the effectiveness of the proposed multitasking 
feature selection framework, an open data source of real data 
obtained from the annual road traffic accident databases 
managed by the French National Interdepartmental Observatory 
of Road Safety (ONISR) is used for the experiments. Each 
bodily injury accident -defined as an event occurring on a public 
road, involving at least one vehicle, and resulting in at least one 
victim requiring medical care- is recorded by law enforcement 
agencies that respond to the scene. This information is captured 
in a document called the Bodily Accident Analysis Report. The 
collection of these reports forms the national database of traffic-
related bodily injuries, commonly referred to as the "BAAC 
file," overseen by ONISR. 

The annual datasets extracted from the BAAC file include 
all bodily traffic accidents in mainland France. The research 
utilizes data from 2005 to 2020. The recorded accident data 
contains detailed information, covering aspects like crash 
characteristics, location, involved vehicles, and road users. 

To create the input dataset for this study, tables were merged 
using foreign keys specified in each data file, resulting in a 
unified dataset. After combining 64 data files -four files for each 
year- the final dataset consisted of 2,380,573 entries and 57 
features, which formed the basis for the analysis in this research. 

B. Data Visualization 

To comprehend the variation of features impacting the 
severity of injuries in road crashes, a univariate and multivariate 
statistical exploration of the dataset is conducted. The analysis 
was developed in accordance with a classification according to 
four views: 

1) Temporal and atmospheric conditions view: Features 

involved in this exploration are year of crash, day of week, 

month, is holiday, in addition to atmospheric conditions and 

brightness. The temporal exploration shows a significant 

variation of killed and injured hospitalized road users when 

distribution is by month and day of week. An increase of the 

number of accidents is detected on summer and Fridays, road 

traffic at these periods should be investigated to ensure the real 

impact. Atmospheric conditions statistics show a slight amount 

of crashes with light rains (see Fig. 3). 

2) Road characteristics view: This part of the analysis 

explores a bivariate statistical view of features related to road 

characteristics where crashes are produced. Statistics shows 

that seven features have a visible variation of number of crashes 

and severity injury: road localization, road category, type of 

intersection, mode of circulation, road profile, road plan shape 

and surface state. Crashes are more frequent at urban zones, 

outside of intersections and bidirectional roads. Departmental, 

municipal, national roads and highways are respectively road 

categories involving the highest number of crashes, especially 

hospitalized and killed ones (see Fig. 4). Most  crashes occurred 

on flat roads and straight sections with normal surface state. 

 

Fig. 3. Distribution by atmospheric conditions. 
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Fig. 4. Distribution by road category. 

3) Vehicle characteristics view: Regarding vehicle 

features, features having the highest impact on number of 

crashes and severe (killed and hospitalized) injuries are 

category of vehicle, initial shock point, place of the road user 

into the vehicle, type of collision and main maneuver before the 

crash. Light vehicles alone have a domination of number of 

crashes and severe injuries. A significant impact is noted for 

frontal and side collisions of two vehicles and non-change 

direction maneuver before the crash. The place of the driver is 

the riskiest place in vehicles with a surrounding number of 

300000 of hospitalized injuries and killed between 2005 and 

2020. 

 User profile view: 

This view aims to analyze features related to road user 
profile. An analysis of the distribution of crashes according to 
road user profile features (category, gender and age slice) and 
according to behavioral features (reason of travel at time of 
accident) is elaborated with a focus on localization on the road 
of pedestrian victims. 

The statistical analysis shows that category of user displays 
a significant impact on injury severity: pedestrians and 
passengers face approximately same risk of being killed or 
hospitalized (see Fig. 5), but drivers are exposed to the highest 
risk. This statement matches with previous results related to the 
analysis of crashes’ distribution by user place at vehicle.

 

Fig. 5. Distribution by road user category. 
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Distribution by age slice and gender presents a significant 
variation. Men and users having 15 to 34 years old and 45 to 65 

presents the highest category of killed and hospitalized victims 
as shown in Fig. 6. 

 

Fig. 6. Distribution by injury level and age slice.

The behavioral analysis presents a static peak of the value 
“leisure walk” for the fourth injury severity levels. Localization 
of pedestrians have also a direct impact on injury severity which 
is higher at areas far than 50m from the pedestrian crossing. 

The bivariate statistical analysis highlights several features 
impacting the injury severity variation. Three groups of features 
from different views present converged results with a 
convergent impact. The 1st group of features (place, category of 
user) presents a significant impact on the risk of injury for 
drivers. The 2nd group (reason of walk, month, day of week, 
surface state) presents a neutral impact in leisure trips. The 3rd 
group (maneuver before the accident, mode of circulation, initial 
choc point, road plan shape, road profile, type of intersection) 
presents a higher impact on the risk of severe injuries for frontal 
crashes. Category of vehicle and road category present a 
significant singular impact on injury severity. 

C. Data Preprocessing 

To prepare the studied dataset, the first steps of data cleaning 
and feature engineering are elaborated. Additional features were 
derived from the columns "date," "time," and "user date of birth" 
to explicitly represent embedded information: "time slice", 
"year", "month", "day", "day of week", "is holiday", "age", and 
"age slice". 

1) Multitasking feature selection process: The 

experimental process in this study aims to optimize feature 

selection for road traffic accident classification using the 

proposed multitasking feature selection framework (MFS) 

based on the Grey Wolf Optimizer. The objective is to identify 

the most relevant features from the dataset that contribute to 

accurately predicting severe accidents. 

The dataset is initially split into training-validation (75%) 
and test (25%) subsets using stratified sampling to maintain 
class balance. The feature selection process is then executed 
over multiple tasks, where each task consists of several 

candidate solutions (wolves) exploring the feature space. Each 
wolf represents a binary vector indicating selected features. 

The fitness function used in the MFS framework evaluates 
the precision of a CatBoost Classifier using 5-fold cross-
validation. It measures the model's ability to correctly classify 
severe accidents (class 1) based on the selected features. The 
equation for the proposed fitness function is expressed as: 

F(S) =
1

𝑘
 ∑ 𝑃𝑖(𝑆)𝑘

𝑖=1             (1) 

where, 

 F(S) is the fitness value for a given subset of selected 
features S. 

 k is the number of cross-validation folds (here, k=5). 

 Pi(S) is the precision score for class 1 in the i-th cross-
validation fold, computed as: 

𝑃𝑖(𝑆) =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
                               (2) 

where, 

 TPi (True Positives) is the number of correctly predicted 
severe accidents in fold i. 

 FPi (False Positives) is the number of non-severe 
accidents incorrectly classified as severe in fold i. 

The objective is to maximize F(S), ensuring that the selected 
feature subset leads to the highest precision in classifying severe 
accidents. 

The precision score for class 1 (severe accidents) is used as 
the performance metric. Throughout multiple iterations, the 
best-performing wolves (α, β, and δ) guide the position updates 
of the other wolves using adaptive coefficients. This iterative 
search process refines the feature selection, aiming to maximize 
classification precision. 
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Ultimately, this strategy helps the algorithm converge more 
effectively toward the best feature set, improving the 
classification model’s precision in identifying severe accidents. 

After completing all tasks, the best feature subset is selected 
based on the highest recorded precision. The final CatBoost 
model is then trained on the training-validation set using the 
selected features and evaluated on the independent test set. The 
test performance is measured using the precision score for class 
1 to assess the model's ability to correctly identify severe 
accidents. 

V. RESULTS AND DISCUSSION 

This section presents the experimental results for the 
multitasking feature selection framework using the road 
accident dataset. Three aspects are evaluated in this study: the 

model's performance; the effect of computational time on 
training and prediction; and the impact on model complexity, 
including an analysis of factors influencing the prediction of 
injury severity in road accidents. 

A. Performance of the MFS Model 

1) Convergence to the best feature subset: To evaluate the 

performance of the techniques used in the MFS model for 

identifying impacting factors and its capability to overcome the 

limitations of GWO through multitasking and knowledge 

transfer, an analysis of the generated wolves in each task and 

iteration during the data processing step is conducted. Table I 

presents an excerpt from the log file of the generated feature 

subsets during processing.

TABLE I.  EXCERPT FROM THE LOG FILE OF GENERATED FEATURE SUBSETS 

Iteration 
Wolf 

Number 
Feature Subset Fitness value 

5 1 [0  2  4  5  8  9  10  11  12  13  14  15  16  17  18  22  24  25  28  30  31] 0,6430 

5 2 [1  2  4  5  8  9  12  13  14  16  17  18  24  25  28  29  30  31]  0,6356 

5 3 [0  2  4  5  8  11 13  14  15  16  17  18  25  28  29] 0,6201 

5 4 [0  2  4  5  8  9  11  12  13  14  16  17  18  24  25  28  29  30  31] 0,6388 

5 5 [2  5  9  10  12  13  14  16  24  25  30  31] 0,0000 

5 6 [0  2  3  4  5  8  9  12  13  14  16  17  18  21  22  24  25  30] 0,0000 

5 7 [0  2  4  5  8  9  10  12  13  14  16  17  21  22  24  25  29  30  31] 0,0000 

The analysis of the log file presented in Table I reveals that 
GWO generates many new wolves (feature subsets) that had 
already been used in previous tasks. The additional layer of 
knowledge transfer introduced in the MFS framework 
effectively addresses this limitation. By leveraging the historical 
set of previously generated wolves, the model minimizes the 
reuse of feature sets. The fitness function of previously used 
wolves is automatically set to 0, as shown in Table I, 
encouraging the generation of new feature sets. This, in turn, 
enhances the chances of identifying the best feature subsets. 

The proposed MFS model represents a significant 
improvement over classic GWO in generating impactful feature 

subsets while preventing rapid convergence to suboptimal 
solutions. 

2) Prediction of severe injuries: The impact of the MFS 

framework on the prediction accuracy of injury severity levels 

is evaluated using classification metrics derived from the injury 

severity level predictions. Table II presents the prediction 

metrics obtained using the CatBoost classifier with the feature 

subset generated by the MFS framework and the metrics 

obtained using the CatBoost classifier on the entire dataset 

before applying feature selection.

TABLE II.  RESULTS OF INJURY SEVERITY LEVEL PREDICTION 

Model 
Prediction using MFS framework output Prediction using Catboost without Feature selection 

Precision Recall F1-score Precision Recall F1-score 

Class 0 0.87 0.96 0.91 0.85 0.94 0.89 

Class 1 0.65 0.35 0.45 0.68 0.41 0.51 

Accuracy   0.84   0.83 

Macro avg 0.76 0.65 0.68 0.76 0.68 0.70 

Weighted avg 0.83 0.84 0.82 0.81 0.83 0.81 

The results shows that the overall accuracy of the model is 
slightly higher when using the MFS framework output. While 
the precision for class 1 (severe injury) is slightly lower, the 
precision for the non-severe injury class is improved. The 
general analysis shows that the MFS framework maintains the 
prediction performance. 

B. Computational Time of MFS Model 

To evaluate the computational time gain of the proposed 
model, a comparison is made between the fitting and prediction 
times of the CatBoost model using features generated by the 
MFS framework and the CatBoost model using the initial 
features before the implementation of the MFS, as presented in 
Table III. 
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TABLE III.  COMPUTATIONAL TIME COMPARISON 

Computational time 
(seconds) 

MFS 
framework 

Initial 
Catboost 

Percentage of 
gain 

Fitting 190.607 209.35 -9% 

Prediction 0.212 0.389 -44,7% 

The computational time comparison shows that the MFS 
framework enhances efficiency over the initial CatBoost model, 
particularly in prediction time. The fitting time decreases from 
209.35 seconds to 190.607 seconds, achieving a 9% reduction, 
indicating a slight improvement in training efficiency. More 
notably, the prediction time drops from 0.389 seconds to 0.212 
seconds, resulting in a 44.7% reduction. This demonstrates that 
the MFS framework significantly improves computational 
efficiency by reducing both training and prediction times. The 
most remarkable gain is in prediction time, where the MFS 
framework nearly halves the required time, making it much 
more suitable for real-time or large-scale predictions. 

C. Complexity of the Model 

The results presented before shows that the proposed MFS 
framework help to identify a reduced feature subset that 
maintain the prediction accuracy of the injury severity level.  

This feature selection process reduced the model's 
complexity from 35 features to 10, representing a 75% reduction 
in complexity. 

D. Analysis of Impacting Factors 

The highest precision is achieved using the selected subset 
of features, which includes: ['day', 'int', 'catr', 'circ', 'plan', 'surf', 
'infra', 'situ', 'catv', 'obs', 'manv', 'catu', 'trajet', 'age_slice']. 

This series of features generated using the MFS framework 
identify the factors that significantly influence the prediction of 
injury severity in road crashes. These features are systematically 
categorized into four principal groups, each representing a 
distinct dimension of the accident context and contributing to the 
overall predictive model. 

1) Temporal and atmospheric conditions: By selecting 

only two key features -day of occurrence and surface 

conditions- to represent atmospheric conditions instead of 

incorporating a broader range of related variables, the overall 

model complexity is significantly reduced. This streamlined 

approach captures the essential environmental influences while 

mitigating redundancy and overfitting risks. 

2) Road features: Features in this group relate to the 

geometric and infrastructural characteristics of the roadway. To 

reduce model complexity while retaining critical information, 

related features resulting from the MFS framework are: 

intersection typology, road classification, circulation modes, 

horizontal alignment (road layout), the state of road 

infrastructure, and the specific situational context of the 

accident. This curated selection effectively characterizes the 

essential physical environment in which the crash occurs, 

thereby playing a critical role in determining accident severity 

while mitigating redundancy. 

3) Vehicle Features: The vehicle category is included in the 

selected feature subset. This inclusion may be attributed to the 

high incidence of road crashes involving light vehicles, which 

are classified as category 7, as illustrated in Fig. 7

 

Fig. 7. Distribution of road crashes by category of vehicles and level of injury severity. 

4) User profile: The user profile group is incorporated into 

the selected feature subset by including key demographic and 

behavioral indicator, specifically, age stratification and the 

primary reason for travel at the time of the accident. This 

streamlined selection effectively captures essential aspects of 

the human element in road safety, reflecting behavioral patterns 

and decision-making processes that are empirically linked to 

variations in injury severity, all while reducing overall model 

complexity. 

The comprehensive integration of these selectively chosen 
feature categories underscores the multifactorial and complex 
interplay among environmental, infrastructural, vehicular, and 

human factors that collectively determine injury severity in road 
crashes. The focus on the most representative features from each 
group resulting from the multitasking feature selection 
framework, reduces model complexity while preserving critical 
information. Consequently, it enhances the understanding of 
factors impacting road safety and facilitates the development of 
more robust and interpretable predictive models for injury 
severity assessment. 

VI. CONCLUSION 

This paper presents a multitasking feature selection 
framework for predicting severe injuries caused by road crashes. 
This novel approach to data analysis and feature selection 
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combines three layers of learning to identify features impacting 
severe injuries in road crashes. It combines the strengths of the 
Grey Wolf Optimizer, the advantages of multitasking, the 
knowledge-transfer mechanism and the Catboost classifier to 
effectively reduce the complexity of large datasets and improve 
the classification performance of predictive models. 

The metaheuristic algorithm GWO serves as a robust 
optimization tool to identify relevant features impacting the 
classification of injury severity. The multitasking process 
ensures a wide exploration of potential feature subsets. On the 
other hand, the knowledge transfer mechanism ensures the 
efficiency of the multitasking process leading to improved 
generalization and faster convergence. 

Experimental results validate the efficacy of the proposed 
framework, it demonstrates its superiority over conventional 
methods in terms of feature selection efficiency, complexity 
reduction, predictive performance, and significant reduction in 
computational time. These findings suggest that the framework 
can be held for improving the performance of machine learning 
models in road safety data analysis and even across a variety of 
other domains. In future work, the MFS framework could be 
integrated into a safety countermeasure system, offering the 
possibility to adjust factors influencing severe injuries in real 
time. Due to its adaptability, the framework could be further 
refined and applied to more complex datasets across various 
domains, especially in real-world applications dealing with 
large-scale data. However, the overall performance of the 
proposed framework depends on the initial performance of the 
model used to compute the fitness function within the GWO 
algorithm. This dependency may limit the framework’s 
adaptability and generalizability. 
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