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Abstract—Large Language Models (LLM) is a type of 

artificial neural network that excels at language-related tasks. 

The advantages and disadvantages of using LLM in software 

engineering are still being debated, but it is a tool that can be 

utilized in software engineering. This study aimed to analyze 

LLM studies in software engineering using bibliometric and 

content analysis. The study data were retrieved from Web of 

Science and Scopus. The data were analyzed using two popular 

bibliometric approaches: bibliometric and content analysis. VOS 

Viewer and Bibliometrix software were used to conduct the 

bibliometric analysis. The bibliometric analysis was performed 

using science mapping and performance analysis approaches. 

Various bibliometric data, including the most frequently 

referenced publications, journals, and nations, were evaluated 

and presented. Then, the synthetic knowledge method was 

utilized for content analysis. This study examined 235 papers, 

with 836 authors contributing. The publications were published 

in 123 different journals. The average number of citations per 

publication is 1.44. Most publications were published in 

Proceedings International Conference on Software Engineering 

and ACM International Conference Proceeding Series, with 

China and the United States emerging as the leading countries. It 

was discovered that international collaboration on the issue was 

inadequate. The most often used keywords in the publications 

were "software design," "code (symbols)," and "code 

generation." Following the content analysis, three themes 

emerged: 1) Integration of LLM into software engineering 

education, 2) application of LLM in software engineering, and 3) 

potential and limitation of LLM in software engineering. The 

results of this study are expected to provide researchers and 

academics with insights into the current state of LLM in software 

engineering research, allowing them to develop future 

conclusions. 

Keywords—Large Language Models; LLM; software 

engineering; bibliometric; content analysis 

I. INTRODUCTION 

Coupled with Generative Pre-trained Transformers, Large 
Language Models substantially advance natural language 
processing. ChatGPT, a cutting-edge conversational language 
model noted for its user-friendly interface, has attracted 
significant interest due to its advanced capacity to deliver 
human-like responses in various conversational scenarios. 
OpenAI has created an impressive conversational artificial 
intelligence (AI)-based language model known as the Chat 
Generative Pre-Trained Transformer (ChatGPT). On 
November 30, 2022, OpenAI released the ChatGPT GPT 3.5 
series for free, followed by the premium version, GPT-4, on 
March 14, 2023 [1]. Additionally, other well-known LLMs 
include Google's Gemini, Microsoft Copilot, Meta's LLaMA, 
Anthropic's Claude, and Mistral AI's models [2]. 

The integration of this sophisticated technology in software 
engineering remains a subject of debate among stakeholders. 
Nevertheless, it holds potential for incorporation into the 
software engineering workflow [3]. Rahmaniar [4], suggests 
that more research should be conducted on LLM's effects and 
potential contributions to software engineering tasks such as 
code generation, bug fixing, and design decisions. LLMs have 
the potential to transform the software engineering sector by 
impacting various software development tasks, including code 
evolution and software testing [5]. 

Bibliometric research in software engineering is becoming 
increasingly popular [6]. According to their definition, 
bibliometrics is the study of a research issue using 
mathematical and statistical techniques based on bibliographic 
sources. The method of gathering and analyzing bibliometric 
data on a large scale allows bibliometric analysis to provide 
comprehensive details about the evolving patterns and 
intellectual structure of a research topic or discipline [7]. 
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Bibliometric analysis comprises two techniques: scientific 
mapping and performance analysis [7]. Performance analysis 
examines how well individuals, organizations, and nations 
perform regarding research and publications [8]. Scientific 
mapping helps study scientific domains by revealing their 
structure and dynamics [9]. This study chose bibliometric 
analysis for our investigation because it can efficiently detect 
patterns and trends in the literature, highlight necessary studies 
and writers, and identify trends and topics for future research. 

While previous bibliometric studies have examined the use 
of Large Language Models (LLMs) in fields such as public 
health, education, social sciences, and medicine, no such 
analysis has been conducted specifically in software 
engineering [10] to [16]. Existing research indicates that the 
application of LLMs in software engineering is still in its early 
stages. A detailed bibliometric analysis in this field is needed 
to identify key contributors, trends, and geographic activity, as 
well as to better understand the evolving potential and 
limitations of LLMs in software engineering. 

The goal of this paper is to provide a bibliometric analysis 
of LLM studies in software engineering. The findings of our 
analysis provide information on the following issues: 

1) What is the monthly distribution of publications on 

LLM? 

2) What are the top five most cited publications in the 

LLM field? 

3) Who are the top five most cited authors in the LLM 

field? 

4) What are the dynamics of publications on LLM in the 

literature (journals and countries)? 

5) What are the keywords most commonly used in 

publications on LLM? 

6) Which themes emerged after the content analysis of 

LLM research? 

II. LITERATURE REVIEW 

Previous research has explored bibliometric analyses on the 
usage of LLM in public health [10], education [11], social 
science [12], and medicine [13]. However, no bibliometric 
analysis of LLM has been performed in software engineering. 
A scoping study on applying an LLM in software engineering 
revealed that LLM research was in its early phases [14], [15]. 
Marques et al. [16] investigated the role of LLM in software 
requirements engineering, an essential aspect of software 
engineering. They discovered that the possibilities and 
limitations of LLM in software engineering are still developing 
and in their early phases. A detailed bibliometric analysis of 
LLM in software engineering can provide academics and 
stakeholders with an overview of the study. This research can 
assist in identifying the field's most prolific authors, countries, 
and scientific trends. In this case, bibliometric analysis could 
lead us to explore the potential and limitations of LLM in the 
software engineering field. 

III. METHOD 

A. Search Strategy 

The flowchart of the research methodology is shown in Fig. 
1. Web of Science and Scopus are the two most commonly 
utilized databases in bibliometric studies [17]. Data sources for 
this study included Scopus (Elsevier; 
https://www.scopus.com/) and Web of Science (Clarivate; 
https://www.webofscience.com/wos). The search strategy was 
designed as follows: "(TITLE-ABS-KEY ("Large Language 
Model" OR ChatGPT OR LLM OR Chatbot OR OpenAI OR 
Gemini OR Copilot)) AND (TITLE-ABS-KEY ("Software 
Engineering" OR "Software Development"))." The search was 
carried out on July 17, 2024. The search criteria were "article 
title, abstract, keywords" and publications on LLM in software 
engineering. There were no exclusion criteria. The search 
retrieved 529 studies from the two databases. After deleting 80 
duplicate publications, 214 were reviewed using the inclusion 
criteria, resulting in 235 papers for bibliometric analysis. 

B. Bibliometric Methodology 

Bibliometric analysis examines the performance of research 
elements, such as articles, authors, journals, keywords, and 
nations, and visualizes their intellectual, conceptual, and social 
structures through mapping methodologies [18]. In our work, 
the bibliometric methodology included performance analysis 
and scientific mapping techniques. The parameters for 
performance analysis were the number of articles and citations. 
Co-occurrence analysis was employed for scientific mapping 
[7]. 

Before data analysis, Scopus and Web of Science data were 
automatically combined using the RStudio IDE. The file was 
downloaded in BibTex format from Scopus and Web of 
Science, then updated in RStudio using R script code to 
produce a "database.csv" file (Source Code: Appendix). The 
data for this investigation was analyzed using VOS viewer 
version 1.6.20 (Leiden University, Netherlands, 
https://www.vosviewer.com) and Bibliometrix version 4.3.0 
(University of Naples Federico II, 
https://www.bibliometrix.org). The VOS viewer allows users 
to observe things as well as their connections. "Items" are 
noteworthy objects, such as publications or researchers, while 
"links" represent the connections between these items. The 
VOS viewer establishes a correlation or relationship between 
two things. The stronger the link between the components, the 
greater the Total link strength (TLS), represented by a positive 
numerical value. On a map, things can be arranged into groups 
that form clusters. The weights applied to each item in network 
visualization represents its relative importance. The size of the 
circles or labels representing the object is strongly related to its 
weight; the more significant the circle or label representing an 
item, the heavier the item. This strategy simplifies 
understanding of the picture's components' relevance and 
relationships [8]. 

Bibliometrix is an open-source bibliometric software 
developed in R (The Comprehensive R Archive Network, 
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https://cran.r-project.org) [19]. After installing the Bibliometrix 
R package, the Bibliometrix web interface was accessible with 
the executed code "bibliometrix::biblioshiny ()”. Bibliometrix 
was used to investigate publishing data (total citations, average 
citations, etc.) and international collaboration between 
countries. 

C. Content Analysis 

Bibliometric analysis is an accurate method for recognizing 
the many information clusters that may appear in the literature. 
Klarin [18] developed the guideline for the knowledge 
synthesis approach used in content analysis. The approach 
consists of the following steps: 

1) Research publications on LLM and Software 

Engineering are compiled. 

2) Publications are categorized into themes depending on 

author keywords. Co-occurrence keyword analysis contains 

the results of this stage. Then, this study analyzes and 

characterizes the relationships between codes within each 

cluster in Section Co-occurrence keyword analysis." 

3) Identify categories and assign theme names to clusters. 

Content Analysis shows the results of this stage. 

4) The qualitative analysis generates a list of topics as 

output. Table III shows the results of all processes. 
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 Duplicate records removed (n = 80)

 
Fig. 1. Research methodology. 

IV. RESULTS  

A. Publication Characteristics 

Since ChatGPT was released on November 30, 2022, the 
publication distributions by month shown in Fig. 2, include 
publications published between January 2023 and June 2024. 
The analysis included 235 publications. The majority of the 
publications were published in April 2024. The publications 
comprised 51 articles, 138 conference papers, 39 proceeding 

papers, 3 reviews, 3 book chapters, and 1 lecture note. These 
papers, which had 836 authors, appeared in 123 different 
journals. The average number of citations was 1.44. 

This analysis discovered that most articles were not 
research articles but conference and proceeding papers. In 
particular, scoping review research on LLM conducted on 
software engineering found that nearly one-quarter of the 
publications were "article" studies. This indicates that the 
research is still in its early stages. LLM, such as ChatGPT, is a 
new AI technology in software engineering [16]. 
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Fig. 2. Distribution of publications by months. 

Since publications are published almost monthly, it is 
reasonable to expect future growth in LLM and software 
engineering studies. 

B. Top 10 Most Cited Publications and Authors 

The most cited publication (Table I) discusses how 
ChatGPT can be used in software engineering to translate, 
create, and autocomplete code [20]. The second most cited 
work investigates the use of few-shot training with the GPT 
Codex model, demonstrating that it outperforms state-of-the-art 
models in code summarization while exploiting limited, 
project-specific data, emphasizing its importance in software 
engineering (Sobania et al., 2022). The research discovered 
that Copilot boosts software development productivity as 
measured by code-generated lines. The third most referenced 
work investigates the application of LLM in software 
engineering education and discusses improving software 
engineering education by personalizing learning experiences. 
They also emphasize the importance of modifying software 
engineering programs to match evolving software engineer 
profiles [21]. 

TABLE I.  MOST CITED PUBLICATIONS AND AUTHORS 

No Title 
Publication 

Type 
Authors Journal 

Number of 

Citation (Scopus) 

Google Scholar 

Citation Count 

1. 

The Programmer's Assistant: Conversational 

Interaction with A Large Language Model for 

Software Development 

Conference 
Paper 

(Ross et 
al., 2023) 

International Conference on 

Intelligent User Interfaces, 

Proceedings IUI 

72 176 

2. 
Few-Shot Training LLMs for Project-Specific 

Code-Summarization 

Conference 

Paper 
[35] 

ACM International Conference 

Proceeding Series 
27 121 

3. 
How ChatGPT Will Change Software 

Engineering Education 

Proceedings 

Paper 
[21] 

Proceedings of the 2023 

Conference on Innovation and 
Technology in Computer 

Science Education, ITICSE 

2023, Vol 1 

25 68 

4. 
GitHub Copilot AI Pair Programmer: Asset or 

Liability? 
Article [36] 

Journal of Systems and 

Software 
24 241 

5. Generative AI for Software Practitioners Article [37] IEEE Software 20 97 

6. 
Towards Human-Bot Collaborative Software 
Architecting with ChatGPT 

Proceedings 
Paper 

[22] 

27th International Conference 

on Evaluation and Assessment 
in Software Engineering, EASE 

2023 

12 110 

7. 
Investigating Code Generation Performance of 

ChatGPT with Crowdsourcing Social Data 

Proceedings 

Paper 
[38] 

2023 IEEE 47th Annual 
Computers, Software, and 

Applications Conference, 

COMPSAC 

10 84 

8. 
Exploring The Implications of OpenAI Codex 
on Education for Industry 4.0 

Conference 
Paper 

[39] 
Studies in Computational 
Intelligence 

9 16 

9. 

Natural Language Generation and 

Understanding of Big Code For AI-Assisted 
Programming: A Review 

Review [40] Entropy 9 40 

10. 

Large Language Model Assisted Software 

Engineering: Prospects, Challenges, and A 

Case Study 

Conference 
Paper 

[41] 
Lecture Notes in Computer 
Science 

6 48 

 

The sixth most cited publication investigates how Software 
Development Bots, specifically ChatGPT, might help 
architecture-centric software engineering (ACSE) processes. It 
explores the problems of ACSE and proposes using ChatGPT 
to combine human experience with AI-powered decision 
support. The paper also describes a case study in which a 
novice architect collaborated with ChatGPT to design a 
service-based software system. The authors suggest future 
research to collect more empirical evidence on the productivity 
and socio-technical aspects of using ChatGPT in software 
architecture [22]. 

The most cited publications generally discuss ChatGPT's 
use in software engineering for tasks such as code translation, 
generation, and autocomplete. Another study shows that GPT 
Codex outperforms state-of-the-art models in code 
summarization using project-specific data via few-shot 
training. Generative AI, such as ChatGPT, is also being 
considered to improve software engineering education and 
change curriculum. A study further emphasizes ChatGPT's 
importance in architecture-centric software engineering 
(ACSE) by supporting new architects and recommends 
additional research on productivity and socio-technical issues. 
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C. Most Productive Journals 

The most productive journals in terms of the number of 
publications in the field of LLM are Proceedings - International 
Conference on Software Engineering (n = 27), ACM 
International Conference Proceeding Series (n = 20), Lecture 
Notes in Computer Science (n = 10), Proceedings - 2023 38TH 
IEEE/ACM International Conference on Automated Software 

Engineering, ASE 2023 (n = 9) and IEEE Transactions on 
Software Engineering (n = 6), respectively (Table II). 

In the remaining journals, one or two articles were 
published. The most productive journals in terms of the 
number of citations are Proceedings - International Conference 
on Software Engineering (n = 54), ACM International 
Conference Proceeding Series (n = 33), and Lecture Notes in 
Computer Science (n = 15), respectively. 

TABLE II.  THE MOST PRODUCTIVE SOURCES 

No Journal N*) Total Citation H-Index G-Index 

1 Proceedings - International Conference on Software Engineering 27 9 1 2 

2 ACM International Conference Proceeding Series 20 29 1 5 

3 Lecture Notes in Computer Science 10 12 2 3 

4 
Proceedings - 2023 38TH IEEE/ACM International Conference on 
Automated Software Engineering, ASE 2023 

9 8 2 2 

5 IEEE Transactions on Software Engineering 6 8 2 2 

6 
Proceedings - 2023 IEEE International Conference on Software 

Maintenance and Evolution, ICSME 2023 
5 3 1 1 

7 IEEE Software 4 22 2 4 

8 Journal of Systems and Software 4 24 1 4 

9 Lecture Notes in Business Information Processing 3 5 2 2 

10 Automated Software Engineering 3 1 1 1 

Note. (*) Sources that published at least two publications were listed.  

The fact that the Proceedings - International Conference on 
Software Engineering has the most citations implies that 
research in this discipline is well-received in academic circles. 
The article "The Programmer's Assistant: Conversational 
Interaction with A Large Language Model for Software 
Development," published in the International Conference on 
Intelligent User Interfaces, Proceedings IUI [20], drew 
attention due to the number of citations it received in the fields 
of LLM and software engineering. 

D. The Most Productive Countries and International 

Cooperation 

The research articles were created by authors from 40 
different countries (Fig. 3). The top five most productive 
countries in terms of number of publications were China (n = 
29), the United States (n = 28), Germany (n = 16), Canada (n = 
11), and Brazil (n = 6). The top five nations by number of 
citations were Canada (n = 74), the United States (n = 70), 
Germany (n = 57), China (n = 14), and Finland (n = 14). 
Consistent with our findings, other studies have identified 
China and the United States as significant countries in LLM 
research in different disciplines [23]–[25]. These countries' 
position as pioneers in LLM and software engineering research 
reflects their significant investments in these fields. 

The review of international collaborations demonstrated 
that the country that collaborated most was China (Fig. 4). 
China collaborated with Australia (n = 3), Finland (n = 2), 
Germany (n = 2), and the United Kingdom (n = 2). 
Furthermore, there were collaborations between Germany and 

Finland (n = 2), Germany and the United Kingdom (n = 2), the 
United States and China (n = 2), the United States and the 
United Kingdom (n = 2), Australia and Finland (n = 1), and 
Australia and Singapore (n = 1). In the future, increased 
international collaboration and generative AI applications like 
ChatGPT may allow for the development of creative and 
comprehensive methodologies in software engineering. In 
addition, guidelines and policies for artificial intelligence and 
software engineering can be produced in collaboration with 
other countries. 

 
Fig. 3. The Number of publications and citations by country. Note. Countries 

with at least two publications are presented. 
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Fig. 4. Country collaboration map. Note. Dark blue indicates more frequent 

international cooperation. The thickness of the red line between the two 
countries shows the extent of cooperation. 

E. Co-Occurrence Keyword Analysis 

This study identified 1804 keywords (Table III). The 
following keywords appear at least ten times: software design 
(n = 158), code (symbols) (n = 68), code generation (n = 40), 
software testing (n = 34), learning system (n = 32), and 
artificial intelligence (n = 25). According to Ozkan et al. 
(Ozkan et al., 2024) and Mesa Fernández et al. (2022), the 
most commonly used words in software engineering are 
"software design," "code (symbols)," and "code generation." 
The frequent use of these words indicates that LLM-based 
technologies are becoming more popular in the software 
engineering, especially in code development. 

Fig. 5 and Table III shows a visualization of the co-
occurrence analysis using the VOS viewer. In the green cluster, 
the keywords "software design" (TLS = 277) and "code 
generation" (TLS = 105) are prominent. The emphasis is on the 
impact and prospective applications of LLM in software 
engineering. The red cluster contains the keywords "artificial 

intelligence" (TLS = 62), "generative AI" (TLS = 52), 
"engineering education" (TLS = 72), "students" (TLS = 82), 
and "software engineering education" (TLS = 54). In this 
cluster, the focus is on using LLM in software engineering 
education. In the yellow cluster, the keywords are "engineering 
task" (TLS = 45), "prompt engineering" (TLS = 35), "life 
cycle" (TLS = 39), "modeling languages" (TLS = 31), and 
"requirement engineering" (TLS = 19) and it is emphasized 
that the practical application of LLM on software life-cycle 
development are an essential research area. In the blue cluster, 
the focus is on the impact of LLM on automation software 
development tasks, whereas in the purple cluster, the focus is 
on using LLM in "code (symbols)" (TLS = 153), "quality 
control" (TLS = 46), "task analysis" (TLS = 37), A“code 
review" (TLS = 24), and "code quality" (TLS = 20). This 
analysis visualizes how the interaction between the software 
engineering field and AI intersects with different aspects and 
how these terms are positioned together in academic literature. 

 
Fig. 5. Visualization of keywords. Note. The analysis is set to the minimum 

number of keyword occurrences (minimum 10). The network consists of 30 
items, 5 clusters, 269 links, and 875 total link strengths. 

TABLE III.  CO-OCCURRENCE ANALYSIS 

Cluster no. and 

color 
Cluster theme 

The number of 

items 
Code (Keywords) Explanation 

1             Red Software Engineering 

Education 
6 

Artificial Intelligence, Education Computing, 
Engineering Education, Generative AI, 

Software Engineering Education, Students 

Researchers delve into educational aspects 

related to LLM and software engineering. 

2             Green Software Development 

Tools and Practices 
6 

Benchmarking, Code Generation, GitHub 

Copilot, Program Debugging, Software 
Design, Software Testing 

Researchers explore topics like the application 

of LLM in practical software development 
scenarios. 

3             Blue Automation Software 

Development Task 
6 

Automation, Learning System Machine 

Learning, Natural Language Processing, 
Open-Source Software, Software Developer 

The emphasis of ChatGPT's impact on 

automation, software development task 

4             Yellow 
Practical Application of 

LLM in Software 

Engineering 

6 

Case Studies, Engineering Tasks, Life Cycle, 

Modeling Languages, Prompt Engineering, 

Requirements Engineering 

The cluster deals with various aspects of 

software engineering, from requirements 
engineering and software modeling to security 

checks. 

5             Purple 
Quality Control 6 

Code (symbols), Code Quality, Code Review, 

Coding Standards, Job Analysis, Quality 
Control, Task Analysis 

The cluster revolves around the various 

aspects of quality control and evaluation tasks 
within the software engineering domain. 

Note. The network has 30 items, 5 clusters, 269 links, and a TLS value 875. *Index keywords used by the paper. 

F. Content Analysis 

Content analysis can assist prospective academics in 
identifying essential knowledge gaps in the literature [18]. 
During the content analysis, five key themes emerged. 

Theme 1: Integration of LLM into Software Engineering 
Education 

The first theme focuses on the discussions regarding the use 
of LLM in educational aspect of software engineering [15], 
[21], [34], [26]–[33]. 

Subtheme 1: Potential and threats of LLM in software 
engineering education. 
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Using LLMs like ChatGPT in software engineering 
education has generated debate, highlighting threats and 
opportunities. The integration of ChatGPT into software 
engineering education can provide various benefits. ChatGPT 
can give personalized feedback and enhance individualized 
student learning experiences [21]. 

It has advantages, such as how ChatGPT can change how 
software engineering is taught, making it more practical and 
relevant to real-life scenarios. Students use ChatGPT to do 
practical software engineering tasks like collecting user stories, 
creating use case and class diagrams, and formulating sequence 
diagrams, which helps them understand real-world applications 
of their learning [30]. It also has advantages such as Automated 
Programming Assessment Systems (APASs) as AI-tutors [27] 
and can aid educators in developing curriculum and preparing 
course material [29]. Additionally, it can be used in real-time 
problem solving, collaboration and peer learning, virtual 
mentoring, generating creative and novel ideas, and research 
and exploring [15]. 

Despite the potential benefits, integrating LLMs, such as 
ChatGPT, into software engineering education raises several 
concerns and possible limitations. An empirical study with 182 
participants in a first-year programming course found no 
significant difference in performance between students using 
ChatGPT and those not using it, suggesting that ChatGPT can 
be safely integrated into education with proper measures [34]. 
Recent studies in LLMs, including ChatGPT and Copilot, have 
led to their integration into software development education. 
An experiment with 32 participants examined LLM use and its 
correlation with student performance, revealing a negative 
impact on grades when overused for essential tasks, 
emphasizing the need for balanced integration of LLM tools in 
education [31]. Petrovska et al. [32] focused on creatively 
developing assessments that encourage learners to critically 
evaluate ChatGPT's output, helping them understand the 
subject material without the risk of the AI tools "doing the 
homework." Additionally, Brennan and Lesage [33] evaluated 
the OpenAI Codex code completion in industry 4.0-oriented 
engineering programs. They reported that while Codex assisted 
with simple code completions, students still needed a solid 
understanding of software development principles, 
underscoring the importance of foundational knowledge even 
when using these advanced AI tools. 

Overall, integrating LLMs like ChatGPT in software 
engineering education offers significant advantages, including 
personalized learning, practical application of concepts, and 
support for curriculum development. However, it also presents 
challenges, such as potential negative impacts on student 
performance if overused and the necessity for students to have 
solid foundational knowledge despite AI assistance. Students ' 
critical evaluation of AI-generated content is essential to ensure 
they truly understand the material. Balancing the use of these 
tools with traditional learning methods is crucial for 
maximizing their benefits in educational settings. 

Subtheme 2: Future Directions and Adaptation of LLM in 
Education. 

The roadmap for integrating LLMs into software 

engineering education includes adapting curricula to provide 
AI literacy, ensuring academic integrity, and reducing 
academic misconduct. This highlights the necessity for 
ongoing policy adaptation to technological advancements, 
marking a critical step toward responsibly integrating ChatGPT 
in education. Future directions for integrating ChatGPT and 
similar LLM tools in software engineering education include 
creating interactive and immersive learning platforms, adopting 
holistic educational approaches, and continuously evaluating 
the impact of these tools to optimize their integration and 
maximize educational benefits [15], [28]–[30]. 

In summary, integrating ChatGPT into software 
engineering education requires adapting curricula to include AI 
literacy, maintaining academic integrity, and preventing 
misconduct through evolving policies. Future directions 
involve creating interactive learning platforms, adopting 
holistic educational approaches, and continuously evaluating 
the impact of these tools to ensure they provide maximum 
educational benefits. These steps are essential for responsibly 
incorporating ChatGPT and similar technologies into 
education. 

Theme 2: Software Development Tools and Practices 

This theme delves into the utilization of LLMs for 
developing and maintaining software quality through advanced 
code generation and software testing practices. It highlights the 
potential and limitations of LLMs application in software 
engineering. 

Subtheme 1: Code generation performance and evaluation 

Researchers from multiple countries have examined the 
performance of code generated by LLM. Wang and Chen 
(Wang & Chen, 2023) noted that LLM-powered code 
generation has sparked considerable academic interest. An 
empirical study by Z. Liu et al. [42] assessed ChatGPT's 
code generation capabilities across five programming 
languages, focusing on correctness, complexity, and security. 
Their findings revealed that ChatGPT effectively generates 
accurate code for issues predating 2021 but encounters 
difficulties with more recent problems. Similarly, M. Liu et al. 
[43] conducted a case study using GPT-4 to generate 
safety critical software code. They explored various methods, 
including overall requirements, specific requirements, and 
augmented prompts, concluding that GPT-4 can autonomously 
generate safety-critical software code suitable for practical 
engineering applications. 

Despite the promising results of LLM's performance in 
code generation, there is still a debate about their reliability, 
necessitating more study on evaluation studies [44]. 
Rodriguez-Cardenas et al. [45], examined LLM-generated code 
in different scenarios, emphasizing the need for comprehensive 
evaluation metrics to accurately measure the effectiveness of 
LLMs in producing reliable and functional code. Preliminary 
studies have been conducted to this end. Yeo et al.  [46], 
introduced a framework for evaluating LLM-generated code 
using a metric based on test case pass rates. Similarly, Aillon et 
al. [47], suggested several metrics for assessing LLM-
generated code, including code quality, solution quality, 
response time, and comparisons with human-generated code. 
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Other studies have identified significant issues in 
evaluating LLM-generated code. Mastropaolo et al. [48], 
assessed the robustness of code generated by GitHub Copilot, 
highlighting inconsistencies in Copilot's performance. They 
found that different but similar prompts often resulted in varied 
outputs, undermining code quality. Zhong and Wang [49] also 
evaluated the robustness and reliability of LLM-generated 
code, reporting several limitations. For example, 62% of the 
code generated by GPT-4 misused APIs, potentially leading to 
resource leaks, crashes, or unpredictable behavior. 

Furthermore, while the generated code can run, it is not 
always reliable or robust enough for real-world applications. 
Tests often focus on small or straightforward tasks, which do 
not reflect the complexity of real-world software development 
challenges [50]. In addition, Mbaka [51] investigated 
ChatGPT's effectiveness in validating security threats. The 
study found that ChatGPT is unreliable in distinguishing real 
threats from fake ones. 

In summary, while LLMs like ChatGPT show potential in 
code generation, significant issues related to reliability and 
robustness remain. Comprehensive evaluation metrics and 
further studies are needed to improve the effectiveness of 
LLMs in practical software development scenarios. 

Subtheme 2: Software testing 

This cluster examines the application of LLM in software 
testing, exploring their potential to innovate and enhance 
traditional testing methodologies. The research encompasses 
various aspects of software testing, from unit test generation to 
exploratory testing, highlighting the transformative potential of 
LLMs in improving these processes. 

Tsigkanos et al. [52] explored the use of LLMs for 
metamorphic testing in addressing oracle problems within 
scientific software testing. Scientific software typically handles 
vast data sets, making manual extraction of essential variables 
for testing challenging. They developed a method using LLMs 
to extract these variables from user manuals automatically and 
compared the LLM-extracted variables with those identified by 
human experts, finding the LLM method effective. However, 
despite automating metamorphic testing and reducing human 
intervention, the approach may still face challenges in 
managing the vast and varied input-output spaces characteristic 
of scientific software. Schafer et al. [53] reported the 
effectiveness of using LLMs to create unit tests, introducing a 
tool called Test Pilot that generates diverse tests without 
needing extra training, outperforming existing methods. 
However, while the tool works well with certain LLMs and 
specific prompt information, it may not handle more complex 
or unusual cases in software testing effectively. Thus, further 
work is needed to enhance the tool's reliability and versatility 
across different testing scenarios. Tang et al. (Tang et al., 2024) 
systematically compared unit test suites generated by ChatGPT 
and EvoSuite, focusing on key factors such as correctness, 
readability, code coverage, and bug detection capability. Their 
findings indicate that ChatGPT is a promising tool for 
generating unit tests in software engineering. Yet, they also 
identify significant limitations, including reliance on a single 
LLM model, issues with generalization, and the necessity for 

ongoing research to improve the reliability and effectiveness of 
LLM-generated test cases. 

Additionally, El Haji et al. [54], assessed GitHub Copilot's 
ability to generate unit tests automatically. Their experimental 
study revealed that while GitHub Copilot shows potential, a 
significant portion of its generated tests fail or are not helpful, 
particularly without an existing test framework. They 
concluded that including comments in the code could improve 
the tool's performance, suggesting that clear documentation 
might enhance results. This study highlights limitations related 
to high failure rates, usability issues, dependence on existing 
test suites, and the proprietary nature of the tool. Similarly, 
Mehmood et al. [55], compared GitHub Copilot-generated test 
cases with test cases created by humans, finding that while 
Copilot shows promise, it has limitations, such as restrictions 
on the range of scenarios for testing and potential prompt 
biases. Further research is necessary to understand its 
capabilities and best uses fully. Despite promising to generate 
test cases comparable to those created manually, Copilot has 
limitations in scope, reliance on the prompt quality, range of 
generated test cases, and the need for more extensive research 
across a broader range of software development tasks. 

Moreover, Copche et al. [56] developed a chatbot called 
BotExpTest to assist human testers during exploratory testing. 
This study suggests that integrating chatbots into testing can 
improve bug detection efficiency and effectiveness. However, 
further research with larger and more varied sample sizes, 
extended testing durations, and comparisons across different 
testing environments and types is needed to understand its 
capabilities and limitations fully. Finally, LLMs have been 
utilized for bug detection and fixing [57]–[59]. A significant 
challenge with LLMs is the need for additional steps to make 
their output more helpful. After generating results, extra time is 
required to fix mistakes and provide more detailed instructions, 
which can be time-consuming. LLMs also struggle to fully 
understand the context of the code they are testing without 
clear explanations, leading to missed details and bugs. 

In summary, LLMs have shown great potential in various 
aspects of software testing, including automatic test generation, 
exploratory testing, and bug detection. While these tools can 
significantly enhance testing processes, they often require 
additional steps to fix errors and provide detailed prompts, 
which can be time-consuming. LLMs struggle with 
understanding code context without clear descriptions, leading 
to missed details and bugs. LLM-generated tests have high 
failure rates and usability issues, especially without existing 
frameworks or clear documentation. Additionally, LLMs may 
not handle complex or unusual cases well and are limited by 
prompt biases and testing scenario restrictions. Despite their 
potential, LLMs need further refinement and research to 
improve their reliability and effectiveness in practical software 
engineering tasks. 

Theme 3: Automation Software Development Task 

This theme focuses on the integration of LLM in 
automating software engineering tasks. The key findings 
highlight significant advancements in this area, emphasizing 
the transformative impact of LLM automation on traditional 
software engineering processes. 
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Rathnayake et al. [60], explores automated technical 
interviews using advanced chatbot technologies. In the realm 
of software engineering, automating technical interviews 
facilitates the assessment of candidates' technical competencies 
during recruitment. However, challenges remain, such as 
accurately evaluating technical skills, potential biases in 
assessing candidate psychology, and ensuring all system 
components function cohesively. Therefore, further work is 
needed to enhance the reliability and effectiveness of these 
automated interview systems. Chen et al. [61] propose an LLM 
approach for converting written problem descriptions in natural 
language into domain models, which is typically time-
consuming and requires significant expertise. Their findings 
indicate that while LLMs promise to automate domain 
modeling, they often miss essential details and do not always 
follow best practices. Consequently, additional research is 
necessary to make these tools practical and reliable for 
everyday use in software engineering. Martins et al. [62], apply 
LLMs to automatically analyze code, demonstrating their 
practical application in maintaining high coding standards and 
improving overall software maintainability. However, the 
effectiveness of LLMs heavily depends on the quality of input 
data and the implementation process. Asare et al. [63] examine 
the security implications of code generated by GitHub Copilot. 
They conclude that although Copilot performs differently 
across various vulnerability types, it is not worse than human 
developers at introducing vulnerabilities. Nonetheless, the 
study identifies limitations in creating secure code, with 
Copilot sometimes repeating old coding mistakes, thereby 
making software vulnerable to attacks. Specifically, Copilot 
suggests code with the same security flaws about 33% of the 
time. Its performance varies depending on the type of 
vulnerability, and it tends to struggle more with older issues. 
Thus, while Copilot can be helpful, it is not always reliable for 
generating safe code, necessitating careful instructions from 
developers to avoid security issues. 

Additionally, Wuisang [64] evaluate the effectiveness of 
ChatGPT for automated bug fixing in Python. Their study 
highlights ChatGPT's potential as an effective tool for 
improving code quality and reducing the need for human 
intervention in bug fixes. They tested 40 different bugs, finding 
that ChatGPT could correctly fix 30 of them. Although this 
demonstrates ChatGPT's capability, the failure to fix 10 bugs 
indicates room for improvement. Despite outperforming other 
tools like standard bug-fixing methods and Codex, further 
enhancements are required to ensure reliability in fixing all 
bugs. 

In summary, the research underscores the transformative 
potential of LLMs in automating various software engineering 
tasks, including technical interviews, domain modeling, code 
analysis, and bug fixing. However, challenges remain 
regarding the reliability and effectiveness of LLMs in these 
applications. Further refinement and research are essential to 
fully realizing their potential in practical software development 
tasks. 

Theme 4: Practical Application of LLM in Software 
Engineering. 

Subtheme 1: LLM in Requirements Engineering. 

Research in this cluster focuses on integrating LLM in 
requirements engineering. Jain et al. [65] present a novel 
approach for summarizing requirements from obligations in 
software engineering contracts using LLM. This method 
leverages prompt engineering principles to guide GPT-3 in 
generating training and ground truth summaries, which are then 
used to train Natural Language Generation (NLG) models for 
contract text summarization. Despite its promise, the method 
heavily relies on the effectiveness of prompt engineering and 
the performance of NLG models. Consequently, there is a risk 
that essential details might be missed or not accurately 
captured, making LLM-generated summaries potentially 
unreliable. Therefore, analysts must review the original 
contracts carefully to ensure accuracy. 

Spoletini and Ferrari [66] explore integrating automatic 
formal requirements engineering techniques with LLMs to 
enhance code generation reliability. These techniques are 
typically employed in developing complex systems to ensure 
adherence to specific standards. By combining formal methods 
with LLM models, the researchers aim to improve the accuracy 
and reliability of LLM-generated code. However, a significant 
challenge lies in ensuring that the code generated by LLMs 
consistently meets these high standards. 

Subtheme 2: LLM in Software Modeling and Design. 

This theme explores the application of LLMs in software 
modeling and Unified Modeling Language (UML). Ren et al. 
[67] investigate the role of chatbots in UML modeling, 
concluding that while chatbots are valuable for building class 
diagrams and lay a foundation for further research on their 
applicability in software engineering diagramming, they are 
not yet fully capable of capturing all necessary details. This 
indicates a need for further development and research to 
enhance their completeness and effectiveness in diagramming 
tasks. Camara et al. [68] highlight LLMs' practical applications 
and educational benefits, noting their use in enterprise and 
software modeling processes. However, they emphasize that 
educators must rethink how they design and administer 
assessments, as integrating LLMs requires significant 
adjustments. Chen and Zacharias (Chen & Zacharias, 2024) 
propose using generative AI to develop software design 
principles that assist software developers. Their research 
identifies fundamental issues with generative AI in software 
development, including usability problems, data privacy 
concerns, hallucinations, and a lack of transparency. De Vito et 
al. [69] introduce ECHO, a novel approach to enhancing the 
quality of UML use cases using LLMs. ECHO employs a co-
prompt engineering technique and an interactive process with 
the LLM to improve use cases based on practitioner feedback. 
Despite its potential, ECHO faces challenges such as the need 
for substantial effort to develop effective prompts and ensure 
iterative improvements. Additionally, their experiment showed 
that while ECHO could improve use case quality, further 
refinement, and validation are necessary to ensure consistent 
and reliable outcomes across diverse scenarios. 

Melo [70] proposes the design of context-based adaptive 
interactions between software developers and chatbots to foster 
solutions and knowledge support. Although the proposed 
method shows potential, it remains difficult for chatbots to 
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understand and adapt to the specific contexts of software 
development. The study highlights the need for more research 
to understand developers' expectations and improve the 
interaction between developers and chatbots. Finally, Petrovic 
[71] examines the integration of ChatGPT into software 
development practices, focusing on automated security checks 
and real-time feedback to enhance software security and 
reliability during the design phase. However, the study 
identifies challenges, such as the need to refine and process 
automated results from ChatGPT to be useful for developers 
and system administrators. Additionally, the evaluation was 
limited to specific tools, which may affect the generalizability 
of the findings to other tools or environments. 

In summary, the research highlights that LLMs can 
significantly enhance various aspects of software engineering, 
from requirements engineering and software modeling to 
security checks. They provide practical tools for improving 
quality in software development processes. However, 
specialized models and further research are necessary to fully 
realize the potential of LLMs in practical applications and 
address existing limitations. 

Theme 5: Quality Control 

This theme delves into utilizing LLMs for quality control 
and evaluation tasks within the software engineering domain. 
Lu et al. [72] introduce Llama-reviewer, a model designed to 
automate code reviews in software development. The model is 
noted for its efficiency, using fewer resources than traditional 
models, and the findings indicate promising results even with 
less training. However, the study acknowledges that the limited 
training epochs might restrict the model's capability to manage 
more complex or diverse code review tasks. Ronanki et al. 
(Ronanki et al., 2024) investigate the application of ChatGPT 
for evaluating the quality of user stories in Agile software 
development. The results show that ChatGPT's assessments 
align well with human evaluations, but the study highlights the 
challenge of ensuring the trustworthiness of ChatGPT's 
outputs. Tufano et al. [73] compare a deep learning model and 
ChatGPT in mimicking developers' tasks during code reviews, 
such as adding comments on code changes or fixing code 
based on comments. They found that ChatGPT struggled to 
comment on code as effectively as human reviewers. This 
research underscores the need for more specialized studies to 
enhance code review automation, as general models like 
ChatGPT cannot fully replicate human reviewers' capabilities, 
especially in tasks like code review. 

Furthermore, Pantelimon and Posedaru [74] explore how 
ChatGPT can generate code snippets, templates, and functions 
from natural language input, aiding in bridging the gap 
between technical and non-technical team members in software 
development. While this tool helps developers quickly find and 
fix bugs, enhancing the accuracy of automated code review and 
testing, concerns about potential over-reliance on ChatGPT and 
the limitations of its ability to comprehend intricate technical 
concepts are noted. In addition, Martins et al. [62] present an 
automated GitHub bot using LLMs to enforce SOLID 
principles during code reviews. This bot provides immediate 
feedback, improving code quality, particularly for new 
programmers, and integrates seamlessly into GitHub. However, 

they also state that the tool faces many challenges in handling 
various code review scenarios. 

In summary, while these studies illustrate the potential of 
LLMs in software engineering, they also highlight the need for 
further research to address limitations related to model 
robustness, handling complex tasks, reducing biases, and 
improving integration and usability in real-world software 
development environments. Future work should focus on 
developing more specialized LLM models tailored to specific 
tasks like code reviews, enhancing the robustness and 
adaptability of these models through more extensive and varied 
datasets, and refining approaches like co-prompt engineering 
for better accuracy. Additionally, efforts should be made to 
mitigate over-reliance on automation, reduce biases in training 
data, and improve the interaction between developers and LLM 
tools. Expanding testing in diverse environments, integrating 
advanced LLM models, and developing comprehensive 
training for non-experts to use these AI tools effectively are 
crucial steps for future research. 

V. DISCUSSION 

The current study acknowledges several limitations 
inherent in the bibliometric analysis approach. First, while 
Scopus and Web of Science are extensive databases, they may 
not encompass all relevant publications on the subject. 
Consequently, future studies should incorporate additional 
databases such as Google Scholar and PubMed to ensure a 
more comprehensive analysis. Second, although VOS Viewer 
and Bibliometrix software are reliable tools for bibliometric 
analysis, other software options such as SciMat, Sci2, 
Bibexcel, Gephi, Cite Space, Pajek, and UCINET should also 
be utilized in future research to enhance robustness and 
validity. 

Furthermore, the number of studies comparing different 
versions of ChatGPT, specifically versions 3.5, 4.0, and 4o in 
the context of software engineering, remains limited. Future 
research should explore the impact of these versions on 
outcomes and consider comparisons with other LLM tools such 
as Google Gemini, LLAMA, Microsoft Copilot, and Claude. 
Additionally, it is essential to examine the effects of various AI 
technologies, including DALL-E, DeepL, Typecast AI, and 
Resemble AI, on software engineering processes and 
outcomes. 

VI. CONCLUSION 

To our knowledge, this is the first bibliometric analysis 
study on using LLMs in software engineering. This study 
identifies the nations, authors, and publications that have 
contributed significantly to the field. The content analysis 
results show that the publications are organized around three 
key themes: 1) integration of LLMs into software engineering 
education, 2) application of LLMs in software engineering, and 
3) potential and limitations of LLMs in software engineering. 
Our investigation reveals that China and the United States have 
the most publications, but international collaboration is limited. 
Consequently, future studies should encourage scholars to 
interact with researchers from other nations. 

There is a gap in the literature concerning studies that 
explore LLMs and specific software engineering topics, which 
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future studies should address. Firstly, integrating LLMs like 
ChatGPT into software engineering education offers significant 
benefits, including personalized learning, practical application 
of concepts, and support for curriculum development. 
However, challenges such as potential negative impacts on 
student performance if overused and the necessity for students 
to have solid foundational knowledge despite AI assistance 
must be addressed. Students must evaluate AI-generated 
content critically to ensure genuine understanding. Therefore, 
balancing these tools with traditional learning methods is 
essential for maximizing their benefits in educational settings. 
To effectively integrate LLMs, curricula must be adapted to 
include AI literacy, maintain academic integrity, and prevent 
misconduct through evolving policies. Future directions 
involve creating interactive learning platforms, adopting 
holistic educational approaches, and continuously evaluating 
the impact of these tools to ensure they provide maximum 
educational benefits. Secondly, although LLMs like ChatGPT 
show promise in code generation, significant reliability and 
robustness issues remain. Comprehensive evaluation metrics 
and further studies are needed to assess and improve the 
effectiveness of LLMs in practical software development 
scenarios. ChatGPT has demonstrated great potential in 
software testing in areas such as automatic test generation, 
exploratory testing, and bug detection. However, these tools 
also have limitations and require further research to optimize 
their application in software engineering. Thirdly, research 
under the theme of automation in software engineering 
highlights the transformative potential of LLMs in automating 
various tasks, from technical interviews to domain modeling, 
code analysis, and bug fixing. Despite these advancements, 
challenges remain regarding the reliability of LLMs in these 
automated tasks. 

VII. FUTURE WORK 

Furthermore, LLMs can significantly enhance various 
aspects of software engineering, including requirements 
engineering, software modeling, and security checks. They 
provide practical tools for improving quality in software 
development processes. Nevertheless, there is a need for 
specialized models and further research to fully realize the 
potential of LLMs in practical applications and address 
existing limitations. Finally, studies demonstrate the potential 
of LLMs in software engineering but also underscore the need 
for further research to address limitations related to model 
robustness, handling complex tasks, reducing biases, and 
improving integration and usability in real-world software 
development environments. Future work should focus on 
developing more specialized LLM models tailored to specific 
tasks like code reviews, enhancing the robustness and 
adaptability of these models through extensive and varied 
datasets, and refining approaches like co-prompt engineering 
for better accuracy. Additionally, efforts should be made to 
mitigate over-reliance on automation, reduce biases in training 
data, and improve interactions between developers and LLM 
tools. Expanding testing in diverse environments, integrating 
advanced LLM models, and developing comprehensive 
training for non-experts to use these tools effectively are 
crucial steps for future research. 
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