
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

344 | P a g e

www.ijacsa.thesai.org

Bibliometric and Content Analysis of Large Language

Models Research in Software Engineering: The

Potential and Limitation in Software Engineering

Annisa Dwi Damayanti1, Hamdan Gani2*, Feng Zhipeng 3, Helmy Gani4,

Sitti Zuhriyah5, Nurani6, St. Nurhayati Djabir7, Nur Ilmiyanti Wardani8

Department of Environmental Engineering, Faculty of Engineering, Hasanuddin University, Makassar, Indonesia1

Department of Machinery Automation System, ATI Makassar Polytechnic, Makassar, Indonesia2, 7

School of Culture Creativity and Media, Hangzhou Normal University, Hangzhou, Zhejiang, China 3

Department of Industrial Hygiene, Faculty of Public Health, Occupational Health and Safety,

Makassar College of Health Sciences, Indonesia4

Department of Computer System, Universitas Handayani Makassar, Makassar, Indonesia5

Department of Information Systems and Technology, Institut Teknologi dan Bisnis Nobel Indonesia,

Jl. Sultan Alauddin No.212, Makassar and 90221, Indonesia6

Department of Informatics Engineering, Universitas Handayani Makassar, Makassar, Indonesia8

Abstract—Large Language Models (LLM) is a type of

artificial neural network that excels at language-related tasks.

The advantages and disadvantages of using LLM in software

engineering are still being debated, but it is a tool that can be

utilized in software engineering. This study aimed to analyze

LLM studies in software engineering using bibliometric and

content analysis. The study data were retrieved from Web of

Science and Scopus. The data were analyzed using two popular

bibliometric approaches: bibliometric and content analysis. VOS

Viewer and Bibliometrix software were used to conduct the

bibliometric analysis. The bibliometric analysis was performed

using science mapping and performance analysis approaches.

Various bibliometric data, including the most frequently

referenced publications, journals, and nations, were evaluated

and presented. Then, the synthetic knowledge method was

utilized for content analysis. This study examined 235 papers,

with 836 authors contributing. The publications were published

in 123 different journals. The average number of citations per

publication is 1.44. Most publications were published in

Proceedings International Conference on Software Engineering

and ACM International Conference Proceeding Series, with

China and the United States emerging as the leading countries. It

was discovered that international collaboration on the issue was

inadequate. The most often used keywords in the publications

were "software design," "code (symbols)," and "code

generation." Following the content analysis, three themes

emerged: 1) Integration of LLM into software engineering

education, 2) application of LLM in software engineering, and 3)

potential and limitation of LLM in software engineering. The

results of this study are expected to provide researchers and

academics with insights into the current state of LLM in software

engineering research, allowing them to develop future

conclusions.

Keywords—Large Language Models; LLM; software

engineering; bibliometric; content analysis

I. INTRODUCTION

Coupled with Generative Pre-trained Transformers, Large
Language Models substantially advance natural language
processing. ChatGPT, a cutting-edge conversational language
model noted for its user-friendly interface, has attracted
significant interest due to its advanced capacity to deliver
human-like responses in various conversational scenarios.
OpenAI has created an impressive conversational artificial
intelligence (AI)-based language model known as the Chat
Generative Pre-Trained Transformer (ChatGPT). On
November 30, 2022, OpenAI released the ChatGPT GPT 3.5
series for free, followed by the premium version, GPT-4, on
March 14, 2023 [1]. Additionally, other well-known LLMs
include Google's Gemini, Microsoft Copilot, Meta's LLaMA,
Anthropic's Claude, and Mistral AI's models [2].

The integration of this sophisticated technology in software
engineering remains a subject of debate among stakeholders.
Nevertheless, it holds potential for incorporation into the
software engineering workflow [3]. Rahmaniar [4], suggests
that more research should be conducted on LLM's effects and
potential contributions to software engineering tasks such as
code generation, bug fixing, and design decisions. LLMs have
the potential to transform the software engineering sector by
impacting various software development tasks, including code
evolution and software testing [5].

Bibliometric research in software engineering is becoming
increasingly popular [6]. According to their definition,
bibliometrics is the study of a research issue using
mathematical and statistical techniques based on bibliographic
sources. The method of gathering and analyzing bibliometric
data on a large scale allows bibliometric analysis to provide
comprehensive details about the evolving patterns and
intellectual structure of a research topic or discipline [7].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

345 | P a g e

www.ijacsa.thesai.org

Bibliometric analysis comprises two techniques: scientific
mapping and performance analysis [7]. Performance analysis
examines how well individuals, organizations, and nations
perform regarding research and publications [8]. Scientific
mapping helps study scientific domains by revealing their
structure and dynamics [9]. This study chose bibliometric
analysis for our investigation because it can efficiently detect
patterns and trends in the literature, highlight necessary studies
and writers, and identify trends and topics for future research.

While previous bibliometric studies have examined the use
of Large Language Models (LLMs) in fields such as public
health, education, social sciences, and medicine, no such
analysis has been conducted specifically in software
engineering [10] to [16]. Existing research indicates that the
application of LLMs in software engineering is still in its early
stages. A detailed bibliometric analysis in this field is needed
to identify key contributors, trends, and geographic activity, as
well as to better understand the evolving potential and
limitations of LLMs in software engineering.

The goal of this paper is to provide a bibliometric analysis
of LLM studies in software engineering. The findings of our
analysis provide information on the following issues:

1) What is the monthly distribution of publications on

LLM?

2) What are the top five most cited publications in the

LLM field?

3) Who are the top five most cited authors in the LLM

field?

4) What are the dynamics of publications on LLM in the

literature (journals and countries)?

5) What are the keywords most commonly used in

publications on LLM?

6) Which themes emerged after the content analysis of

LLM research?

II. LITERATURE REVIEW

Previous research has explored bibliometric analyses on the
usage of LLM in public health [10], education [11], social
science [12], and medicine [13]. However, no bibliometric
analysis of LLM has been performed in software engineering.
A scoping study on applying an LLM in software engineering
revealed that LLM research was in its early phases [14], [15].
Marques et al. [16] investigated the role of LLM in software
requirements engineering, an essential aspect of software
engineering. They discovered that the possibilities and
limitations of LLM in software engineering are still developing
and in their early phases. A detailed bibliometric analysis of
LLM in software engineering can provide academics and
stakeholders with an overview of the study. This research can
assist in identifying the field's most prolific authors, countries,
and scientific trends. In this case, bibliometric analysis could
lead us to explore the potential and limitations of LLM in the
software engineering field.

III. METHOD

A. Search Strategy

The flowchart of the research methodology is shown in Fig.
1. Web of Science and Scopus are the two most commonly
utilized databases in bibliometric studies [17]. Data sources for
this study included Scopus (Elsevier;
https://www.scopus.com/) and Web of Science (Clarivate;
https://www.webofscience.com/wos). The search strategy was
designed as follows: "(TITLE-ABS-KEY ("Large Language
Model" OR ChatGPT OR LLM OR Chatbot OR OpenAI OR
Gemini OR Copilot)) AND (TITLE-ABS-KEY ("Software
Engineering" OR "Software Development"))." The search was
carried out on July 17, 2024. The search criteria were "article
title, abstract, keywords" and publications on LLM in software
engineering. There were no exclusion criteria. The search
retrieved 529 studies from the two databases. After deleting 80
duplicate publications, 214 were reviewed using the inclusion
criteria, resulting in 235 papers for bibliometric analysis.

B. Bibliometric Methodology

Bibliometric analysis examines the performance of research
elements, such as articles, authors, journals, keywords, and
nations, and visualizes their intellectual, conceptual, and social
structures through mapping methodologies [18]. In our work,
the bibliometric methodology included performance analysis
and scientific mapping techniques. The parameters for
performance analysis were the number of articles and citations.
Co-occurrence analysis was employed for scientific mapping
[7].

Before data analysis, Scopus and Web of Science data were
automatically combined using the RStudio IDE. The file was
downloaded in BibTex format from Scopus and Web of
Science, then updated in RStudio using R script code to
produce a "database.csv" file (Source Code: Appendix). The
data for this investigation was analyzed using VOS viewer
version 1.6.20 (Leiden University, Netherlands,
https://www.vosviewer.com) and Bibliometrix version 4.3.0
(University of Naples Federico II,
https://www.bibliometrix.org). The VOS viewer allows users
to observe things as well as their connections. "Items" are
noteworthy objects, such as publications or researchers, while
"links" represent the connections between these items. The
VOS viewer establishes a correlation or relationship between
two things. The stronger the link between the components, the
greater the Total link strength (TLS), represented by a positive
numerical value. On a map, things can be arranged into groups
that form clusters. The weights applied to each item in network
visualization represents its relative importance. The size of the
circles or labels representing the object is strongly related to its
weight; the more significant the circle or label representing an
item, the heavier the item. This strategy simplifies
understanding of the picture's components' relevance and
relationships [8].

Bibliometrix is an open-source bibliometric software
developed in R (The Comprehensive R Archive Network,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

346 | P a g e

www.ijacsa.thesai.org

https://cran.r-project.org) [19]. After installing the Bibliometrix
R package, the Bibliometrix web interface was accessible with
the executed code "bibliometrix::biblioshiny ()”. Bibliometrix
was used to investigate publishing data (total citations, average
citations, etc.) and international collaboration between
countries.

C. Content Analysis

Bibliometric analysis is an accurate method for recognizing
the many information clusters that may appear in the literature.
Klarin [18] developed the guideline for the knowledge
synthesis approach used in content analysis. The approach
consists of the following steps:

1) Research publications on LLM and Software

Engineering are compiled.

2) Publications are categorized into themes depending on

author keywords. Co-occurrence keyword analysis contains

the results of this stage. Then, this study analyzes and

characterizes the relationships between codes within each

cluster in Section Co-occurrence keyword analysis."

3) Identify categories and assign theme names to clusters.

Content Analysis shows the results of this stage.

4) The qualitative analysis generates a list of topics as

output. Table III shows the results of all processes.

D
at

a
b

a
se

 E
xt

ra
ct

io
n

B
ib

li
o

m
e

tr
ic

 A
n

al
ys

is

Keyword research : Scopus and Web of Science
("Large Language Model" OR ChatGPT OR LLM OR Chatbot OR OpenAI OR Gemini OR Copilot) AND

("Software Engineering" OR "Software Development")

Record identified from :

 Scopus (n = 422)
 Web of Science (n = 107)

 Total (n = 529)

Performance Analysis Science Mapping
Synthetic Knowledge

Synthesis

Citations and
Publications

Documents, Sources,
Authors, Countries

Co-occurrence Keyword
Analysis Science Mapping

Content Analysis

The 235 meeting the inclusion criteria were included in the analysis

After screening, they were excluded
according to the inclusion criteria :
 Records removed (n = 214)

Record removed before screening :
 Duplicate records removed (n = 80)

Fig. 1. Research methodology.

IV. RESULTS

A. Publication Characteristics

Since ChatGPT was released on November 30, 2022, the
publication distributions by month shown in Fig. 2, include
publications published between January 2023 and June 2024.
The analysis included 235 publications. The majority of the
publications were published in April 2024. The publications
comprised 51 articles, 138 conference papers, 39 proceeding

papers, 3 reviews, 3 book chapters, and 1 lecture note. These
papers, which had 836 authors, appeared in 123 different
journals. The average number of citations was 1.44.

This analysis discovered that most articles were not
research articles but conference and proceeding papers. In
particular, scoping review research on LLM conducted on
software engineering found that nearly one-quarter of the
publications were "article" studies. This indicates that the
research is still in its early stages. LLM, such as ChatGPT, is a
new AI technology in software engineering [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

347 | P a g e

www.ijacsa.thesai.org

Fig. 2. Distribution of publications by months.

Since publications are published almost monthly, it is
reasonable to expect future growth in LLM and software
engineering studies.

B. Top 10 Most Cited Publications and Authors

The most cited publication (Table I) discusses how
ChatGPT can be used in software engineering to translate,
create, and autocomplete code [20]. The second most cited
work investigates the use of few-shot training with the GPT
Codex model, demonstrating that it outperforms state-of-the-art
models in code summarization while exploiting limited,
project-specific data, emphasizing its importance in software
engineering (Sobania et al., 2022). The research discovered
that Copilot boosts software development productivity as
measured by code-generated lines. The third most referenced
work investigates the application of LLM in software
engineering education and discusses improving software
engineering education by personalizing learning experiences.
They also emphasize the importance of modifying software
engineering programs to match evolving software engineer
profiles [21].

TABLE I. MOST CITED PUBLICATIONS AND AUTHORS

No Title
Publication

Type
Authors Journal

Number of

Citation (Scopus)

Google Scholar

Citation Count

1.

The Programmer's Assistant: Conversational

Interaction with A Large Language Model for

Software Development

Conference
Paper

(Ross et
al., 2023)

International Conference on

Intelligent User Interfaces,

Proceedings IUI

72 176

2.
Few-Shot Training LLMs for Project-Specific

Code-Summarization

Conference

Paper
[35]

ACM International Conference

Proceeding Series
27 121

3.
How ChatGPT Will Change Software

Engineering Education

Proceedings

Paper
[21]

Proceedings of the 2023

Conference on Innovation and
Technology in Computer

Science Education, ITICSE

2023, Vol 1

25 68

4.
GitHub Copilot AI Pair Programmer: Asset or

Liability?
Article [36]

Journal of Systems and

Software
24 241

5. Generative AI for Software Practitioners Article [37] IEEE Software 20 97

6.
Towards Human-Bot Collaborative Software
Architecting with ChatGPT

Proceedings
Paper

[22]

27th International Conference

on Evaluation and Assessment
in Software Engineering, EASE

2023

12 110

7.
Investigating Code Generation Performance of

ChatGPT with Crowdsourcing Social Data

Proceedings

Paper
[38]

2023 IEEE 47th Annual
Computers, Software, and

Applications Conference,

COMPSAC

10 84

8.
Exploring The Implications of OpenAI Codex
on Education for Industry 4.0

Conference
Paper

[39]
Studies in Computational
Intelligence

9 16

9.

Natural Language Generation and

Understanding of Big Code For AI-Assisted
Programming: A Review

Review [40] Entropy 9 40

10.

Large Language Model Assisted Software

Engineering: Prospects, Challenges, and A

Case Study

Conference
Paper

[41]
Lecture Notes in Computer
Science

6 48

The sixth most cited publication investigates how Software
Development Bots, specifically ChatGPT, might help
architecture-centric software engineering (ACSE) processes. It
explores the problems of ACSE and proposes using ChatGPT
to combine human experience with AI-powered decision
support. The paper also describes a case study in which a
novice architect collaborated with ChatGPT to design a
service-based software system. The authors suggest future
research to collect more empirical evidence on the productivity
and socio-technical aspects of using ChatGPT in software
architecture [22].

The most cited publications generally discuss ChatGPT's
use in software engineering for tasks such as code translation,
generation, and autocomplete. Another study shows that GPT
Codex outperforms state-of-the-art models in code
summarization using project-specific data via few-shot
training. Generative AI, such as ChatGPT, is also being
considered to improve software engineering education and
change curriculum. A study further emphasizes ChatGPT's
importance in architecture-centric software engineering
(ACSE) by supporting new architects and recommends
additional research on productivity and socio-technical issues.

0

10

20

30

40

50

60

N
u

m
b

er
 o

f
A

rt
ic

le
s

Month Year

LLM Publications: Monthly Count

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

348 | P a g e

www.ijacsa.thesai.org

C. Most Productive Journals

The most productive journals in terms of the number of
publications in the field of LLM are Proceedings - International
Conference on Software Engineering (n = 27), ACM
International Conference Proceeding Series (n = 20), Lecture
Notes in Computer Science (n = 10), Proceedings - 2023 38TH
IEEE/ACM International Conference on Automated Software

Engineering, ASE 2023 (n = 9) and IEEE Transactions on
Software Engineering (n = 6), respectively (Table II).

In the remaining journals, one or two articles were
published. The most productive journals in terms of the
number of citations are Proceedings - International Conference
on Software Engineering (n = 54), ACM International
Conference Proceeding Series (n = 33), and Lecture Notes in
Computer Science (n = 15), respectively.

TABLE II. THE MOST PRODUCTIVE SOURCES

No Journal N*) Total Citation H-Index G-Index

1 Proceedings - International Conference on Software Engineering 27 9 1 2

2 ACM International Conference Proceeding Series 20 29 1 5

3 Lecture Notes in Computer Science 10 12 2 3

4
Proceedings - 2023 38TH IEEE/ACM International Conference on
Automated Software Engineering, ASE 2023

9 8 2 2

5 IEEE Transactions on Software Engineering 6 8 2 2

6
Proceedings - 2023 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2023
5 3 1 1

7 IEEE Software 4 22 2 4

8 Journal of Systems and Software 4 24 1 4

9 Lecture Notes in Business Information Processing 3 5 2 2

10 Automated Software Engineering 3 1 1 1

Note. (*) Sources that published at least two publications were listed.

The fact that the Proceedings - International Conference on
Software Engineering has the most citations implies that
research in this discipline is well-received in academic circles.
The article "The Programmer's Assistant: Conversational
Interaction with A Large Language Model for Software
Development," published in the International Conference on
Intelligent User Interfaces, Proceedings IUI [20], drew
attention due to the number of citations it received in the fields
of LLM and software engineering.

D. The Most Productive Countries and International

Cooperation

The research articles were created by authors from 40
different countries (Fig. 3). The top five most productive
countries in terms of number of publications were China (n =
29), the United States (n = 28), Germany (n = 16), Canada (n =
11), and Brazil (n = 6). The top five nations by number of
citations were Canada (n = 74), the United States (n = 70),
Germany (n = 57), China (n = 14), and Finland (n = 14).
Consistent with our findings, other studies have identified
China and the United States as significant countries in LLM
research in different disciplines [23]–[25]. These countries'
position as pioneers in LLM and software engineering research
reflects their significant investments in these fields.

The review of international collaborations demonstrated
that the country that collaborated most was China (Fig. 4).
China collaborated with Australia (n = 3), Finland (n = 2),
Germany (n = 2), and the United Kingdom (n = 2).
Furthermore, there were collaborations between Germany and

Finland (n = 2), Germany and the United Kingdom (n = 2), the
United States and China (n = 2), the United States and the
United Kingdom (n = 2), Australia and Finland (n = 1), and
Australia and Singapore (n = 1). In the future, increased
international collaboration and generative AI applications like
ChatGPT may allow for the development of creative and
comprehensive methodologies in software engineering. In
addition, guidelines and policies for artificial intelligence and
software engineering can be produced in collaboration with
other countries.

Fig. 3. The Number of publications and citations by country. Note. Countries

with at least two publications are presented.

0

10

20

30

40

50

60

70

80

90

C
o

u
n

t

Country

Publications and Citations Per Country (Sorted by Citations)

Citations

Publications

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

349 | P a g e

www.ijacsa.thesai.org

Fig. 4. Country collaboration map. Note. Dark blue indicates more frequent

international cooperation. The thickness of the red line between the two
countries shows the extent of cooperation.

E. Co-Occurrence Keyword Analysis

This study identified 1804 keywords (Table III). The
following keywords appear at least ten times: software design
(n = 158), code (symbols) (n = 68), code generation (n = 40),
software testing (n = 34), learning system (n = 32), and
artificial intelligence (n = 25). According to Ozkan et al.
(Ozkan et al., 2024) and Mesa Fernández et al. (2022), the
most commonly used words in software engineering are
"software design," "code (symbols)," and "code generation."
The frequent use of these words indicates that LLM-based
technologies are becoming more popular in the software
engineering, especially in code development.

Fig. 5 and Table III shows a visualization of the co-
occurrence analysis using the VOS viewer. In the green cluster,
the keywords "software design" (TLS = 277) and "code
generation" (TLS = 105) are prominent. The emphasis is on the
impact and prospective applications of LLM in software
engineering. The red cluster contains the keywords "artificial

intelligence" (TLS = 62), "generative AI" (TLS = 52),
"engineering education" (TLS = 72), "students" (TLS = 82),
and "software engineering education" (TLS = 54). In this
cluster, the focus is on using LLM in software engineering
education. In the yellow cluster, the keywords are "engineering
task" (TLS = 45), "prompt engineering" (TLS = 35), "life
cycle" (TLS = 39), "modeling languages" (TLS = 31), and
"requirement engineering" (TLS = 19) and it is emphasized
that the practical application of LLM on software life-cycle
development are an essential research area. In the blue cluster,
the focus is on the impact of LLM on automation software
development tasks, whereas in the purple cluster, the focus is
on using LLM in "code (symbols)" (TLS = 153), "quality
control" (TLS = 46), "task analysis" (TLS = 37), A“code
review" (TLS = 24), and "code quality" (TLS = 20). This
analysis visualizes how the interaction between the software
engineering field and AI intersects with different aspects and
how these terms are positioned together in academic literature.

Fig. 5. Visualization of keywords. Note. The analysis is set to the minimum

number of keyword occurrences (minimum 10). The network consists of 30
items, 5 clusters, 269 links, and 875 total link strengths.

TABLE III. CO-OCCURRENCE ANALYSIS

Cluster no. and

color
Cluster theme

The number of

items
Code (Keywords) Explanation

1 Red Software Engineering

Education
6

Artificial Intelligence, Education Computing,
Engineering Education, Generative AI,

Software Engineering Education, Students

Researchers delve into educational aspects

related to LLM and software engineering.

2 Green Software Development

Tools and Practices
6

Benchmarking, Code Generation, GitHub

Copilot, Program Debugging, Software
Design, Software Testing

Researchers explore topics like the application

of LLM in practical software development
scenarios.

3 Blue Automation Software

Development Task
6

Automation, Learning System Machine

Learning, Natural Language Processing,
Open-Source Software, Software Developer

The emphasis of ChatGPT's impact on

automation, software development task

4 Yellow
Practical Application of

LLM in Software

Engineering

6

Case Studies, Engineering Tasks, Life Cycle,

Modeling Languages, Prompt Engineering,

Requirements Engineering

The cluster deals with various aspects of

software engineering, from requirements
engineering and software modeling to security

checks.

5 Purple
Quality Control 6

Code (symbols), Code Quality, Code Review,

Coding Standards, Job Analysis, Quality
Control, Task Analysis

The cluster revolves around the various

aspects of quality control and evaluation tasks
within the software engineering domain.

Note. The network has 30 items, 5 clusters, 269 links, and a TLS value 875. *Index keywords used by the paper.

F. Content Analysis

Content analysis can assist prospective academics in
identifying essential knowledge gaps in the literature [18].
During the content analysis, five key themes emerged.

Theme 1: Integration of LLM into Software Engineering
Education

The first theme focuses on the discussions regarding the use
of LLM in educational aspect of software engineering [15],
[21], [34], [26]–[33].

Subtheme 1: Potential and threats of LLM in software
engineering education.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

350 | P a g e

www.ijacsa.thesai.org

Using LLMs like ChatGPT in software engineering
education has generated debate, highlighting threats and
opportunities. The integration of ChatGPT into software
engineering education can provide various benefits. ChatGPT
can give personalized feedback and enhance individualized
student learning experiences [21].

It has advantages, such as how ChatGPT can change how
software engineering is taught, making it more practical and
relevant to real-life scenarios. Students use ChatGPT to do
practical software engineering tasks like collecting user stories,
creating use case and class diagrams, and formulating sequence
diagrams, which helps them understand real-world applications
of their learning [30]. It also has advantages such as Automated
Programming Assessment Systems (APASs) as AI-tutors [27]
and can aid educators in developing curriculum and preparing
course material [29]. Additionally, it can be used in real-time
problem solving, collaboration and peer learning, virtual
mentoring, generating creative and novel ideas, and research
and exploring [15].

Despite the potential benefits, integrating LLMs, such as
ChatGPT, into software engineering education raises several
concerns and possible limitations. An empirical study with 182
participants in a first-year programming course found no
significant difference in performance between students using
ChatGPT and those not using it, suggesting that ChatGPT can
be safely integrated into education with proper measures [34].
Recent studies in LLMs, including ChatGPT and Copilot, have
led to their integration into software development education.
An experiment with 32 participants examined LLM use and its
correlation with student performance, revealing a negative
impact on grades when overused for essential tasks,
emphasizing the need for balanced integration of LLM tools in
education [31]. Petrovska et al. [32] focused on creatively
developing assessments that encourage learners to critically
evaluate ChatGPT's output, helping them understand the
subject material without the risk of the AI tools "doing the
homework." Additionally, Brennan and Lesage [33] evaluated
the OpenAI Codex code completion in industry 4.0-oriented
engineering programs. They reported that while Codex assisted
with simple code completions, students still needed a solid
understanding of software development principles,
underscoring the importance of foundational knowledge even
when using these advanced AI tools.

Overall, integrating LLMs like ChatGPT in software
engineering education offers significant advantages, including
personalized learning, practical application of concepts, and
support for curriculum development. However, it also presents
challenges, such as potential negative impacts on student
performance if overused and the necessity for students to have
solid foundational knowledge despite AI assistance. Students '
critical evaluation of AI-generated content is essential to ensure
they truly understand the material. Balancing the use of these
tools with traditional learning methods is crucial for
maximizing their benefits in educational settings.

Subtheme 2: Future Directions and Adaptation of LLM in
Education.

The roadmap for integrating LLMs into software

engineering education includes adapting curricula to provide
AI literacy, ensuring academic integrity, and reducing
academic misconduct. This highlights the necessity for
ongoing policy adaptation to technological advancements,
marking a critical step toward responsibly integrating ChatGPT
in education. Future directions for integrating ChatGPT and
similar LLM tools in software engineering education include
creating interactive and immersive learning platforms, adopting
holistic educational approaches, and continuously evaluating
the impact of these tools to optimize their integration and
maximize educational benefits [15], [28]–[30].

In summary, integrating ChatGPT into software
engineering education requires adapting curricula to include AI
literacy, maintaining academic integrity, and preventing
misconduct through evolving policies. Future directions
involve creating interactive learning platforms, adopting
holistic educational approaches, and continuously evaluating
the impact of these tools to ensure they provide maximum
educational benefits. These steps are essential for responsibly
incorporating ChatGPT and similar technologies into
education.

Theme 2: Software Development Tools and Practices

This theme delves into the utilization of LLMs for
developing and maintaining software quality through advanced
code generation and software testing practices. It highlights the
potential and limitations of LLMs application in software
engineering.

Subtheme 1: Code generation performance and evaluation

Researchers from multiple countries have examined the
performance of code generated by LLM. Wang and Chen
(Wang & Chen, 2023) noted that LLM-powered code
generation has sparked considerable academic interest. An
empirical study by Z. Liu et al. [42] assessed ChatGPT's
code generation capabilities across five programming
languages, focusing on correctness, complexity, and security.
Their findings revealed that ChatGPT effectively generates
accurate code for issues predating 2021 but encounters
difficulties with more recent problems. Similarly, M. Liu et al.
[43] conducted a case study using GPT-4 to generate
safety critical software code. They explored various methods,
including overall requirements, specific requirements, and
augmented prompts, concluding that GPT-4 can autonomously
generate safety-critical software code suitable for practical
engineering applications.

Despite the promising results of LLM's performance in
code generation, there is still a debate about their reliability,
necessitating more study on evaluation studies [44].
Rodriguez-Cardenas et al. [45], examined LLM-generated code
in different scenarios, emphasizing the need for comprehensive
evaluation metrics to accurately measure the effectiveness of
LLMs in producing reliable and functional code. Preliminary
studies have been conducted to this end. Yeo et al. [46],
introduced a framework for evaluating LLM-generated code
using a metric based on test case pass rates. Similarly, Aillon et
al. [47], suggested several metrics for assessing LLM-
generated code, including code quality, solution quality,
response time, and comparisons with human-generated code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

351 | P a g e

www.ijacsa.thesai.org

Other studies have identified significant issues in
evaluating LLM-generated code. Mastropaolo et al. [48],
assessed the robustness of code generated by GitHub Copilot,
highlighting inconsistencies in Copilot's performance. They
found that different but similar prompts often resulted in varied
outputs, undermining code quality. Zhong and Wang [49] also
evaluated the robustness and reliability of LLM-generated
code, reporting several limitations. For example, 62% of the
code generated by GPT-4 misused APIs, potentially leading to
resource leaks, crashes, or unpredictable behavior.

Furthermore, while the generated code can run, it is not
always reliable or robust enough for real-world applications.
Tests often focus on small or straightforward tasks, which do
not reflect the complexity of real-world software development
challenges [50]. In addition, Mbaka [51] investigated
ChatGPT's effectiveness in validating security threats. The
study found that ChatGPT is unreliable in distinguishing real
threats from fake ones.

In summary, while LLMs like ChatGPT show potential in
code generation, significant issues related to reliability and
robustness remain. Comprehensive evaluation metrics and
further studies are needed to improve the effectiveness of
LLMs in practical software development scenarios.

Subtheme 2: Software testing

This cluster examines the application of LLM in software
testing, exploring their potential to innovate and enhance
traditional testing methodologies. The research encompasses
various aspects of software testing, from unit test generation to
exploratory testing, highlighting the transformative potential of
LLMs in improving these processes.

Tsigkanos et al. [52] explored the use of LLMs for
metamorphic testing in addressing oracle problems within
scientific software testing. Scientific software typically handles
vast data sets, making manual extraction of essential variables
for testing challenging. They developed a method using LLMs
to extract these variables from user manuals automatically and
compared the LLM-extracted variables with those identified by
human experts, finding the LLM method effective. However,
despite automating metamorphic testing and reducing human
intervention, the approach may still face challenges in
managing the vast and varied input-output spaces characteristic
of scientific software. Schafer et al. [53] reported the
effectiveness of using LLMs to create unit tests, introducing a
tool called Test Pilot that generates diverse tests without
needing extra training, outperforming existing methods.
However, while the tool works well with certain LLMs and
specific prompt information, it may not handle more complex
or unusual cases in software testing effectively. Thus, further
work is needed to enhance the tool's reliability and versatility
across different testing scenarios. Tang et al. (Tang et al., 2024)
systematically compared unit test suites generated by ChatGPT
and EvoSuite, focusing on key factors such as correctness,
readability, code coverage, and bug detection capability. Their
findings indicate that ChatGPT is a promising tool for
generating unit tests in software engineering. Yet, they also
identify significant limitations, including reliance on a single
LLM model, issues with generalization, and the necessity for

ongoing research to improve the reliability and effectiveness of
LLM-generated test cases.

Additionally, El Haji et al. [54], assessed GitHub Copilot's
ability to generate unit tests automatically. Their experimental
study revealed that while GitHub Copilot shows potential, a
significant portion of its generated tests fail or are not helpful,
particularly without an existing test framework. They
concluded that including comments in the code could improve
the tool's performance, suggesting that clear documentation
might enhance results. This study highlights limitations related
to high failure rates, usability issues, dependence on existing
test suites, and the proprietary nature of the tool. Similarly,
Mehmood et al. [55], compared GitHub Copilot-generated test
cases with test cases created by humans, finding that while
Copilot shows promise, it has limitations, such as restrictions
on the range of scenarios for testing and potential prompt
biases. Further research is necessary to understand its
capabilities and best uses fully. Despite promising to generate
test cases comparable to those created manually, Copilot has
limitations in scope, reliance on the prompt quality, range of
generated test cases, and the need for more extensive research
across a broader range of software development tasks.

Moreover, Copche et al. [56] developed a chatbot called
BotExpTest to assist human testers during exploratory testing.
This study suggests that integrating chatbots into testing can
improve bug detection efficiency and effectiveness. However,
further research with larger and more varied sample sizes,
extended testing durations, and comparisons across different
testing environments and types is needed to understand its
capabilities and limitations fully. Finally, LLMs have been
utilized for bug detection and fixing [57]–[59]. A significant
challenge with LLMs is the need for additional steps to make
their output more helpful. After generating results, extra time is
required to fix mistakes and provide more detailed instructions,
which can be time-consuming. LLMs also struggle to fully
understand the context of the code they are testing without
clear explanations, leading to missed details and bugs.

In summary, LLMs have shown great potential in various
aspects of software testing, including automatic test generation,
exploratory testing, and bug detection. While these tools can
significantly enhance testing processes, they often require
additional steps to fix errors and provide detailed prompts,
which can be time-consuming. LLMs struggle with
understanding code context without clear descriptions, leading
to missed details and bugs. LLM-generated tests have high
failure rates and usability issues, especially without existing
frameworks or clear documentation. Additionally, LLMs may
not handle complex or unusual cases well and are limited by
prompt biases and testing scenario restrictions. Despite their
potential, LLMs need further refinement and research to
improve their reliability and effectiveness in practical software
engineering tasks.

Theme 3: Automation Software Development Task

This theme focuses on the integration of LLM in
automating software engineering tasks. The key findings
highlight significant advancements in this area, emphasizing
the transformative impact of LLM automation on traditional
software engineering processes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

352 | P a g e

www.ijacsa.thesai.org

Rathnayake et al. [60], explores automated technical
interviews using advanced chatbot technologies. In the realm
of software engineering, automating technical interviews
facilitates the assessment of candidates' technical competencies
during recruitment. However, challenges remain, such as
accurately evaluating technical skills, potential biases in
assessing candidate psychology, and ensuring all system
components function cohesively. Therefore, further work is
needed to enhance the reliability and effectiveness of these
automated interview systems. Chen et al. [61] propose an LLM
approach for converting written problem descriptions in natural
language into domain models, which is typically time-
consuming and requires significant expertise. Their findings
indicate that while LLMs promise to automate domain
modeling, they often miss essential details and do not always
follow best practices. Consequently, additional research is
necessary to make these tools practical and reliable for
everyday use in software engineering. Martins et al. [62], apply
LLMs to automatically analyze code, demonstrating their
practical application in maintaining high coding standards and
improving overall software maintainability. However, the
effectiveness of LLMs heavily depends on the quality of input
data and the implementation process. Asare et al. [63] examine
the security implications of code generated by GitHub Copilot.
They conclude that although Copilot performs differently
across various vulnerability types, it is not worse than human
developers at introducing vulnerabilities. Nonetheless, the
study identifies limitations in creating secure code, with
Copilot sometimes repeating old coding mistakes, thereby
making software vulnerable to attacks. Specifically, Copilot
suggests code with the same security flaws about 33% of the
time. Its performance varies depending on the type of
vulnerability, and it tends to struggle more with older issues.
Thus, while Copilot can be helpful, it is not always reliable for
generating safe code, necessitating careful instructions from
developers to avoid security issues.

Additionally, Wuisang [64] evaluate the effectiveness of
ChatGPT for automated bug fixing in Python. Their study
highlights ChatGPT's potential as an effective tool for
improving code quality and reducing the need for human
intervention in bug fixes. They tested 40 different bugs, finding
that ChatGPT could correctly fix 30 of them. Although this
demonstrates ChatGPT's capability, the failure to fix 10 bugs
indicates room for improvement. Despite outperforming other
tools like standard bug-fixing methods and Codex, further
enhancements are required to ensure reliability in fixing all
bugs.

In summary, the research underscores the transformative
potential of LLMs in automating various software engineering
tasks, including technical interviews, domain modeling, code
analysis, and bug fixing. However, challenges remain
regarding the reliability and effectiveness of LLMs in these
applications. Further refinement and research are essential to
fully realizing their potential in practical software development
tasks.

Theme 4: Practical Application of LLM in Software
Engineering.

Subtheme 1: LLM in Requirements Engineering.

Research in this cluster focuses on integrating LLM in
requirements engineering. Jain et al. [65] present a novel
approach for summarizing requirements from obligations in
software engineering contracts using LLM. This method
leverages prompt engineering principles to guide GPT-3 in
generating training and ground truth summaries, which are then
used to train Natural Language Generation (NLG) models for
contract text summarization. Despite its promise, the method
heavily relies on the effectiveness of prompt engineering and
the performance of NLG models. Consequently, there is a risk
that essential details might be missed or not accurately
captured, making LLM-generated summaries potentially
unreliable. Therefore, analysts must review the original
contracts carefully to ensure accuracy.

Spoletini and Ferrari [66] explore integrating automatic
formal requirements engineering techniques with LLMs to
enhance code generation reliability. These techniques are
typically employed in developing complex systems to ensure
adherence to specific standards. By combining formal methods
with LLM models, the researchers aim to improve the accuracy
and reliability of LLM-generated code. However, a significant
challenge lies in ensuring that the code generated by LLMs
consistently meets these high standards.

Subtheme 2: LLM in Software Modeling and Design.

This theme explores the application of LLMs in software
modeling and Unified Modeling Language (UML). Ren et al.
[67] investigate the role of chatbots in UML modeling,
concluding that while chatbots are valuable for building class
diagrams and lay a foundation for further research on their
applicability in software engineering diagramming, they are
not yet fully capable of capturing all necessary details. This
indicates a need for further development and research to
enhance their completeness and effectiveness in diagramming
tasks. Camara et al. [68] highlight LLMs' practical applications
and educational benefits, noting their use in enterprise and
software modeling processes. However, they emphasize that
educators must rethink how they design and administer
assessments, as integrating LLMs requires significant
adjustments. Chen and Zacharias (Chen & Zacharias, 2024)
propose using generative AI to develop software design
principles that assist software developers. Their research
identifies fundamental issues with generative AI in software
development, including usability problems, data privacy
concerns, hallucinations, and a lack of transparency. De Vito et
al. [69] introduce ECHO, a novel approach to enhancing the
quality of UML use cases using LLMs. ECHO employs a co-
prompt engineering technique and an interactive process with
the LLM to improve use cases based on practitioner feedback.
Despite its potential, ECHO faces challenges such as the need
for substantial effort to develop effective prompts and ensure
iterative improvements. Additionally, their experiment showed
that while ECHO could improve use case quality, further
refinement, and validation are necessary to ensure consistent
and reliable outcomes across diverse scenarios.

Melo [70] proposes the design of context-based adaptive
interactions between software developers and chatbots to foster
solutions and knowledge support. Although the proposed
method shows potential, it remains difficult for chatbots to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

353 | P a g e

www.ijacsa.thesai.org

understand and adapt to the specific contexts of software
development. The study highlights the need for more research
to understand developers' expectations and improve the
interaction between developers and chatbots. Finally, Petrovic
[71] examines the integration of ChatGPT into software
development practices, focusing on automated security checks
and real-time feedback to enhance software security and
reliability during the design phase. However, the study
identifies challenges, such as the need to refine and process
automated results from ChatGPT to be useful for developers
and system administrators. Additionally, the evaluation was
limited to specific tools, which may affect the generalizability
of the findings to other tools or environments.

In summary, the research highlights that LLMs can
significantly enhance various aspects of software engineering,
from requirements engineering and software modeling to
security checks. They provide practical tools for improving
quality in software development processes. However,
specialized models and further research are necessary to fully
realize the potential of LLMs in practical applications and
address existing limitations.

Theme 5: Quality Control

This theme delves into utilizing LLMs for quality control
and evaluation tasks within the software engineering domain.
Lu et al. [72] introduce Llama-reviewer, a model designed to
automate code reviews in software development. The model is
noted for its efficiency, using fewer resources than traditional
models, and the findings indicate promising results even with
less training. However, the study acknowledges that the limited
training epochs might restrict the model's capability to manage
more complex or diverse code review tasks. Ronanki et al.
(Ronanki et al., 2024) investigate the application of ChatGPT
for evaluating the quality of user stories in Agile software
development. The results show that ChatGPT's assessments
align well with human evaluations, but the study highlights the
challenge of ensuring the trustworthiness of ChatGPT's
outputs. Tufano et al. [73] compare a deep learning model and
ChatGPT in mimicking developers' tasks during code reviews,
such as adding comments on code changes or fixing code
based on comments. They found that ChatGPT struggled to
comment on code as effectively as human reviewers. This
research underscores the need for more specialized studies to
enhance code review automation, as general models like
ChatGPT cannot fully replicate human reviewers' capabilities,
especially in tasks like code review.

Furthermore, Pantelimon and Posedaru [74] explore how
ChatGPT can generate code snippets, templates, and functions
from natural language input, aiding in bridging the gap
between technical and non-technical team members in software
development. While this tool helps developers quickly find and
fix bugs, enhancing the accuracy of automated code review and
testing, concerns about potential over-reliance on ChatGPT and
the limitations of its ability to comprehend intricate technical
concepts are noted. In addition, Martins et al. [62] present an
automated GitHub bot using LLMs to enforce SOLID
principles during code reviews. This bot provides immediate
feedback, improving code quality, particularly for new
programmers, and integrates seamlessly into GitHub. However,

they also state that the tool faces many challenges in handling
various code review scenarios.

In summary, while these studies illustrate the potential of
LLMs in software engineering, they also highlight the need for
further research to address limitations related to model
robustness, handling complex tasks, reducing biases, and
improving integration and usability in real-world software
development environments. Future work should focus on
developing more specialized LLM models tailored to specific
tasks like code reviews, enhancing the robustness and
adaptability of these models through more extensive and varied
datasets, and refining approaches like co-prompt engineering
for better accuracy. Additionally, efforts should be made to
mitigate over-reliance on automation, reduce biases in training
data, and improve the interaction between developers and LLM
tools. Expanding testing in diverse environments, integrating
advanced LLM models, and developing comprehensive
training for non-experts to use these AI tools effectively are
crucial steps for future research.

V. DISCUSSION

The current study acknowledges several limitations
inherent in the bibliometric analysis approach. First, while
Scopus and Web of Science are extensive databases, they may
not encompass all relevant publications on the subject.
Consequently, future studies should incorporate additional
databases such as Google Scholar and PubMed to ensure a
more comprehensive analysis. Second, although VOS Viewer
and Bibliometrix software are reliable tools for bibliometric
analysis, other software options such as SciMat, Sci2,
Bibexcel, Gephi, Cite Space, Pajek, and UCINET should also
be utilized in future research to enhance robustness and
validity.

Furthermore, the number of studies comparing different
versions of ChatGPT, specifically versions 3.5, 4.0, and 4o in
the context of software engineering, remains limited. Future
research should explore the impact of these versions on
outcomes and consider comparisons with other LLM tools such
as Google Gemini, LLAMA, Microsoft Copilot, and Claude.
Additionally, it is essential to examine the effects of various AI
technologies, including DALL-E, DeepL, Typecast AI, and
Resemble AI, on software engineering processes and
outcomes.

VI. CONCLUSION

To our knowledge, this is the first bibliometric analysis
study on using LLMs in software engineering. This study
identifies the nations, authors, and publications that have
contributed significantly to the field. The content analysis
results show that the publications are organized around three
key themes: 1) integration of LLMs into software engineering
education, 2) application of LLMs in software engineering, and
3) potential and limitations of LLMs in software engineering.
Our investigation reveals that China and the United States have
the most publications, but international collaboration is limited.
Consequently, future studies should encourage scholars to
interact with researchers from other nations.

There is a gap in the literature concerning studies that
explore LLMs and specific software engineering topics, which

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

354 | P a g e

www.ijacsa.thesai.org

future studies should address. Firstly, integrating LLMs like
ChatGPT into software engineering education offers significant
benefits, including personalized learning, practical application
of concepts, and support for curriculum development.
However, challenges such as potential negative impacts on
student performance if overused and the necessity for students
to have solid foundational knowledge despite AI assistance
must be addressed. Students must evaluate AI-generated
content critically to ensure genuine understanding. Therefore,
balancing these tools with traditional learning methods is
essential for maximizing their benefits in educational settings.
To effectively integrate LLMs, curricula must be adapted to
include AI literacy, maintain academic integrity, and prevent
misconduct through evolving policies. Future directions
involve creating interactive learning platforms, adopting
holistic educational approaches, and continuously evaluating
the impact of these tools to ensure they provide maximum
educational benefits. Secondly, although LLMs like ChatGPT
show promise in code generation, significant reliability and
robustness issues remain. Comprehensive evaluation metrics
and further studies are needed to assess and improve the
effectiveness of LLMs in practical software development
scenarios. ChatGPT has demonstrated great potential in
software testing in areas such as automatic test generation,
exploratory testing, and bug detection. However, these tools
also have limitations and require further research to optimize
their application in software engineering. Thirdly, research
under the theme of automation in software engineering
highlights the transformative potential of LLMs in automating
various tasks, from technical interviews to domain modeling,
code analysis, and bug fixing. Despite these advancements,
challenges remain regarding the reliability of LLMs in these
automated tasks.

VII. FUTURE WORK

Furthermore, LLMs can significantly enhance various
aspects of software engineering, including requirements
engineering, software modeling, and security checks. They
provide practical tools for improving quality in software
development processes. Nevertheless, there is a need for
specialized models and further research to fully realize the
potential of LLMs in practical applications and address
existing limitations. Finally, studies demonstrate the potential
of LLMs in software engineering but also underscore the need
for further research to address limitations related to model
robustness, handling complex tasks, reducing biases, and
improving integration and usability in real-world software
development environments. Future work should focus on
developing more specialized LLM models tailored to specific
tasks like code reviews, enhancing the robustness and
adaptability of these models through extensive and varied
datasets, and refining approaches like co-prompt engineering
for better accuracy. Additionally, efforts should be made to
mitigate over-reliance on automation, reduce biases in training
data, and improve interactions between developers and LLM
tools. Expanding testing in diverse environments, integrating
advanced LLM models, and developing comprehensive
training for non-experts to use these tools effectively are
crucial steps for future research.

ACKNOWLEDGMENT

The authors declare that there are no conflicts of interest.

REFERENCES

[1] K. I. Roumeliotis and N. D. Tselikas, “ChatGPT and Open-AI Models:
A Preliminary Review,” Future Internet, vol. 15, no. 6, p. 192, May
2023, doi: 10.3390/fi15060192.

[2] Y. Chang et al., “A Survey on Evaluation of Large Language Models,”
ACM Transactions on Intelligent Systems and Technology, vol. 15, no.
3, pp. 1–45, Jun. 2024, doi: 10.1145/3641289.

[3] M. A. Akbar, A. A. Khan, and P. Liang, “Ethical Aspects of ChatGPT in
Software Engineering Research,” IEEE Transactions on Artificial
Intelligence, pp. 1–14, 2023, doi: 10.1109/TAI.2023.3318183.

[4] W. Rahmaniar, “ChatGPT for Software Development: Opportunities and
Challenges,” TechRxiv, vol. 26, no. 3, pp. 1–8, May 2023, doi:
10.1109/MITP.2024.3379831.

[5] D. K. Kim, J. Chen, H. Ming, and L. Lu, “Assessment of ChatGPT’s
Proficiency in Software Development,” in Proceedings - 2023 Congress
in Computer Science, Computer Engineering, and Applied Computing,
CSCE 2023, Jul. 2023, pp. 2637–2644, doi:
10.1109/CSCE60160.2023.00421.

[6] J. Michael, D. Bork, M. Wimmer, and H. C. Mayr, “Quo Vadis
modeling?: Findings of a community survey, an ad-hoc bibliometric
analysis, and expert interviews on data, process, and software
modeling,” Software and Systems Modeling, vol. 23, no. 1, pp. 7–28,
Feb. 2024, doi: 10.1007/s10270-023-01128-y.

[7] N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How
to conduct a bibliometric analysis: An overview and guidelines,” Journal
of Business Research, vol. 133, pp. 285–296, Sep. 2021, doi:
10.1016/j.jbusres.2021.04.070.

[8] W. M. Lim and S. Kumar, “Guidelines for interpreting the results of
bibliometric analysis: A sensemaking approach,” Global Business and
Organizational Excellence, vol. 43, no. 2, pp. 17–26, Jan. 2024, doi:
10.1002/joe.22229.

[9] O. Öztürk, R. Kocaman, and D. K. Kanbach, “How to design
bibliometric research: an overview and a framework proposal,” Review
of Managerial Science, pp. 1–29, 2024, doi: 10.1007/s11846-024-00738-
0.

[10] G. Favara, M. Barchitta, A. Maugeri, R. Magnano San Lio, and A.
Agodi, “The Research Interest in ChatGPT and Other Natural Language
Processing Tools from a Public Health Perspective: A Bibliometric
Analysis,” Informatics, vol. 11, no. 2, p. 13, Mar. 2024, doi:
10.3390/informatics11020013.

[11] A. D. Samala, E. V. Sokolova, S. Grassini, and S. Rawas, “ChatGPT: a
bibliometric analysis and visualization of emerging educational trends,
challenges, and applications,” International Journal of Evaluation and
Research in Education (IJERE), vol. 13, no. 4, p. 2374, 2024, doi:
10.11591/ijere.v13i4.28119.

[12] M. Oliński, K. Krukowski, and K. Sieciński, “Bibliometric Overview of
ChatGPT: New Perspectives in Social Sciences,” Publications, vol. 12,
no. 1, p. 9, Mar. 2024, doi: 10.3390/publications12010009.

[13] S. Gande, M. Gould, and L. Ganti, “Bibliometric analysis of ChatGPT in
medicine,” International Journal of Emergency Medicine, vol. 17, no. 1,
p. 50, Apr. 2024, doi: 10.1186/s12245-024-00624-2.

[14] A. S. Bale et al., “ChatGPT in Software Development: Methods and
Cross-Domain Applications,” International Journal of Intelligent
Systems and Applications in Engineering, vol. 11, no. 9s, pp. 636–643,
2023, [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85171329846&partnerID=40&md5=4283848fd2a7f64e2f54575369e84b
6a.

[15] Y. Li, J. Xu, Y. Zhu, H. Liu, and P. Liu, “The Impact of ChatGPT on
Software Engineering Education: A Quick Peek,” in 2023 10th
International Conference on Dependable Systems and Their
Applications (DSA), Aug. 2023, pp. 595–596, doi:
10.1109/DSA59317.2023.00087.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

355 | P a g e

www.ijacsa.thesai.org

[16] N. Marques, R. R. Silva, and J. Bernardino, “Using ChatGPT in
Software Requirements Engineering: A Comprehensive Review,” Future
Internet, vol. 16, no. 6, p. 180, May 2024, doi: 10.3390/fi16060180.

[17] H. J. Kasaraneni and S. Rosaline, “Automatic Merging of Scopus and
Web of Science Data for Simplified and Effective Bibliometric
Analysis,” Annals of Data Science, vol. 11, no. 3, pp. 785–802, Jun.
2024, doi: 10.1007/s40745-022-00438-0.

[18] A. Klarin, “How to conduct a bibliometric content analysis: Guidelines
and contributions of content co-occurrence or co-word literature
reviews,” International Journal of Consumer Studies, vol. 48, no. 2, p.
e13031, Mar. 2024, doi: 10.1111/ijcs.13031.

[19] M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive
science mapping analysis,” Journal of Informetrics, vol. 11, no. 4, pp.
959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.

[20] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz, “The
Programmer’s Assistant: Conversational Interaction with a Large
Language Model for Software Development,” in Proceedings of the 28th
International Conference on Intelligent User Interfaces, Mar. 2023, pp.
491–514, doi: 10.1145/3581641.3584037.

[21] M. Daun and J. Brings, “How ChatGPT Will Change Software
Engineering Education,” in Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1, Jun.
2023, vol. 1, pp. 110–116, doi: 10.1145/3587102.3588815.

[22] A. Ahmad, M. Waseem, P. Liang, M. Fahmideh, M. S. Aktar, and T.
Mikkonen, “Towards Human-Bot Collaborative Software Architecting
with ChatGPT,” in Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering, Jun. 2023, pp.
279–285, doi: 10.1145/3593434.3593468.

[23] N. M. Barrington et al., “A Bibliometric Analysis of the Rise of
ChatGPT in Medical Research,” Medical Sciences, vol. 11, no. 3, p. 61,
Sep. 2023, doi: 10.3390/medsci11030061.

[24] H. Baber, K. Nair, R. Gupta, and K. Gurjar, “The beginning of ChatGPT
– a systematic and bibliometric review of the literature,” Information
and Learning Sciences, vol. 125, no. 7/8, pp. 587–614, Jan. 2024, doi:
10.1108/ILS-04-2023-0035.

[25] T. Yalcinkaya and S. Cinar Yucel, “Bibliometric and content analysis of
ChatGPT research in nursing education: The rabbit hole in nursing
education,” Nurse Education in Practice, vol. 77, 2024, doi:
10.1016/j.nepr.2024.103956.

[26] O. Petrovska, L. Clift, and F. Moller, “Generative AI in Software
Development Education: Insights from a Degree Apprenticeship
Programme,” in The United Kingdom and Ireland Computing Education
Research (UKICER) conference, Sep. 2023, pp. 1–1, doi:
10.1145/3610969.3611132.

[27] E. Frankford, C. Sauerwein, P. Bassner, S. Krusche, and R. Breu, “AI-
Tutoring in Software Engineering Education,” in Proceedings of the
46th International Conference on Software Engineering: Software
Engineering Education and Training, Apr. 2024, pp. 309–319, doi:
10.1145/3639474.3640061.

[28] P. Rajabi, “Experience Report: Adopting AI-Usage Policy in Software
Engineering Education,” in The 26th Western Canadian Conference on
Computing Education, May 2024, pp. 1–2, doi:
10.1145/3660650.3660668.

[29] V. D. Kirova, C. S. Ku, J. R. Laracy, and T. J. Marlowe, “Software
Engineering Education Must Adapt and Evolve for an LLM
Environment,” in Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1, Mar. 2024, vol. 1, pp. 666–672,
doi: 10.1145/3626252.3630927.

[30] A. M. Abdelfattah, N. A. Ali, M. A. Elaziz, and H. H. Ammar,
“Roadmap for Software Engineering Education using ChatGPT,” in
2023 International Conference on Artificial Intelligence Science and
Applications in Industry and Society (CAISAIS), Sep. 2023, pp. 1–6,
doi: 10.1109/CAISAIS59399.2023.10270477.

[31] G. Jošt, V. Taneski, and S. Karakatič, “The Impact of Large Language
Models on Programming Education and Student Learning Outcomes,”
Applied Sciences, vol. 14, no. 10, p. 4115, May 2024, doi:
10.3390/app14104115.

[32] O. Petrovska, L. Clift, F. Moller, and R. Pearsall, “Incorporating
Generative AI into Software Development Education,” in Proceedings of

the 8th Conference on Computing Education Practice, Jan. 2024, pp. 37–
40, doi: 10.1145/3633053.3633057.

[33] R. W. Brennan and J. Lesage, “Exploring the Implications of OpenAI
Codex on Education for Industry 4.0,” in Studies in Computational
Intelligence, vol. 1083 SCI, Cham: Springer International Publishing,
2023, pp. 254–266.

[34] T. Kosar, D. Ostojić, Y. D. Liu, and M. Mernik, “Computer Science
Education in ChatGPT Era: Experiences from an Experiment in a
Programming Course for Novice Programmers,” Mathematics, vol. 12,
no. 5, p. 629, Feb. 2024, doi: 10.3390/math12050629.

[35] D. Sobania, M. Briesch, and F. Rothlauf, “Choose your programming
copilot,” in Proceedings of the Genetic and Evolutionary Computation
Conference, Jul. 2022, pp. 1019–1027, doi: 10.1145/3512290.3528700.

[36] A. Moradi Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C.
Desmarais, and Z. M. (Jack) Jiang, “GitHub Copilot AI pair
programmer: Asset or Liability?,” Journal of Systems and Software, vol.
203, no. 111734, p. 111734, Sep. 2023, doi: 10.1016/j.jss.2023.111734.

[37] C. Ebert and P. Louridas, “Generative AI for Software Practitioners,”
IEEE Software, vol. 40, no. 4, pp. 30–38, Jul. 2023, doi:
10.1109/MS.2023.3265877.

[38] Y. Feng, S. Vanam, M. Cherukupally, W. Zheng, M. Qiu, and H. Chen,
“Investigating Code Generation Performance of ChatGPT with
Crowdsourcing Social Data,” in 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC), Jun. 2023, vol.
2023-June, pp. 876–885, doi: 10.1109/COMPSAC57700.2023.00117.

[39] R. W. Brennan and J. Lesage, “Exploring the Implications of OpenAI
Codex on Education for Industry 4.0,” in Studies in Computational
Intelligence, vol. 1083 SCI, Springer, 2023, pp. 254–266.

[40] M.-F. Wong, S. Guo, C.-N. Hang, S.-W. Ho, and C.-W. Tan, “Natural
Language Generation and Understanding of Big Code for AI-Assisted
Programming: A Review,” Entropy, vol. 25, no. 6, p. 888, Jun. 2023,
doi: 10.3390/e25060888.

[41] L. Belzner, T. Gabor, and M. Wirsing, “Large Language Model Assisted
Software Engineering: Prospects, Challenges, and a Case Study,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
14380 LNCS, Springer, 2024, pp. 355–374.

[42] Z. Liu, Y. Tang, X. Luo, Y. Zhou, and L. F. Zhang, “No Need to Lift a
Finger Anymore? Assessing the Quality of Code Generation by
ChatGPT,” IEEE Transactions on Software Engineering, vol. 50, no. 6,
pp. 1548–1584, Jun. 2024, doi: 10.1109/TSE.2024.3392499.

[43] M. Liu, J. Wang, T. Lin, Q. Ma, Z. Fang, and Y. Wu, “An Empirical
Study of the Code Generation of Safety-Critical Software Using LLMs,”
Applied Sciences, vol. 14, no. 3, p. 1046, Jan. 2024, doi:
10.3390/app14031046.

[44] G. L. Scoccia, “Exploring Early Adopters’ Perceptions of ChatGPT as a
Code Generation Tool,” in Proceedings - 2023 38th IEEE/ACM
International Conference on Automated Software Engineering
Workshops, ASEW 2023, Sep. 2023, pp. 88–93, doi:
10.1109/ASEW60602.2023.00016.

[45] D. Rodriguez-Cardenas, D. N. Palacio, D. Khati, H. Burke, and D.
Poshyvanyk, “Benchmarking Causal Study to Interpret Large Language
Models for Source Code,” in Proceedings - 2023 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2023, Oct.
2023, pp. 329–334, doi: 10.1109/ICSME58846.2023.00040.

[46] S. Yeo, Y. S. Ma, S. C. Kim, H. Jun, and T. Kim, “Framework for
evaluating code generation ability of large language models,” ETRI
Journal, vol. 46, no. 1, pp. 106–117, 2024, doi: 10.4218/etrij.2023-0357.

[47] S. Aillon, A. Garcia, N. Velandia, D. Zarate, and P. Wightman,
“Empirical evaluation of automated code generation for mobile
applications by AI tools,” in 2023 IEEE Colombian Caribbean
Conference (C3), Nov. 2023, pp. 1–6, doi:
10.1109/C358072.2023.10436306.

[48] A. Mastropaolo et al., “On the Robustness of Code Generation
Techniques: An Empirical Study on GitHub Copilot,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), May 2023, pp. 2149–2160, doi:
10.1109/ICSE48619.2023.00181.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

356 | P a g e

www.ijacsa.thesai.org

[49] L. Zhong and Z. Wang, “Can LLM Replace Stack Overflow? A Study
on Robustness and Reliability of Large Language Model Code
Generation,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 19, pp. 21841–21849, Mar. 2024, doi:
10.1609/aaai.v38i19.30185.

[50] L. Zhong and Z. Wang, “Can LLM Replace Stack Overflow? A Study
on Robustness and Reliability of Large Language Model Code
Generation,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 19, pp. 21841–21849, Mar. 2024, doi:
10.1609/aaai.v38i19.30185.

[51] W. B. Mbaka, “New experimental design to capture bias using LLM to
validate security threats,” in Proceedings of the 28th International
Conference on Evaluation and Assessment in Software Engineering,
Jun. 2024, pp. 458–459, doi: 10.1145/3661167.3661222.

[52] C. Tsigkanos, P. Rani, S. Müller, and T. Kehrer, “Variable Discovery
with Large Language Models for Metamorphic Testing of Scientific
Software,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 14073 LNCS, Cham: Springer Nature Switzerland,
2023, pp. 321–335.

[53] M. Schafer, S. Nadi, A. Eghbali, and F. Tip, “An Empirical Evaluation
of Using Large Language Models for Automated Unit Test Generation,”
IEEE Transactions on Software Engineering, vol. 50, no. 1, pp. 85–105,
Jan. 2024, doi: 10.1109/TSE.2023.3334955.

[54] K. El Haji, C. Brandt, and A. Zaidman, “Using GitHub Copilot for Test
Generation in Python: An Empirical Study,” in Proceedings of the 5th
ACM/IEEE International Conference on Automation of Software Test
(AST 2024), Apr. 2024, pp. 45–55, doi: 10.1145/3644032.3644443.

[55] S. Mehmood, U. I. Janjua, and A. Ahmed, “From Manual to Automatic:
The Evolution of Test Case Generation Methods and the Role of GitHub
Copilot,” in 2023 International Conference on Frontiers of Information
Technology (FIT), Dec. 2023, pp. 13–18, doi:
10.1109/FIT60620.2023.00013.

[56] R. Copche, Y. Duarte, V. Durelli, M. Eler, and A. Endo, “Can a Chatbot
Support Exploratory Software Testing? Preliminary Results,” in
Proceedings of the 26th International Conference on Enterprise
Information Systems, 2024, vol. 2, pp. 159–166, doi:
10.5220/0012572400003690.

[57] Q. Han, Z. Shi, and Z. Zhao, “Research on trustworthy Software Testing
Techniques Based on Large Models,” in 2024 10th International
Symposium on System Security, Safety, and Reliability (ISSSR), Mar.
2024, pp. 524–525, doi: 10.1109/ISSSR61934.2024.00075.

[58] A. M. Dakhel, A. Nikanjam, V. Majdinasab, F. Khomh, and M. C.
Desmarais, “Effective test generation using pre-trained Large Language
Models and mutation testing,” Information and Software Technology,
vol. 171, no. 107468, p. 107468, Jul. 2024, doi:
10.1016/j.infsof.2024.107468.

[59] L. Plein, W. C. Ouédraogo, J. Klein, and T. F. Bissyandé, “Automatic
Generation of Test Cases based on Bug Reports: A Feasibility Study
with Large Language Models,” Proceedings - International Conference
on Software Engineering. ACM, University of Luxembourg,
Luxembourg, Luxembourg, pp. 360–361, 2024, doi:
10.1145/3639478.3643119.

[60] D. I. Rathnayake, D. N. Mahendra, B. C. Amarasinghe, S. C.
Premaratne, and M. M. Buhari, “Next Generation Technical Interview
Process Automation with Multi-level Interactive Chatbot Based on
Intelligent Techniques,” in Lecture Notes in Networks and Systems, vol.
834, Singapore: Springer Nature Singapore, 2024, pp. 93–103.

[61] K. Chen, Y. Yang, B. Chen, J. A. Hernández López, G. Mussbacher, and
D. Varró, “Automated Domain Modeling with Large Language Models:
A Comparative Study,” in 2023 ACM/IEEE 26th International
Conference on Model Driven Engineering Languages and Systems

(MODELS), Oct. 2023, pp. 162–172, doi:
10.1109/MODELS58315.2023.00037.

[62] G. F. Martins, E. C. M. Firmino, and V. P. De Mello, “The Use of Large
Language Model in Code Review Automation: An Examination of
Enforcing SOLID Principles,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 14736 LNAI, Cham: Springer Nature
Switzerland, 2024, pp. 86–97.

[63] O. Asare, M. Nagappan, and N. Asokan, “Is GitHub’s Copilot as bad as
humans at introducing vulnerabilities in code?,” Empirical Software
Engineering, vol. 28, no. 6, p. 129, Nov. 2023, doi: 10.1007/s10664-
023-10380-1.

[64] M. C. Wuisang, M. Kurniawan, K. A. Wira Santosa, A. Agung Santoso
Gunawan, and K. E. Saputra, “An Evaluation of the Effectiveness of
OpenAI’s ChatGPT for Automated Python Program Bug Fixing using
QuixBugs,” in 2023 International Seminar on Application for
Technology of Information and Communication (iSemantic), Sep. 2023,
pp. 295–300, doi: 10.1109/iSemantic59612.2023.10295323.

[65] C. Jain, P. R. Anish, A. Singh, and S. Ghaisas, “A Transformer-based
Approach for Abstractive Summarization of Requirements from
Obligations in Software Engineering Contracts,” in 2023 IEEE 31st
International Requirements Engineering Conference (RE), Sep. 2023,
vol. 2023-Septe, pp. 169–179, doi: 10.1109/RE57278.2023.00025.

[66] P. Spoletini and A. Ferrari, “The Return of Formal Requirements
Engineering in the Era of Large Language Models,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 14588 LNCS,
IEEE, 2024, pp. 344–353.

[67] R. Ren, J. W. Castro, A. Santos, O. Dieste, and S. T. Acuna, “Using the
SOCIO Chatbot for UML Modelling: A Family of Experiments,” IEEE
Transactions on Software Engineering, vol. 49, no. 1, pp. 364–383, Jan.
2023, doi: 10.1109/TSE.2022.3150720.

[68] J. Cámara, J. Troya, J. Montes-Torres, and F. J. Jaime, “Generative AI in
the Software Modeling Classroom: An Experience Report with
ChatGPT and UML,” IEEE Software, pp. 1–10, 2024, doi:
10.1109/MS.2024.3385309.

[69] G. De Vito, F. Palomba, C. Gravino, S. Di Martino, and F. Ferrucci,
“ECHO: An Approach to Enhance Use Case Quality Exploiting Large
Language Models,” in 2023 49th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Sep. 2023, pp. 53–60,
doi: 10.1109/SEAA60479.2023.00017.

[70] G. Melo, “Designing Adaptive Developer-Chatbot Interactions: Context
Integration, Experimental Studies, and Levels of Automation,” in 2023
IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), May 2023, pp. 235–239,
doi: 10.1109/ICSE-Companion58688.2023.00064.

[71] N. Petrović, “Chat GPT-Based Design-Time DevSecOps,” in 2023 58th
International Scientific Conference on Information, Communication and
Energy Systems and Technologies (ICEST), Jun. 2023, pp. 143–146,
doi: 10.1109/ICEST58410.2023.10187247.

[72] J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “LLaMA-Reviewer:
Advancing Code Review Automation with Large Language Models
through Parameter-Efficient Fine-Tuning,” in 2023 IEEE 34th
International Symposium on Software Reliability Engineering (ISSRE),
Oct. 2023, pp. 647–658, doi: 10.1109/ISSRE59848.2023.00026.

[73] R. Tufano, O. Dabić, A. Mastropaolo, M. Ciniselli, and G. Bavota,
“Code Review Automation: Strengths and Weaknesses of the State of
the Art,” IEEE Transactions on Software Engineering, vol. 50, no. 2, pp.
1–16, Feb. 2024, doi: 10.1109/TSE.2023.3348172.

[74] F. V. Pantelimon and B. Ștefan Posedaru, “Improving Programming
Activities Using ChatGPT: A Practical Approach,” in Smart Innovation,
Systems and Technologies, vol. 367, Singapore: Springer Nature
Singapore, 2024, pp. 307–316.

APPENDIX

https://bit.ly/3Ad9Qtf

