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Abstract—With the acceleration of urbanization, accurate air 

quality prediction is crucial for environmental governance and 

public health risk management. Existing prediction methods still 

face challenges in handling complex time-series dependencies and 

multi-scale features. In this paper, a hybrid deep learning 

architecture (LT-Hybrid) based on LSTM and Transformer is 

proposed for high-precision air quality prediction. The model 

captures the long-term dependencies of time-series data through 

a two-layer LSTM structure, models the complex interactions 

among different environmental factors using a multi-head 

self-attention mechanism, and improves the training stability 

through a combination of residual connections and layer 

normalization. Experiments on an urban air quality dataset, 

containing nine dimensions of environmental characteristics such 

as temperature, humidity, PM2.5, etc., show that the LT-Hybrid 

model achieves an RMSE of 0.1021 and an R² of 0.9382, reducing 

prediction errors by 13.0% and 5.1% compared to benchmark 

models of traditional LSTM and XGBoost, respectively. Accurate 

prediction of air quality indicators provides timely risk 

assessment for respiratory diseases and cardiovascular conditions, 

enabling proactive public health interventions. Through 

systematic ablation experiments and hyperparameter analysis, 

the validity of each core component of the model is verified, 

providing a high-precision prediction scheme for environmental 

monitoring and health risk assessment. 
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I. INTRODUCTION 

Air quality has become a key issue in modern urban 
development and public health management. With the 
acceleration of industrialization and urbanization, the spatial 
and temporal distribution of air pollutants is becoming more 
and more complex, and the interaction mechanisms between 
pollutants are more difficult to capture. Accurate air quality 
prediction not only provides scientific decision support for 
environmental regulators, but also helps the public to take 
protective measures in time, which is of great practical 
significance for improving public health and quality of life [1]. 

Traditional air quality prediction methods mainly include 
statistical modeling and numerical simulation. Statistical 
models such as autoregressive integral sliding average 
(ARIMA) are computationally efficient and easy to implement, 
but it is difficult to characterize the nonlinear relationship and 
long-term dependence between pollutants [2]; numerical 
simulation models such as community multiscale air quality 

model (CMAQ) take into account the detailed atmospheric 
physicochemical processes, but it is computationally expensive 
and requires a large number of accurate input parameters [3]. 
In recent years, with the booming development of deep 
learning techniques, neural network-based prediction methods 
have shown significant advantages. Among them, Long 
Short-Term Memory (LSTM) networks are widely used in 
time-series prediction tasks due to their unique gating 
mechanism that can effectively capture long-term 
dependencies, while Transformer models show excellent 
modeling capabilities when dealing with multivariate 
sequential data by virtue of their powerful self-attention 
mechanism [4]. 

However, existing deep learning methods still face three 
main challenges in the air quality prediction task: first, 
although a single LSTM model can model the temporal 
dependence, it is difficult to effectively capture the complex 
interactions between different environmental factors; second, 
the computational complexity of the standard Transformer 
increases significantly with the length of the sequences when 
dealing with long sequential data, which restricts its use in 
high-frequency environmental monitoring data analysis; 
finally, the common non-stationarity and multi-scale 
characteristics of environmental data also bring a severe test to 
the generalization ability of the prediction model [5]. 

To address the above problems, this paper proposes a 
hybrid architecture (LT-Hybrid) based on LSTM and 
Transformer for air quality prediction. The main contributions 
of this study include 1) proposing a novel hybrid deep learning 
architecture, which significantly improves the prediction 
performance by fusing the sequence modeling capability of 
LSTM and the feature interaction capability of the multi-head 
self-attention mechanism, reducing the prediction error by 
13.0% and 5.1% compared to the benchmark models such as 
the traditional LSTM and XGBoost, respectively, and 2) 
designing a two-layer LSTM with a four-headed cascade 
structure of the attention mechanism, which realizes the 
adaptive extraction of multi-scale features and enables the 
model to reach 0.9382 in the R² evaluation index, which 
improves 1.66 percentage points compared to a single model; 
3) by introducing the combined design of residual linkage and 
layer normalization, which effectively solves the training 
problem of the deep network, the ablation experiments show 
that this design reduces the RMSE of the model from 0.1142 to 
0.1021, which improves the prediction stability. The 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

300 | P a g e  

www.ijacsa.thesai.org 

experimental results show that the proposed LT-Hybrid model 
can effectively deal with the complex temporal dependencies 
in air quality prediction, and provides a high-precision 
prediction scheme for the field of environmental monitoring. 

II. RELATED WORK 

A. Traditional Air Quality Prediction Methods 

Air quality prediction studies first used statistical methods. 
Autoregressive integrated sliding average model (ARIMA) 
became the main tool for early air quality prediction due to its 
good performance in time series analysis. Qi et al [6] applied 
an improved ARIMA model to predict PM2.5 concentration in 
Beijing, and enhanced the model performance by introducing 
seasonal adjustment. Another important class of methods is 
prediction models based on numerical simulation, such as the 
community multi-scale air quality model (CMAQ). Zhang et 
al [7] applied the coupled WRF-CMAQ model to 
regional-scale air quality prediction, which is able to take into 
account the detailed atmospheric physicochemical processes 
but is computationally expensive and has stringent 
requirements on the quality of input data. In addition, machine 
learning methods such as Support Vector Regression (SVR) 
and Random Forest (RF) have been widely applied to air 
quality prediction. Zhai et al [8] constructed a multi-objective 
prediction framework based on XGBoost, which demonstrated 
the advantages of dealing with nonlinear relationships. 

B. Deep Learning Based Prediction Methods 

In recent years, deep learning has made significant 
progress in the field of air quality prediction. Recurrent neural 
network (RNN) and its variant LSTM have become a research 
hotspot due to its ability to effectively process sequential data. 
Wen et al [9] proposed a prediction model based on 
bidirectional LSTM, which improves the prediction accuracy 
by simultaneously considering the information of historical 
and future time steps. With the development of deep learning 
technology, Tao et al [10] proposed a deep learning model 
based on a one-dimensional convolutional network and a 
bidirectional GRU, which improves the prediction accuracy by 
effectively extracting spatio-temporal features. In addition, 
one-dimensional convolutional neural network (1D-CNN) has 
been demonstrated to have unique advantages in processing 
environmental time-series data. Huang et al [11] applied deep 
residual network to air quality prediction, which effectively 
mitigated the gradient vanishing problem through jump 
connections. 

C. Hybrid Modeling and Multi-Source Data Fusion 

In order to fully utilize the advantages of different models, 
researchers have begun to explore hybrid modeling 
approaches. Yi et al [12] proposed a deep distributed fusion 
network that significantly improves the prediction 
performance by fusing heterogeneous urban data to capture all 
influential factors. In terms of feature extraction, Freeman et 
al [13] proposed a novel deep learning architecture that 
improves prediction accuracy through multi-level feature 
extraction and fusion. Another important research direction is 
to introduce the attention mechanism for feature selection. 

Liang et al [14] proposed a deep learning model based on 
spatio-temporal attention, which is able to adaptively learn the 
importance of different spatio-temporal features, providing a 
new idea for air quality prediction. In addition, Yu et al [15] 
explored an air quality prediction method based on graph 
neural networks, which achieves high-precision prediction on 
a regional scale by modeling the spatial correlation 
relationship between monitoring stations. 

These related works have laid an important foundation for 
the LT-Hybrid model proposed in this paper. Although existing 
studies have made progress in different aspects, there are still 
challenges in dealing with complex temporal dependencies 
and multi-scale feature fusion, which are the directions of 
focus and improvement in this paper. 

III. METHODOLOGY 

A. Problem Statement 

Accurate prediction for urban air quality is one of the key 
tasks in environmental monitoring and management. In this 
paper, air quality prediction is modeled as a time-series 
prediction problem: given environmental monitoring data 
from the past 24 time steps, including nine characteristic 
dimensions such as temperature, humidity, PM2.5, PM10, 
NO2, SO2, CO concentration, and the distance to the 
industrial area and population density, we predict the target air 
quality indicators for the next time step. This prediction task is 
obviously challenging: first, the environmental data exhibit 
complex time-dependence and potential interactions among 
different pollutants; second, the air quality is affected by a 
combination of factors, including both dynamic changes in 
meteorological conditions and cyclical patterns of human 
activities; and lastly, the environmental data often exhibit 
nonlinear and non-smooth characteristics, which puts higher 
demands on the prediction model's generalization ability puts 
forward higher requirements. Therefore, it is of great practical 
significance to design a prediction model that can effectively 
capture these complex patterns. 

Formally, if the input feature at the t-th time step is denoted 
as 𝑥ₜ ∈ ℝ⁹, the prediction task can be formulated as follows: 
based on the observation sequence {xₜ₋₂₃, xₜ ₋₂₂, ... , xₜ} predicts 
the target value 𝑦ₜ₊₁ . where, the input features contain 
multi-dimensional information reflecting the current 
environmental conditions, and the prediction targets focus on 
specific air quality indicators. With this sliding window 
approach, the model can continuously predict future air 
quality and provide data support for environmental regulation 
and public health decision-making. 

B. Model Architecture 

The air quality prediction model proposed in this paper is a 
hybrid architecture based on LSTM and Transformer, which 
improves the prediction performance by combining the 
advantages of both models [16]. As shown in Fig. 1, the model 
mainly consists of an LSTM coding layer, a multi-head 
self-attention mechanism, a feed-forward neural network and a 
normalization layer. Each core component is described in 
detail below. 
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Fig. 1. Model architecture diagram. 

C. LSTM Coding Layer 

The LSTM coding layer is the first major component of 
the model for capturing long-term dependencies in temporal 
data [17]. Compared with traditional recurrent neural 
networks, LSTM can effectively mitigate the gradient 
vanishing problem and better maintain long-term memory 
through the gating mechanism. The layer adopts a two-layer 
LSTM structure (num_layers=2) with a hidden layer 
dimension of 128, and uses dropout=0.1 between layers to 
prevent overfitting. The core update process for each LSTM 
cell can be represented as: 

𝑐ₜ = 𝑓ₜ ⊙ 𝑐ₜ₋₁ + 𝑖ₜ ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑐 · [ℎₜ₋₁, 𝑥ₜ] + 𝑏𝑐) (1) 

In particular, the memory unit cₜ realizes selective retention 
of historical information and selective reception of new 
information through the modulation of the forgetting gate fₜ 
and the input gate iₜ. 

The LSTM layer receives a 9-dimensional sequence of 
input features (including environmental indicators such as 
temperature, humidity, PM2.5, etc.), and the length of the 
sequence is set to 24 time steps, which enables the model to 
make predictions based on data from the past 24 time units. 
This design fully takes into account the temporal 
characteristics of air quality data, as pollutant concentrations 
tend to exhibit obvious daily variation cycles and continuity. 
By cascading the two-layer LSTM, the model can capture the 
basic temporal patterns in the first layer and further extract the 
high-level temporal features in the second layer, so as to 
efficiently learn and memorize the important patterns in the 
environmental data at different time scales. Especially when 
dealing with environmental data with complex time 
dependencies, this cascaded feature extraction structure shows 
significant advantages. 

D. Multi-Pronged Self-Attention Mechanisms 

In order to enhance the model's ability to model the 
relationship between different time steps in temporal data, a 
multi-head self-attention mechanism was introduced after the 
LSTM layer [18]. Traditional attention mechanisms may 
assign too much attention weight to a single feature or time 
step, thus ignoring other potentially important information. 
The multi-head attention mechanism allows for simultaneous 
attention to different types of feature patterns by projecting the 
input into multiple subspaces [19]. The mechanism uses 4 
attention heads (num_heads=4), each with a dimension of 16 

(d_k=d_model/num_heads=64/4=16), and its core 
computational process can be represented as: 

Attention(Q, K, V) = softmax(QKT/√dk)V (2) 

𝑤ℎ𝑒𝑟𝑒, 𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 , 𝑉 = 𝐻𝑊𝑉E 

The design of multiple heads of attention allows the model 
to learn feature associations in parallel in different 
representation subspaces. Each attention head can focus on 
capturing specific types of dependencies; for example, one 
head may focus on short-term correlations between 
temperature and humidity, while another may focus on 
long-term patterns of association between PM2.5 and other 
pollutants. Through this parallel processing mechanism, the 
model is able to model dependencies on multiple time scales 
simultaneously, capturing both localized patterns of rapid 
change as well as identifying global trends of long-term 
change, thus significantly improving the model's ability to 
understand and predict complex spatial and temporal patterns. 

E. Residual Connections and Layer Normalization 

A combination of two residual connections and layer 
normalization is used in the model, located after the 
multi-head attention layer and the feedforward network layer, 
respectively [15]. This design draws on the architectural 
features of Transformer and helps mitigate the problem of 
gradient vanishing in deep neural network training. Layer 
normalization helps to stabilize the training process, while 
residual connectivity maintains the information of the 
low-level features, allowing the model to better integrate 
different levels of feature representation. The use of this 
architecture significantly improves the training stability and 
convergence speed of the model. 

F. Feedforward Neural Networks 

After the multi-head attention layer, the model uses a 
feed-forward neural network for feature transformation. The 
network uses an expansion-contraction structure, where the 
feature dimensions are first expanded to four times their 
original size (hidden_dim*4), then nonlinearities are 
introduced via the ReLU activation function, and finally the 
dimensions are compressed back to their original size 
(hidden_dim). The network also uses dropout (rate of 0.1) to 
prevent overfitting. This component enables further 
abstraction and transformation of the features extracted by the 
attention mechanism, enhancing the expressive power of the 
model. 

G. Output Layer 

The final layer of the model is a linear output layer that 
maps the processed features to a single predicted value. This 
layer compresses the high-dimensional features extracted and 
transformed above into a one-dimensional output that directly 
predicts the target air quality indicator. With this end-to-end 
architectural design, the model is able to automatically learn 
the complex mapping relationships from the original input 
features to the final predicted values. 

This hybrid architecture design takes full advantage of 
LSTM's strengths in sequence modeling and Transformer's 
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strengths in feature interaction modeling, enabling the model 
to better handle complex time-series prediction tasks such as 
air quality prediction. 

IV. EXPERIMENTS 

A. Data Preprocessing 

In this study, we use the publicly available dataset "Urban 
Air Quality Dataset" from the Kaggle platform, which 
contains the environmental monitoring data of a city during 
the period of 2020-2023, totaling 5000 records. The dataset 
covers nine dimensions of environmental characteristics: 
temperature (℃), relative humidity (%), PM2.5 (μg/m³), 
PM10 (μg/m³), NO2 (μg/m³), SO2 (μg/m³), and CO (mg/m³), 
as well as two spatial characteristics: distance from the 
industrial area (km) and population density of the area 
(people/km²). The data sampling frequency was hourly, 
ensuring continuous monitoring of air quality changes. 

As shown in Fig. 2, from the time-series distribution of the 
key features, the temperature values generally fluctuate 
between 20 and 40°C, reflecting obvious daily changes; the 
relative humidity has a large range of variation, fluctuating 
between 40 and 100%, and fluctuates more frequently; and the 
PM2.5 concentration shows a large fluctuation, with the 
baseline value between 0 and 40 μg/m³, but with obvious 
peaks (the highest reaching about 140 μg/m³), reflecting the 
fact that air quality can deteriorate significantly at certain 
points in time. The time-series change characteristics of these 
three key indicators indicate that the air quality of the city is 
affected by a combination of several environmental factors, 
showing a complex dynamic change pattern, which provides 
an important basis for the subsequent predictive modeling. 

 

Fig. 2. Time series plot of key features. 

B. Feature Engineering 

In order to improve the training effect of the model, this 
paper carries out a series of pre-processing on the raw data. 
First, the data are processed for missing values, and the 
moving average method is used to fill in a small amount of 
missing monitoring data to ensure the continuity of the data. 
Second, the individual features are normalized using 
MinMaxScaler, which maps the data to the [0, 1] interval and 
eliminates the scale differences brought about by different 
units of measure. Finally, the sliding window method is used 
to construct the time series samples, and 24 hours are selected 

as the length of the input sequence, i.e., the data of the 
previous 24 hours are used to predict the air quality indicators 
of the next hour, so as to generate the input-output sample 
pairs required for model training. 

C. Experimental Setup 

For the experimental setup, we adopted a rigorous 
training-validation-testing framework. First, the processed 
dataset was randomly divided into a training set (4000 
entries), a validation set (500 entries), and a testing set (500 
entries) according to the ratio of 8:1:1, and ensured that the 
continuity of the time series was maintained during the 
division process. The model was trained using the Adam 
optimizer with the initial learning rate set to 0.001, and the 
learning rate was adjusted using the cosine annealing strategy. 
To prevent overfitting, a regularization strategy with 
dropout=0.1 was used during training, and an early stopping 
strategy was applied to the validation set, where, training was 
stopped when the validation loss did not improve within 10 
consecutive epochs. 

In terms of model hyperparameter configuration, the 
LSTM coding layer uses a two-layer structure 
(num_layers=2), and the hidden layer dimension is set to 128; 
the multi-head attention mechanism uses four attention heads 
(num_heads=4), each with a dimension of 16; the training 
batch size (batch_size) is set to 32, and the maximum number 
of training rounds (epochs) is 100. All experiments were 
conducted on workstations configured with NVIDIA RTX 
3080 GPUs and implemented using the PyTorch 1.9.0 
framework. To ensure the reliability of the experimental 
results, all experiments were repeated three times and the 
average value was taken as the final result. 

D. Assessment of Indicators 

In order to comprehensively evaluate the prediction 
performance of the model, this paper chooses the Root Mean 
Square Error (RMSE) as the main evaluation index, which can 
visually reflect the degree of deviation between the predicted 
values and the real values, and its calculation results are 
consistent with the scale of the dependent variable, which 
makes the evaluation results easier to understand and interpret. 
For regression problems such as air quality prediction, RMSE 
can clearly indicate the average level of prediction error, and 
its calculation formula is: 

RMSE = √
1

n
∑i=1
n (yi − ŷi)

2    (3) 

where, yᵢ is the true value, ŷᵢ is the predicted value, and n 
is the sample size. 

Meanwhile, this paper also adopts the coefficient of 
determination (R²) as a supplementary assessment indicator. 
R² reflects the extent to which the model explains the 
variability of the dependent variable, and its value ranges from 
0 to 1, with the closer it is to 1 indicating that the model's 
explanatory ability is stronger. The strength of this metric is 
that it can help us understand the model's ability to capture 
patterns of data variability, especially in assessing the model's 
grasp of long-term trends in air quality. The formula for R² is: 
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𝑅2 = 1 −
∑𝑖=1
𝑛 (𝑦𝑖−𝑦̂𝑖)

2

∑𝑖=1
𝑛 (𝑦𝑖−𝑦̄)

2      (4) 

where, ȳ is the mean of the true values, a metric that 
effectively assesses the overall goodness of fit of the model by 
comparing the ratio of the model's prediction error to the 
variability of the data itself. 

E. Comparative Experiments 

As shown in Fig. 3, in order to comprehensively evaluate 
the performance of the proposed LT-Hybrid model, six 
representative machine learning and deep learning models are 
selected as benchmarks for comparative experiments in this 
paper [20]. These benchmark models include: support vector 
regression (SVR), which is a traditional machine learning 
method with good non-linear modeling capability; 
long-short-term memory network (LSTM), which is widely 
used in the field of time-series prediction; three integrated 
learning methods that have excellent performance in modeling 
environmental data, i.e., Random Forest (RF), XGBoost 
(XGB), and Gradient Boosting (GB); and as a deep learning 
representative of deep neural networks (DNNs). 

 

Fig. 3. Comparison experiment. 

The experimental results show that the LT-Hybrid model 
achieves the optimal performance in both RMSE and R² 
evaluation metrics. In terms of the RMSE metric, the 
LT-Hybrid model achieves the lowest error of 0.1021, which 
reduces the prediction error by about 5.1% compared to the 
second best performing XGBoost model (RMSE of 0.1076), 
and improves the prediction error compared to the traditional 
LSTM (RMSE of 0.1174) and SVR (RMSE of 0.1167) by 
13.0% and 12.4%. In terms of model fit goodness, the 
LT-Hybrid model has an R² value of 0.9382, indicating that the 
model is able to explain about 93.82% of the data variability, 
while the R² values of the other models are generally in the 
range of 0.92-0.93. Notably, the integrated learning methods 
(RF, XGB, and GB) outperformed the single model overall, 
reflecting the importance of model integration in modeling 
complex environmental data. 

Through comparative experiments, it can be found that the 
advantages of the LT-Hybrid model mainly come from its 
unique hybrid architecture design. Compared with a single 
sequence modeling method (e.g., LSTM) or a traditional 
regression model (e.g., SVR), the hybrid architecture proposed 
in this paper effectively enhances the ability to capture 
complex relationships among environmental factors by 
integrating the long-term dependency modeling capability of 
LSTM and the feature interaction capability of Transformer, 

while maintaining the advantages of time-series modeling. 
This design not only improves the prediction accuracy of the 
model, but also enhances its ability to understand the changing 
patterns of data. 

F. Ablation Experiments 

As shown in Fig. 4, a series of ablation experiments are 
designed in this paper in order to deeply understand the 
contribution of each component of the model to the prediction 
performance. Starting from the basic single-layer LSTM 
model, we gradually add components such as double-layer 
LSTM structure, self-attention mechanism, multi-head 
attention, residual connection, and layer normalization, and 
finally construct the complete LT-Hybrid model, and 
systematically analyze the roles of each module. 

 

Fig. 4. Ablation experiment. 

The experimental results show that the base single-layer 
LSTM model (Base) exhibits basic timing modeling 

capabilities, achieving an RMSE of 0.1174 and an R² value 

of 0.9216. On this basis, a slight improvement in model 
performance is obtained after upgrading to a two-layer LSTM 

structure (RMSE decreases to 0.1169 and R² improves to 

0.9223), indicating that simply increasing the depth of the 
network does not significantly improve prediction. The 
introduction of the self-attention mechanism showed a 
significant improvement in model performance (RMSE 

decreased to 0.1142 and R²  improved to 0.9256), which 

validates the effectiveness of the attention mechanism in 
capturing temporal feature correlations. However, a slight 
fluctuation in model performance was observed when 
upgrading to the multi-attention structure (RMSE slightly 

increased to 0.1156 and R² slightly decreased to 0.9249), and 

this temporary performance fallback suggests that the 
improved model structure may require a more optimal 
parameter configuration to be effective. 

Notably, a significant jump in model performance was 
observed after the introduction of residual connectivity 

(RMSE decreased to 0.1089 and R² improved to 0.9312), 

suggesting that the residual structure effectively mitigates the 
gradient problem in deep network training. Further addition of 
layer normalization improves the stability and performance of 

the model (RMSE drops to 0.1053 and R²  improves to 

0.9355). The final complete model achieves optimal prediction 

performance (RMSE of 0.1021 and R² of 0.9382) through the 

synergy of the components. 

The results of the ablation experiments clearly demonstrate 
the importance of each model component, especially the 
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introduction of residual linking and layer normalization plays 
a key role in model performance improvement. At the same 
time, the performance fluctuations during the experiments 
reflect the complexity of deep learning model optimization, 
and certain architectural improvements may need to be 
synergized with other components for maximum effect. This 
series of experiments verifies the reasonableness of the hybrid 
architecture design proposed in this paper, and also provides a 
valuable reference for subsequent model improvement. 

G. Hyperparametric Experiments 

As shown in Fig. 5, in order to deeply study the stability of 
the model and determine the optimal configuration, this paper 
conducts systematic experimental analysis on four key 
hyperparameters of the LT-Hybrid model, including Learning 
Rate, Batch Size, Number of Attention Heads, and Hidden 
Layer Dimension (Hidden Size). 

 

Fig. 5. Hyperparameter experiment. 

In terms of learning rate, the experimental results show 
that 0.001 is the optimal choice, and the model obtains the 
lowest RMSE (0.1021) and the highest R² (0.9382) at this 
value point. When the learning rate is too small (e.g., 0.0001), 
the model converges slowly and the performance is limited; 
when the learning rate is too large (e.g., 0.01), the model 
struggles to converge stably, resulting in a significant 
degradation in performance. This finding is in line with the 
general rule of learning rate setting in deep learning, which is 
to ensure that the model has sufficient learning capability 
while avoiding too large parameter update step size. 

For the choice of batch size, experiments show that 32 is 
the more desirable configuration. With this batch size, the 
model maintains a better generalization ability and also makes 
full use of GPU resources. It is worth noting that when the 
batch size is too small (8 or 16), the model training is not 
stable enough; while when the batch size is too large (64 or 

128), although the training process is smoother, the model's 
performance shows a slight degradation, which may be due to 
the fact that the large batch training reduces the model's 
generalization ability. 

In terms of the configuration of the attention mechanism, 
setting up four attention heads can achieve optimal results. 
The experimental results show that a single attention head 
performs relatively poorly (RMSE of 0.1134), which indicates 
that a single attention mechanism is difficult to adequately 
capture feature associations on different time scales. As the 
number of attentional heads increases, the model performance 
first improves and then decreases, which indicates that too 
many attentional heads may introduce redundant information 
and affect the prediction accuracy of the model instead. 

Experiments on hidden layer dimensions suggest that 128 
is the most appropriate choice. Smaller hidden layer 
dimensions (e.g., 32) limit the expressive power of the model, 
while too large dimensions (e.g., 512) may lead to overfitting 
and can significantly increase the computational overhead. 
With a dimension of 128, the model achieves a good balance 
between expressiveness and computational efficiency. 

Through this series of hyper-parameter experiments, we 
not only determine the optimal configuration of the model, but 
also gain a deeper understanding of the influence mechanism 
of each hyper-parameter on the model performance, which 
provides an important reference for subsequent model 
optimization and application. The experimental results also 
verify the stability of the model under different parameter 
configurations, demonstrating the good generalization ability 
and robustness of the LT-Hybrid model. 

V. CONCLUSION 

In this paper, a hybrid deep learning architecture 
LT-Hybrid based on LSTM and Transformer is proposed for 
the air quality prediction problem. The model captures the 
long-term dependencies of the time series data through a 
two-layer LSTM structure, models the complex interactions 
among different environmental factors by using the multi-head 
self-attention mechanism, and adopts a combination of 
residual linkage and layer normalization which is designed to 
improve the training stability of the model. Experiments on 
the urban air quality dataset, which contains nine dimensions 
of environmental characteristics such as temperature, 
humidity, PM2.5, etc., show that the LT-Hybrid model 
achieves an RMSE of 0.1021 and an R² value of 0.9382, 
which is a significant performance enhancement compared 
with benchmark models such as the traditional LSTM and 
XGBoost. In addition, the effectiveness of each core 
component of the model is verified through systematic 
ablation experiments and hyperparameter analysis, especially 
the introduction of the multi-head attention mechanism and 
residual structure plays a key role in model performance 
improvement. 

Although this study has achieved good results in the air 
quality prediction task, there are still some directions that can 
be improved: first, the current model mainly focuses on the 
prediction of single-point locations, and in the future, it can be 
extended to multi-site collaborative prediction, making full use 
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of spatial information to enhance the prediction accuracy; 
second, the model has relatively large prediction errors when 
dealing with pollution events under extreme weather 
conditions, and the introduction of external data sources such 
as meteorological forecasts can be considered to enhance the 
model prediction capability; finally, there is still room for 
optimization of the model computational complexity. We can 
consider introducing external data sources such as 
meteorological forecasts to enhance the prediction ability of the 
model; finally, there is still room for optimizing the 
computational complexity of the model, and techniques such as 
model compression and knowledge distillation can be explored 
in the future to enhance the application efficiency of the model 
in the actual environmental monitoring system. 
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