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Abstract—Artificial intelligence (AI) has transformed many 

scientific disciplines including bioinformatics. Essential gene 

prediction is one important use of artificial intelligence in 

bioinformatics since it is necessary for knowledge of the 

biological pathways needed for cellular survival and disease 

diagnosis. Essential genes are fundamental for maintaining 

cellular life as well as for the survival and reproduction of 

organisms. Understanding the importance of these genes can help 

one to identify the basic needs of organisms, point out genes 

connected to diseases, and enable the development of new drugs. 

Traditional methods for identifying these genes are 

time consuming and costly, so computational approaches are 

used as alternatives. In this study, a Multi-Layer Perceptron 

(MLP) model combined with ADASYN (adaptive synthetic 

sampling). Furthermore, using deep learning techniques to solve 

the restrictions of traditional machine learning techniques and 

raise forecast accuracy attracts a lot of interest. It was proposed 

to handle data imbalance. The model utilizes features from 

protein-protein interaction networks, DNA and protein 

sequences. The model achieved high performance, with a 

sensitivity of 0.98, overall accuracy of 0.94, and specificity of 0.96, 

demonstrating its effectiveness in data classification. 
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I. INTRODUCTION 

Since they carry essential biological functions that cannot 
be replaced, essential genes are vital for the survival and 
procreation of life. Understanding the minimal biological 
requirements of organisms and identifying disease-associated 
genes depends on the ability to forecast these genes, therefore 
guiding a basic step in pharmacological research and 
therapeutic progress. Nevertheless, even if finding important 
genes is important, traditional laboratory methods remain 
expensive, time-consuming, and need specialist knowledge and 
a lot of work. Recent studies have therefore shifted to 
computational approaches using data from human cell lines 
and model organisms. Faster and more effective prediction of 
these genes is made possible by developments in machine 
learning and deep learning, allowing researchers to build more 
accurate and efficient models for evaluating the interactions 
between important genes and other biological characteristics. 

This work presents a novel deep learning methodology 
combining numerous biological data sources including DNA 
sequence features, protein sequence attributes, and protein-
protein interaction (PPI) network embeddings for anticipating 
important human genes. Unlike existing methods depending on 

network topology analysis or machine learning models using 
manually produced attributes, the proposed model offers many 
major contributions: 

a) Combining several biological data sources to 

increase predictive precision: Three main categories of 

biological data are combined in the method to provide a more 

complete gene analysis: DNA sequence properties, codon 

frequency, GC content, and gene length. Features of protein 

sequences include the length of the protein and amino acid 

distribution. Node2Vec was used to build protein-protein 

interaction (PPI) network embeddings, therefore capturing 

network gene linkages [1] . This integration helps the model to 

expose more significant interactions among genes, hence 

improving the classification accuracy compared to previous 

methods. 

b) Reducing class unbalance with ADASYN: Usually 

underrepresented in biological datasets, essential genes cause 

biased predictions favoring the majority class (non-essential 

genes). ADASYN (Adaptive Synthetic Sampling) was used to 

create synthetic samples for the minority class to handle this 

problem. This preserves a balanced dataset and considerably 

increases the model's ability to identify important genes [2]. 

c) Improved relative efficacy against conventional 

machine learning models: Support Vector Machine (SVM), 

Random Forest, AdaBoost, and Naïve Bayes were among the 

conventional machine learning methods used in the evaluation 

of the proposed Multi-Layer Perceptron (MLP) model. The 

results showed that the proposed model validated its 

effectiveness in important gene categorization since it 

obtained the best accuracy (94.38%), sensitivity (98.27%), and 

specificity (90.43%). 

d) Improved model architectural design and 

regularization strategies: Several advanced techniques were 

used to ensure the best performance and reduce overfitting: 

batch normalization, which standardizes input distributions 

across layers, hence improving training efficacy. Dropout 

(0.03) helps to reduce too strong reliance on specific neurons, 

so enhancing generalization [3], [4]. Designed to 

systematically change the learning rate to improve 

convergence, cosine decay learning rate scheduling Early 

Stopping: if no improvement is found after 25 consecutive 

epochs, training is automatically stopped. 

e) Prospective applications in genetic studies and 

biomedical research: With future uses in pharmaceutical 

discovery, disease gene identification, and functional 
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genomics. This work enhances the design of computer 

instruments for gene analysis. The proposed approach offers a 

strong framework for other species or genetic data utilization 

to further research. 

Most past research relies on traditional machine learning 
techniques, which often face constraints such as manually 
acquired characteristics, thereby reducing the potential to find 
complex patterns in biological data. Inappropriate handling of 
unbalanced datasets that reduces the predicting accuracy for 
important genes. Data integration is limited since many studies 
focus just on either sequence-based traits or network structure, 
but rarely on both concurrently. On the other hand, our 
approach solves these challenges by using deep learning to 
identify hidden trends in biological data. The integration of 
DNA, protein, and PPI network features provides a whole 
understanding of gene essentiality. Equilibrating the dataset 
using ADASYN guarantees that the model is effectively 
trained on both important and non-essential genes. This work 
offers a more accurate and scalable approach for the 
investigation of genetic functions and their biological 
consequences, therefore reflecting significant progress in key 
gene prediction. 

The remaining sections of this paper are structured as 
follows. Section II analyzes relevant literature, Section III 
provides the proposed model, Section IV provides a detailed 
description of proposed model, Section V provides 
Implementation Details, Section VI presents Results and 
discussion and finally, Section VII summarizes the most 
significant findings and conclusions. 

II. RELATED WORK 

 Measures of Centrality in Network-Based Essential 
Gene Prediction 

Examining the connection of important genes across 
biological networks is one approach to predict them. Research 
shows that compared to proteins with fewer contacts, those 
with more contacts inside a protein-protein interaction (PPI) 
network are more likely to be significant. Validated over 
several species, the idea is known as the centrality-lethality 
rule. Still, reliance just on network topology to determine gene 
essentiality has shown some degree of error. This restriction 
has several causes. PPI networks are less reliable and often 
insufficient and noisy. Second, several biological factors 
influence gene essentiality and cannot be explained by network 
connections by themselves. Recent studies have shown new 
centrality measures that combine network topology with 
additional biological data, therefore improving prediction 
accuracy and offering a more reliable and whole approach for 
identifying important genes. Various strategies have been 
developed to overcome the limitations of conventional methods 
by combining network architecture with additional biological 
data to improve the accuracy of fundamental gene prediction: 
CoEWC: This method synthesizes network topological 
characteristics with gene expression data, so enabling the 
identification of shared attributes of fundamental proteins in 
both date hubs and party hubs. Performance has been much 
improved by this integration compared to methods based only 
on protein-protein interaction (PPI) networks [5]. Zhang et al. 
presented an ensemble approach combining protein-protein 

interaction networks with gene expression data, therefore 
enhancing the predicted accuracy of widely used centrality 
measures [6]. Additionally presented was the OGN method, 
which uses orthologs in reference organisms, co-expression 
likelihood with nearby proteins, and network topology [7]. To 
better identify key genes, Li et al., created the GOS model, 
which combines gene expression, orthology, subcellular 
localization, and protein-protein interaction networks [8]. By 
combining protein domain properties with topological analysis 
of protein-protein interaction networks, UDoNC enhances 
fundamental protein prediction [9]. The fundamental 
dependence of centrality-based prediction methods is on a 
scalar score, which is derived either from biological networks 
or using the integration of several data sources. These 
approaches have produced progress, but they still lack enough 
accuracy in locating all important genes. Recent research 
provides rich new perspectives on centrality measurements and 
their relevance in forecasting critical genes and proteins [10]. 

 Methods of Machine Learning for Forecasting Gene 
Essentiality 

One important method for estimating gene essentiality is 
using machine learning to combine several signals coming 
from many biological data sources. For this aim, Zhang et al. 
conducted an extensive evaluation of machine learning 
techniques highlighting the difficulties and possible directions 
for next research. Most machine learning-based predictive 
models have been assessed mostly on model organisms, 
therefore limiting their use in other settings. Conventional 
machine learning techniques usually need hand feature 
selection and extraction. This process calls for a thorough 
understanding of the biological field and knowledge of the 
relationship between gene essentiality and other kinds of 
biological data [11]. Using features taken from the λ-interval Z 
curve based on nucleotide sequence data, Guo et al. projected 
human gene essentiality using Support Vector Machines [12]. 
One main limitation of manually produced properties is their 
scope. Protein-protein interaction (PPI) networks [11] produce 
many topological metrics, including degree centrality, 
betweenness centrality, closeness centrality, subgraph 
centrality, and eigenvector centrality. Although studies on the 
link between these traits and gene essentiality in various 
organisms have been conducted, their predictive efficacy, 
either independently or integrated into machine learning 
methods, remains inferior to features derived automatically via 
deep learning frameworks [13]. Forecasting gene essentiality 
using machine learning combined with biological data has 
great potential. The challenges related to featuring extraction 
and the limited scope of manually selected characteristics 
underline the need for more advanced approaches, such as deep 
learning, to improve forecast accuracy. 

 Deep learning approaches in bioinformatics  

Deep learning has been a powerful tool in many fields of 
bioinformatics recently, including medical picture 
segmentation [14], drug-target prediction [15], and critical 
gene prediction [13], [16], [17] . Convolutional neural 
networks (CNNs) have shown to be helpful in the automatic 
feature extraction from image and sequence data [14], [15] 
thus, this overview emphasizes important field successes and 
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approaches. Zeng and colleagues used convolutional neural 
networks to identify notable trends in gene expression profiles 
of time-series. They converted these data into models of cell 
cycles, therefore enabling the prediction of key genes[13]. 

Time-series gene expression data were investigated by 
Zeng et al. using bidirectional Long Short-Term Memory 
(LSTM) cells. Emphasizing studies conducted using 
Saccharomyces cerevisiae [16], their approach combined gene 
expression data with subcellular localization information and 
protein-protein interaction (PPI) networks. Using manually 
obtained variables from sequence data, Hasan and colleagues 
built a neural network of six hidden layers to predict gene 
essentiality in microorganisms [17]. Deep learning-based 
network embedding methods have recently been presented to 
independently generate lower-dimensional representations for 
every node inside a network [1]. For every protein in a PPI 
network, Zeng et al. derived network properties using the 
node2vec technique [1]. They showed that more useful 
information is produced from this low-dimensional 
representation than from manually calculated traditional 
centrality metrics [13] , [16]. Deep learning approaches such as 
CNNs and LSTMs, as well as fresh ideas as network 
embedding, have greatly advanced bioinformatics and gene 
essentiality prediction. These techniques highlight how well 
deep learning might improve the accuracy and efficiency of 
biological data analysis. 

Recent developments in CRISpen-Cas9 and gene-trap 
technologies have helped to identify important genes in many 
human cancer cell lines, therefore improving our knowledge of 
the requirements for maintaining basic biological functioning 
over many tumor types [18-20]. These important genes point to 
possible targets for the development of cancer treatments [21]. 
Together with other biological information sources, the 
availability of important gene data offers a chance to assess the 
hypothesis that computational techniques may exactly forecast 
human gene essentiality. Previous studies have indicated that 
omics experimental data's acquired properties are efficient 
tools for predicting gene essentiality. Still, for poorly studied 
species, such information is usually lacking. Therefore, various 
studies have focused on developing models that predict gene 
essentiality without using additional experimental data by 
depending just on attributes obtained from sequence data, 
including DNA and protein sequences [12], [17]. 

III. THE PROPOSED MODEL 

The proposed model integrates three main data sources to 
predict gene essentiality as shown in Fig. 1. Input Layer: DNA 
Sequence: Encodes the genetic information that defines protein 
synthesis inside the cell. Protein Sequence: Shows the 
structural make-up of the created proteins. Capturing 
interactions between proteins, Protein-Protein Interaction (PPI) 
Network offers understanding of gene roles and biological 
processes. These data kinds are handled to extract numerical 
features that feed the deep learning model. Deep Learning 
Architecture: The model is built on a Multilayer Perceptron 
(MLP) architecture, consisting of three layers: Layer 1 - Input 
Layer: Receives the extracted features from DNA, protein 
sequences, and the PPI network. Layer 2 - Hidden Layer: A 
non-linear transformation layer using activation functions like 

GELU to capture complex patterns in the data. Layer 3 - 
Output Layer: Predicts whether a gene is essential or non-
essential using activation functions such as Sigmoid. Deep 
Learning and Data Balancing Strategies: Data-balancing 
methods were included to improve the performance of the 
model and lower bias towards the dominant class since 
important and non-essential genes are frequently skewed in 
datasets. This approach guarantees a more exact classification 
of gene essentiality and enhances prediction accuracy. Output 
Layer: Predicting both non-essential and necessary genes in 
humans is the last aim of this strategy. This integrated strategy 
improves the accuracy and robustness of key gene prediction 
by aggregating several biological data sources inside a deep 
learning framework and using data balancing strategies.  

A. Model Selection 

In this study, the goal is to classify essential genes based on 
numerical representations of biological features, such as codon 
frequencies and protein properties. Given the nature of the 
data, the model selection was guided by several key 
considerations: 

 Lack of Spatial Pattern Extraction Requirement 
While Convolutional Neural Networks (CNNs) excel at 
extracting spatial patterns from image data, the data 
used in this study is represented numerically without 
spatial structure. Features such as codon frequencies 
and protein properties do not follow a spatial 
arrangement, making CNNs unnecessary. Therefore, a 
more suitable approach is the use of Multi-Layer 
Perceptron (MLP), which is capable of directly 
processing numerical data without relying on spatial 
patterns. 

 No Need for Sequential Data Processing 
Recurrent Neural Networks (RNNs) are designed for 
sequential data where the temporal order is significant, 
such as time-series data or natural language processing. 
However, the features in this study are static and do not 
depend on temporal or sequential ordering. As such, 
RNNs were deemed unsuitable for this task, and MLP 
was preferred due to their ability to handle fixed, non-
sequential data efficiently. 

 Limitations of Graph Neural Networks (GNNs)  
Graph Neural Networks (GNNs) are highly effective in 
situations where the data is represented in graph form, 
such as protein-protein interaction (PPI) networks. 
However, the dataset in this study incorporates a 
combination of features from various sources, such as 
DNA sequence data, protein sequences, and statistical 
features, making the use of GNNs alone less effective. 
MLP, on the other hand, can easily integrate these 
diverse types of data and provide a more practical 
solution for gene classification. 

 Computational Efficiency and Simplicity 
MLPs offer a simpler architecture compared to CNNs 
and GNNs, resulting in faster training and reduced 
computational cost. In the context of large-scale 
biological datasets, computational efficiency is crucial. 
MLP provides a balance of high classification accuracy 
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and low computational overhead, making them the ideal 
choice for this study 

IV. EXPLANATION OF THE PROPOSED MODEL 

a) Features of DNA sequences: When we examine DNA 

sequence features, we are addressing the characteristics that 

improve our grasp of genes. Codon frequency is a 

measurement of the frequency with which each three- 

nucleotide codon appears in a gene. This frequency helps us to 

understand the conversion of genetic data into proteins. 

Frequent use of some codons implies that the gene might be 

more effective in expressing itself. Calculating the proportion 

of the cytosine (C) and guanine (G) nucleotides in the DNA 

sequence, GC content is another crucial aspect. Usually 

indicating a structural stability of the gene, a high GC content 

can affect the expression of the gene. Since it indicates the 

entire count of nucleotides in the gene, gene length is also 

important. More information included in longer genes 

influences their organization and expression. For a given 

organism, the codon adaptation index (CAI) gauges how well 

the codon sequence fits the preferred codons. Higher CAI 

values imply that the gene is more suited for these tastes, 

which can cause greater expression levels. The Maximal 

Relative Synonymous Codon Usage (RSCUmax) evaluates, at 

last, the usage of synonymous codons corresponding to the 

same amino acid in the gene. This clarifies the preferences of 

codon use of the gene [17], [22]. 

b) Features of protein sequences: Turning now to 

protein sequence characteristics, these center on protein 

physical and chemical characteristics. Amino acid frequencies 

which gauge the frequency of every amino acid in the protein 

sequence are one of main characteristics. Understanding the 

chemical makeup and interactions of the protein with other 

molecules depends on this knowledge. Defined as the total 

count of amino acids in the protein, protein length is another 

crucial consideration. The structure of the protein and its 

capacity for biological operations can be much influenced by 

its length [17], [22]. 

c) Protein-protein interaction (ppi) network 

characteristics: Regarding Protein-Protein Interaction (PPI) 

networks, these characteristics are essential for 

comprehending the interactions among several proteins. 

Node2Vec allows us to extract characteristics from the PPI 

network whereby every gene is expressed as a node [1]. This 

enables a thorough investigation of protein interactions, 

therefore illuminating information on the functional activities 

of genes inside the network. These associations allow us to 

extract roughly 64 features that mirror gene interactions. 

These aspects help to clarify the biological relevance of 

protein interactions as well as their consequences for gene 

activity. 

 

Fig. 1. Model architecture. 
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The dataset consists of several characteristics obtained from 
many kinds of biological data. There are five main elements to 
DNA sequence data: 64 codon frequencies, GC content, gene 
length, Codon Adaptation Index (CAI), and Maximal Relative 
Synonymous Codon Usage (RSCUmax), therefore generating 
68 characteristics. With 22 characteristics, the protein sequence 
data consists in amino acid frequencies and protein length. 
Furthermore, automatically learning 64 features for every gene 
in the Protein-Protein Interaction (PPI) network is a network 
embedding technique known as Node2Vec. Comprising 153 
characteristics in all, the dataset combines PPI network, DNA 
sequence, and protein sequence insights. 

d) A deep learning method for handling imbalanced 

data using MLP and ADASYN: In classification challenges, 

imbalanced datasets provide a significant challenge since 

models often show bias towards the majority class, therefore 

compromising generalizing for the minority class. This work 

generates additional synthetic samples for the minority class 

by using a Multi-Layer Perceptron (MLP) model in 

combination with ADASYN (adaptive synthetic sampling) 

[2]. This approach increases classification efficiency and 

guarantees a fairer dataset. Data preparation, model 

architecture design, training with optimization strategies, and 

performance evaluation constitute part of the approach. The 

proposed model is meant to identify both non-essential and 

essential human genes. Along with characteristics derived 

from the Protein-Protein Interaction (PPI) network, feature 

extraction is done using DNA and protein sequences. 

Node2vec helps to automatically extract PPI features. 

Following their aggregation into a single feature vector with 

153 attributes, the acquired features serve as the MLP model's 

input layer. 

e) Data preprocessing and class balancing: First loaded 

and preprocessed is the dataset whereby the feature matrix 

separates from the target variable. The feature distribution is 

standardized using StandardScaler, therefore turning the data 

into zero, and its variance is one. The class imbalance in the 

dataset presents a major challenge that can produce biased 

predictions. This is treated with ADASYN. By a data-driven 

approach, ADASYN generates synthetic cases for the minority 

class unlike conventional oversampling techniques, therefore 

guaranteeing a more accurate distribution. Using stratified 

sampling to maintain class ratios, the resampled dataset is next 

split into training and testing sets (80% training, 20% testing). 

f) MLP model architecture: The proposed MLP model 

consists of multiple layers meant to find complex trends in the 

data. An Input Layer of 153 neurons makes up the architecture 

and represents the count of retrieved features from PPI 

networks, protein sequences, and DNA sequences. There are 

1024 hidden layers using GELU activation, 512 hidden layers 

using GELU activation, and 256 hidden layers using GELU 

activation. Batch Normalization to improve training stability 

and Dropout (0.03) to minimize overfitting follows each 

hidden layer. Given a binary classification job, a solitary 

neuron using Sigmoid activation. The model parameters are 

presented in Table I. 

g) Optimization and regularization strategies: Several 

optimization techniques were used to reduce overfitting and 

enhance the training process: Optimizer: The model uses 

AdamW, an adaptive optimizer that combines weight decay to 

minimize strong weight changes. Learning rate scheduling is 

done using a Cosine Decay Learning Rate method, therefore 

enabling a slow drop in the learning rate throughout training 

periods rather than abrupt changes [3], [4]. This approach 

increases stability and convergence. Class Weights: The loss 

function is changed to give the minority class (class 0: 0.8, 

class 1: 1.5 more relevance to solve class imbalance. 

h) Overfitting prevention and performance 

enhancement: Batch Normalization: Preserves a constant 

activation distribution, accelerating convergence and 

increasing generalizing ability, so improving the 

generalization of the model. Dropout (0.03): Randomly 

deactivates a portion during training to reduce reliance on 

specific neurons and hence prevent overfitting. Early 

Stopping: Checks validation loss and stops training should no 

improvement be observed after 50 epochs, therefore restoring 

the weight of the ideal model. Automatically lowers the 

learning rate by 50% once a validation loss plateaus, therefore 

enabling continuous improvement of model performance. 

TABLE I.  MODEL PARAMETERS 

Component Details 

Input Layer Number of features in the dataset (153) 

Hidden Layer 1 1024 nodes, Activation: GELU, Dropout: 0.03 

Hidden Layer 2 512 nodes, Activation: GELU, Dropout: 0.03 

Hidden Layer 3 256 nodes, Activation: GELU, Dropout: 0.03 

Output Layer 1 node, Activation: Sigmoid 

Epochs 100 

Early Stopping Patience:25 epochs  

Optimizer AdamW with Cosine Decay Learning Rate 

V. IMPLEMENTATION DETAILS 

Using Python 3.8, TensorFlow and Keras for deep learning, 
and Scikit-learn for data preparation and evaluation, the 
proposed model was run. StandardScaler helped us standardize 
the data such that every feature fits a zero-mean, unit-variance 
distribution. ADASYN was used to generate synthetic samples 
for the minority class before stratified sampling split the 
dataset into 80% training and 20% testing, therefore helping to 
reduce class imbalance. Using GELU activation, the MLP 
model consisted of three hidden layers with 1024, 512, and 256 
neurons correspondingly, succeeded by Batch Normalization 
and Dropout (0.03) to increase generalization and reduce 
overfitting. AdamW, combined with Cosine Decay Learning 
Rate Scheduling, helped to improve the model, guaranteeing 
training stability. Using Early Stopping (patience = 25) to 
prevent overfitting, the model ran through 100 epochs. 
Although the Quadro P620 helps CUDA acceleration, its 
computational capacity is less than that of high-end GPUs such 
the Tesla V100, which causes extended training times even if 
the experiments were conducted on a system with an Intel Core 
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i7-10750H CPU (2.60 GHz), 8GB RAM, and an NVIDIA 
Quadro P620. Still, careful change of batch size and learning 
rate helped to preserve training efficiency. The performance of 
the model in important gene categorization was shown by 
accuracy, sensitivity, specificity, and AUC-PR evaluation. 

VI. IMPLEMENTATION AND RESULTS 

a) Data collection: The Essential Genes Data (DEG) 

collection consists of twenty freely available sets of basic 

human genes [23]. To ensure complete coverage of important 

genes, we obtained and included all 20 data sets in our study 

[18-20], [24-26], [27-29] . We categorized essential genes 

found in a minimum of five independent datasets if around 

10% of human genes are essential [20]. This criterion led us to 

identify 2162 essential genes, nearly 10% of the human 

genome. The genes not categorized as essential in the DEG 

database were labeled as non-essential. Table II presents 

Datasets Database. Protein-Protein Interaction (PPI) Network 

Data included only physically proven interactions among 

human proteins, derived from experiments. Eliminating self-

interactions and many small, disconnected subgraphs helped 

to improve the dataset to produce a PPI network with 17,786 

nodes and 355,646 edges. Embedding features reflecting the 

connectivity patterns of every gene within the network were 

obtained from this well-chosen interaction network. From the 

PPI network, each gene derived 64 embedding features 

overall. Essential genes: 2145; genes with both sequence 

features and network embedding. Non-essential genes: 7,680. 

There are 9,825 examples in the last dataset, and each one 

features 153 attributes. 

b) Evaluation metrics: The Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC) evaluates the 

model's performance in fit for balanced classification 

situations when all classes have roughly equal instance counts. 

When there is uneven classification, the Precision-Recall (PR) 

curve provides a more perceptive evaluation. The Area Under 

the Precision-Recall Curve (AP) is a more representative 

measure than the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) since human essential gene 

prediction represents an unbalanced classification problem.  

We incorporate many statistical performance measures in 

addition to AUC and AP, namely Sensitivity, Specificity, 

Positive Predictive Value, and Accuracy, defined in Eq.(1) to 

(4). 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (1) 

Specificity=
𝑇𝑁

𝐹𝑃+𝑇𝑁
   (2) 

Positive Predictive Value=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

Accuracy= 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
   (4) 

where, TP (True Positives): The number of correctly 
classified essential genes.TN (True Negatives): The number of 
correctly classified non-essential genes. FP (False Positives): 
The number of non-essential genes misclassified as essential. 
FN (False Negatives): The number of essential genes 
misclassified as non-essential. Especially in addressing the 

class imbalance inherent in essential gene prediction, these 
measures provide a complete evaluation of the classification 
performance of the model. 

c) Ablation study: In this section, an ablation study was 

conducted to assess the impact of various components of the 

Multi-Layer Perceptron (MLP) model on the classification 

accuracy of essential genes. The primary objective was to 

identify the most influential factors within the model and 

evaluate how the exclusion or modification of specific 

parameters or inputs influences overall model performance. 

To ensure the optimality of the selected model architecture 
(1024-512-256) and dropout rate (0.03), a series of controlled 
experiments were performed. The purpose of these 
experiments was to examine the effect of these variables on 
model performance, confirming that each design choice 
contributed positively to enhancing accuracy while also 
addressing challenges such as overfitting and class imbalance. 

TABLE II.  DATASETS DATABASE 

Data Database File name 

DNA and protein 
sequence data 

Ensembl  
[30] 

release 97, July 2019 

PPI data 
BioGRID 

[31] 
release 3.5.181, February 2020 

Essential genes data DEG  
Homo sapiens) DEG2006: 

DEG2032) 

As shown in Table III and Fig. 2 presents the results of the 
ablation study, comparing the performance of various MLP 
architectures based on several evaluation metrics. The analysis 
includes accuracy, stability, tendencies toward overfitting, and 
the model's handling of class imbalance across the selected 
MLP architectures. 

 1024-512-256 Architecture: This architecture provides 
an effective balance between training and validation 
accuracy, showing a significant improvement in both 
test accuracy and Area Under the Curve (AUC). 

 512-256-128 Architecture: While this architecture 
yields good test accuracy, it is lower than that of the 
larger architecture. However, it achieves the best test 
loss among the configurations tested. 

 2048-1024-512 Architecture: This model achieves the 
highest training accuracy but is prone to overfitting. 
Nevertheless, it performs well on the validation data. 

Table IV outlines the performance metrics for models with 
varying dropout rates, illustrating how train accuracy, 
validation accuracy, test accuracy, AUC scores, and loss are 
influenced by different dropout values: 

 Dropout = 0.0 (No Dropout): In this configuration, 
overfitting is observed, as the model excels on the 
training data but struggles to generalize to validation 
and test data. 

 Dropout = 0.03: This rate strikes an optimal balance 
between regularization and model performance. It 
reduces overfitting while maintaining high accuracy and 
AUC scores, yielding the best test accuracy (~94%) and 
the lowest test loss (~0.20). 
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 Dropout = 0.1: This configuration results in under 
fitting due to excessive regularization. It produces the 
lowest accuracy on the test data and the lowest AUC 
scores, although it achieves the lowest test loss (~0.19), 
suggesting some improvement in generalization. 

In conclusion, a dropout rate of 0.03 provides the best 
trade-off between mitigating, overfitting and achieving high 
accuracy across training, validation, and test datasets 

d) Performance evaluation 

 Comparison of Traditional Machine Learning and Deep 
Learning Models in Classification 

As shown in Fig. 4 and Table V, Deep Learning Models vs 
Conventional Machine Learning. Artificial intelligence 
applications depend on the proper model for classification 
tasks since model performance varies depending on data 
characteristics and class equilibrium. This paper evaluated and 
compared the performance of standard machine learning 
techniques, including AdaBoost, SVM, Random Forest, and 
Naïve Bayes with that of a Multi-Layer Perceptron (MLP) 
network coupled with ADASYN, a deep learning approach. 
Founded on fundamental performance measures— Sensitivity, 
Specificity, Positive Predictive Value, and Accuracy—the 
assessment sought to find the most effective model for the 
given dataset. 

Conventional models showed significant performance 
variability; the Support Vector Machine (SVM) proved to be 
rather robust in identifying positive samples with a maximum 
sensitivity of 0.9693. With its best overall accuracy of 0.9015, 
it is a well-balanced choice between sensitivity and specificity. 
Random Forest showed a high sensitivity of 0.9776 yet a 
reduced specificity of 0.7585, therefore suggesting a higher 

false positive rate. AdaBoost achieved an overall accuracy of 
0.8428 and showed a better-balanced performance than SVM 
in general efficacy, although it did not surpass SVM. Naïve 
Bayes had the lowest sensitivity of 0.6176, indicating poor 
identification of positive instances, and the highest specificity 
of 0.8932, therefore demonstrating its effectiveness in lowering 
false positives. Still, its general performance in categorization 
was worse than that of other models. 

 Main Observation 

The MLP running ADASYN exceeded all conventional 
models with the best accuracy of 94.38%. With a sensitivity of 
96.93% and an accuracy of 90.15%, the Support Vector 
Machine (SVM) exceeded other traditional machine learning 
models. With high sensitivity (97.76%) but poor specificity 
(75.85%), the Random Forest model suggested a higher false 
positive rate. Naïve Bayes showed the lowest sensitivity 
(61.76%) but the highest specificity (89.32%) showing better 
performance in reducing false positives and less efficacy in 
discovering positive situations. AdaBoost showed a reasonable 
performance; however, it fell short of SVM or deep learning. 
Deep learning, especially when combined with data 
augmentation techniques such as ADASYN, clearly improves 
classification performance, so it is the most effective solution 
for this problem. With a sensitivity of 0.9827, an overall 
accuracy of 0.9438, and a specificity of 0.9643, the Multi-
Layer Perceptron (MLP) with ADASYN model outperformed 
all other methods. These findings highlight its remarkable 
ability for exact data classification, particularly in view of 
imbalance-handling techniques like ADASYN. The deep 
learning model produced quite improved classification results 
by remarkably identifying complex patterns in the sample. 

TABLE III.  MLP ARCHITECTURES BASED ON SEVERAL EVALUATION METRICS 

Architecture 
Best Training 

Accuracy 

Best Validation 

Accuracy 

Test 

Accuracy 

Best 

AUC 
Test Loss 

Number of 

Epochs 

512-256-128 
High, but lower than 
other architectures 

Good, but lower than 
larger architectures 

~ 91% ~ 0.97 Highest among the three 100 

1024-512-256 
Very high, with better 

stability 

Very good with reduced 

fluctuations 
~ 93% ~ 0.98 Relatively lower 100 

2048-1024-512 
Highest, but with 
overfitting 

Very good performance 
with slight fluctuations 

~ 92% ~ 0.98 

Lower than the smaller 

architecture, but not much 

improved 

100 

TABLE IV.  PERFORMANCE METRICS FOR MODEL WITH VARYING DROPOUT RATES 

Dropout 
Train 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 
Train AUC Validation AUC Test AUC Train Loss 

Validation 

Loss 
Test Loss 

0 ~99% ~95% ~93% ~1.00 ~0.98 ~0.97 Low Higher ~0.22 

0.03 ~98% ~96% ~94% ~0.99 ~0.98 ~0.975 Moderate Lower ~0.20 

0.1 ~97% ~94% ~92% ~0.98 ~0.97 ~0.965 Higher Lower ~0.19 

 Evaluation of Model Performance During Training and 
Testing 

The training process was assessed over numerous epochs 
using accuracy, AUC, and loss measures as shown in Fig 5. 
During the first epoch, the training accuracy and AUC showed 

a rapid rise and then stabilized at about 1.0, indicating that the 
model efficiently absorbed the training data. With a final test 
accuracy exceeding 0.9 and a test AUC over 0.98, the 
validation accuracy and AUC show consistent enhancement, 
approaching the test performance, demonstrating strong 
classification skill. Whereas the validation loss showed 
volatility before steadying, the loss curves show that the 
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training loss fell sharply in the first epoch and stayed low. The 
test loss stayed constant, suggesting that the model fits fresh 
data rather well. These results support the durability and 

efficiency of the model in separating non-essential from 
essential genes. 

TABLE V.  PERFORMANCE COMPARISON OF MLP WITH ADASYN, ADABOOST, SVM, RANDOM FOREST, AND NAÏVE BAYES 

Model Sensitivity Specificity Positive Predictive Value Accuracy 

AdaBoost 0.8495 0.8359 0.8403 0.8428 

Support Vector Machine (SVM) 0.9693 0.8327 0.8548 0.9015 

Random Forest 0.9776 0.7585 0.8044 0.8689 

Naïve Bayes 0.6176 0.8932 0.8546 0.7543 

MLP + ADASYN (Deep Learning) 0.9827 0.9043 0.9126 0.9438 

 Analysis of Training and Evaluation Curves 

- Fig. 3 presents the loss and accuracy curves during 

the training and evaluation phases across five folds 

using K-Fold Cross Validation. 

- The loss curve shows a rapid decrease in loss 

values during the early stages of training, reflecting 

the model's quick adaptation to the data. However, 

some fluctuations in the evaluation loss values are 

observed, which might indicate potential for slight 

overfitting. 

- The accuracy curve in Fig. 6 demonstrates that the 

model achieves a high accuracy rate exceeding 

90% after a few training epochs, with the 

performance stabilizing afterward. The small gap 

between the training and evaluation curves suggests 

the model's stability and minimal overfitting. 

 

 

 

Fig. 2. Analysis of MLP architectures. 
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Fig. 3. Loss and accuracy curves. 

 

Fig. 4. Performance comparison of MLP with ADASYN, AdaBoost, SVM, random forest, and naïve bayes. 
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Fig. 5. Training and evaluation metrics over epoch. 

 

Fig. 6. Training and validation. 

 Receiver Operating Characteristic (ROC) Curve and the 
Precision-Recall (PR) Curve 

In Fig. 7, the ROC curve reflects the relationship between 
the True Positive Rate (TPR) and the False Positive Rate 
(FPR). The results show an AUC value of 0.98, indicating the 
model's high ability to discriminate between different classes. 

The Precision-Recall curve illustrates the relationship 
between precision and recall, achieving a PR AUC value of 
0.98. This indicates the model's effectiveness in maintaining a 

high balance between precision and recall, which is crucial in 
scenarios with imbalanced datasets. 

The training and evaluation curves show a gradual 
improvement in model performance, while the high AUC 
values in both the ROC and Precision-Recall curves highlight 
the model's strong classification capability. 

The model demonstrates high efficiency in classifying data, 
achieving high accuracy and excellent AUC values, which 
reflects its ability to effectively separate the target classes.

 

Fig. 7. Model Performance evaluation: ROC and precision-recall curves. 
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VII. CONCLUSION 

a) Conclusion: By combining numerous biological data 

sources DNA sequence features, protein sequence attributes, 

and protein-protein interaction (PPI) this work developed a 

deep learning system for anticipating important human genes. 

With 94.38% accuracy, 98.27% sensitivity, and 90.43% 

specificity, the proposed MLP model using ADASYN showed 

improved performance relative to standard machine learning 

models. Especially in the management of imbalanced datasets 

and autonomously recognizing complex patterns in large-scale 

biological data, the results highlight the advantages of deep 

learning approaches in important gene prediction. This model 

is a potential tool for biological study since the combination of 

sequence-based properties and network topology produced a 

more complete and accurate classification of significant genes. 

Additionally, improving model generalization and stability 

were regularization techniques like Batch Normalization, 

Dropout, and Learning Rate Scheduling. The study underlined 

the need to balance class distribution and showed how much 

ADASYN enhanced model performance in predicting 

important genes in the minority class. 

b) Future directions: Notwithstanding the positive 

results, there are still several paths for further improvement 

and research: Enhancing Feature Representation, combining 

epigenetic modifications, gene expression patterns, and 

functional annotations could increase the predictive power of 

the model. Examining graph-based embeddings outside 

Node2Vec including Graph Neural Networks (GNNs) may 

improve the representation of protein-protein interaction (PPI) 

networks. Application in Disease Gene Forecasting, since 

many important genes are linked to diseases, using this model 

to predict disease-related genes could have significant effects 

on pharmaceutical research and tailored therapy. For 

important gene prediction, the proposed deep learning system 

presents a strong, scalable, and well-performing approach. 

This work combines class-balancing methods, deep learning, 

and biological data to improve the biological relevance and 

accuracy of gene-categorizing algorithms. 

DATA AVAILABILITY 

All data used in this study are freely accessible from public 
databases: 

Protein-protein interaction data are available from 
BioGRID database at http://thebiogrid.org/download.php. 

Essential genes data and the corresponding sequence data 
from DEG database are available at  

http://tubic.tju.edu.cn/deg/ 

DNA sequence and protein sequence data are available at 
https://useast.ensembl.org/Homo_sapiens/Info/Annotation 
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