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Abstract—The fusion of hyper-spectral images has important 

application value in fields such as remote sensing, environmental 

monitoring, and agricultural analysis. To improve the quality of 

reconstructed images, an HSI fusion method based on fully 

variational coupled non-negative matrix factorization and sparse 

constrained tensor factorization techniques is proposed. Spectral 

sparsity description is enhanced through sparse regularization, 

image spatial characteristics are captured using differential 

operators, and convergence is improved by combining proximal 

optimization with augmented Lagrangian methods. The 

experiment outcomes on the AVIRIS and HYDICE datasets 

indicate that the proposed method achieves peak signal-to-noise 

ratios of 38.12 dB and 37.56 dB, respectively, and reduces spectral 

angle errors to 3.98° and 4.12°, respectively, significantly better 

than the other two comparative methods. The contribution of each 

module is further verified through ablation experiments. The 

complete algorithm performs the best in all indicators, verifying 

the synergistic effect of sparse regularization, total variation 

regularization, and coupled factorization strategies. In HSI fusion 

tasks under various complex lighting and noise conditions, the 

performance of the proposed algorithm is particularly excellent, 

fully demonstrating its robustness and applicability in complex 

scenes. The method proposed by the research effectively improves 

the fusion quality of HSI, providing an efficient and robust 

solution for the analysis and application of HSI. 
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I. INTRODUCTION 

Hyper-spectral images (HSI) have continuous spectral bands 
and HSI resolution, providing powerful information support for 
land classification, target recognition, environmental 
monitoring, and other fields [1]. For example, HSI can be used 
to finely distinguish vegetation types, monitor water pollution, 
detect mineral distribution, and identify target materials, all of 
which are difficult to achieve with traditional optical images [2]. 
However, existing HSI devices are limited by optical and sensor 
technologies, making it difficult to simultaneously capture both 
HSI and high spatial resolution images [3]. This constraint 
renders the acquisition of HSI that boasts both high spectral and 
spatial resolution a significant technical hurdle—one that 
remains incompletely overcome. To address this issue, the 
fusion technology of HSI and multi-spectral images (MSI) has 
emerged, with the goal of combining the advantages of both to 
generate fused images with HSI and high spatial resolution. By 
combining the advantages of HSI and MSI, fusion technology 

can generate fused images that retain both spectral details of HSI 
and spatial clarity of MSI, thus breaking through the hardware 
limitations of a single device. Traditional methods often struggle 
to achieve a balance between spectral fidelity and spatial 
resolution. Therefore, an HSI fusion method combining non-
negative matrix factorization (NMF) and tensor factorization 
techniques has been proposed in this study. NMF can effectively 
extract hidden features from data while maintaining the 
non- negativity of the data, which enables it to better preserve 
spectral information when processing HSI. Secondly, tensor 
factorization can capture multidimensional interactions in HSI 
data and uncover deep information. In addition, the study 
enhances image spatial smoothness by introducing total 
variation (TV) regularization and optimizes spectral 
characteristics using sparsity constraint (SC), which can 
effectively preserve spectral and spatial information while 
reducing noise interference. Finally, the use of proximal 
alternating optimization (PAO) and augmented Lagrangian 
methods significantly improves the convergence speed and 
computational efficiency of the model. Therefore, the proposed 
method is suitable for solving the problem of HSI fusion, which 
can effectively improve the fusion quality of HSI and provide an 
efficient and robust solution for the analysis and application of 
HSI. 

The first section of the study furnishes an exhaustive account 
of the specific principles and implementation of the proposed 
HSI fusion method. The second section presents the 
experimental setup, performance evaluation indicators, and 
comparative experimental results on different datasets, and 
analyzes the ablation experiment to verify the effectiveness of 
each module in the method. Finally, the third section 
summarizes the main achievements of the research and explores 
the potential applications and future development directions of 
the method. 

II. RELATED WORK 

In recent times, artificial intelligence learning technology 
has made significant progress in the field of HSI integration. 
Dian et al. proposed a zero sample learning technique to improve 
the clarity of HSI and accurately measure the spectral and spatial 
characteristics of imaging sensors. This technology also 
achieved dimensionality reduction of HSI data, optimized model 
size and storage requirements, while maintaining fusion 
accuracy. Experiments showed that this method exhibited 
significant performance in both efficiency and accuracy [4]. Wu 
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et al. proposed a deep interpretable network that effectively 
integrates HSI and MSI through advanced coupling matrix 
factorization constraints. This network alternately processed 
HSI and MSI data through two branch subnets, predicting 
abundance and membership matrices respectively. The 
experimental results showed that this method was superior to 
existing model driven and data-driven fusion techniques in 
visual analysis and quality assessment [5]. Although this method 
could capture complex nonlinear relationships, it performed 
poorly in preserving spectral information, especially under high 
noise conditions. Zhao et al. raised an HSI classification method 
based on local feature decoupling and hybrid attention module. 
This method utilized gradient oriented histogram algorithm to 
preprocess HSI data, achieving preliminary nonlinear 
decoupling. Experimental results demonstrated that, compared 
to other transformer-based and traditional HSI classification 
methods, the proposed approach exhibited superior 
classification performance. [6]. Yang et al. combined tensor 
theory with deep learning and proposed a new unsupervised 
deep tensor network for the fusion of HSI and MSI. They 
designed a tensor filtering layer and constructed a coupled tensor 
filtering module based on it. This module worked in conjunction 
with the projection module to jointly train HSI and MSI in an 
unsupervised end-to-end manner. The effectiveness of this 
method was verified through experiments on simulated and 
actual remote sensing datasets [7]. However, when dealing with 
ultra-high resolution HSI, the demand for computing resources 
significantly increased, making it difficult to meet the 
requirements of real-time processing. 

NMF is a commonly-used matrix factorization approach in 
signal processing, image processing, text mining, and other 
fields. It can effectively extract hidden features from data while 
maintaining its non-negativity [8]. Sun et al. proposed an 
adaptive graph regularized NMF model with global constraints 
for data representation. This model utilized the 
self- representation characteristics of data to construct an 
adaptive graph, in order to more accurately capture the 
relationships between samples, and used graph factorization 
techniques to simplify the model and enhance its discriminative 
power. Finally, the effectiveness of the model was validated on 
multiple databases through experiments [9]. However, using 
fixed regularization parameters was difficult to adapt to changes 
in different input conditions, such as lighting variations, noise 
levels, etc., resulting in limited generalization ability in practical 
applications. Yu et al. proposed a robust asymmetric NMF 
clustering method for directed networks. This method took into 
account the non-Gaussian nature of real-world network errors 
and assumed that the errors follow a heavier tail Cauchy 
distribution. The experiment outcomes showed that this method 
performed better than traditional NMF and other clustering 
methods in both real and artificial networks [10]. Yuan et al. 
raised a new model for embedding multi-view attribute 
networks with integrated manifold regularization. This model 
captured the Riemannian geometry structure of the network by 
introducing manifold regularization, which compensated for the 
shortcomings of traditional NMF in information capture. Non-
negative coefficient matrices were obtained using NMF, and the 
amount of information embedded in the network was enhanced 
by combining cooperative regularization and manifold 
regularization. Through experimental verification on multiple 

real datasets, the model performed better than current advanced 
algorithms in node classification tasks [11]. 

In summary, existing HSI fusion is difficult to achieve a 
good balance between spectral fidelity and spatial resolution. 
Moreover, deep learning methods have a strong dependence on 
large-scale annotated data and high computational complexity, 
which affects their practicality. Based on this, an innovative HSI 
fusion method combining NMF and tensor factorization was 
proposed. By introducing to TV regularization to enhance the 
spatial smoothness of images and using SC to optimize spectral 
characteristics, both spectral and spatial information are 
effectively preserved while reducing noise interference. In 
addition, the use of PAO and augmented Lagrangian methods 
significantly improves the convergence speed and 
computational efficiency of the model. The research aims to 
achieve high spectral resolution while providing high spatial 
resolution and image quality. 

III. METHODS AND MATERIALS 

A. HSI Mixed Pixel Factorization Technology Based on 

Linear Spectral Mixing Model 

The core concept of NMF is to factorize the image data 
collected by sensors into two nonnegative matrices, enabling the 
identification of endmember spectra and estimation of 
corresponding abundances without assuming pure pixels. 
Coupled NMF (CNMF) is a classic technique for HSI fusion. 
During the fusion process, CNMF alternately processes spectral 
images, extracting endmember matrices and abundance matrices 
until the algorithm converges [12]. Finally, these two matrices 
are multiplied to obtain high-resolution HSI, and the fusion 
process is shown in Fig. 1 [13]. 
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Fig. 1. CNMF fusion process. 

In Fig. 1, the HSI is factorized into a base matrix hA
 and a 

coefficient matrix hB
. The factorization of MSI involves 

breaking it down into a base matrix mA
 and a coefficient matrix 

mB
. By using the correlation matrices E  and F , joint 

constraints between the two data sources are enforced, and the 

fusion result G  is obtained as the product of the base matrix A  

and the coefficient matrix B , completing the spectral image 
fusion process. The cost function of the CNMF algorithm is 
shown in Eq. (1) [14]. 
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2 2
( , ) h h m mCNMF A B X A B Y A B     (1) 

In (1), X  and Y  respectively represent the input HSI and 

MSI. hB
 and mA

 represent the abundance matrix of spatial 
downsampling and the endmember matrix of spectral 
downsampling, respectively, as expressed in Eq. (2). 

h

m

B BF

A EA





                    (2) 

In Eq. (2), non-negative tensor factorization (NTF) is an 
extension of NMF that factorizes high-dimensional tensor data. 
It is specially designed for factorizing and modeling high-
dimensional tensor data. Tensors can be seen as high-
dimensional forms of matrices, widely used to describe 
multidimensional data structures such as three-dimensional 
image sequences, video data, and complex relationships in 
sensor networks. Unlike traditional matrices, tensors can 
preserve the multidimensional structural characteristics of data, 
making them more suitable for analyzing and modeling data 
with high-dimensional interaction relationships. Two 
commonly-used tensor factorization models are shown in Fig. 2 
[15]. 

(a) CP decomposition diagram

(b) Tucker decomposition diagram

Tensor data

Tensor data

Factor matrix Factor matrix

Factor matrix

Core tensor

 

Fig. 2. Tensor factorization model. 

Fig. 2 (a) and (b) show typical CANDECOMP/PARAFAC 
(CP) factorization and Tucker factorization, respectively. CP 
factorization factorizes a tensor into a linear combination of rank 
one tensors, each consisting of the outer product of three vectors. 
Tucker factorization, on the other hand, represents a tensor as 
the product of a core tensor and multiple factor matrices. The 
core tensor is used to capture the global relationships of the 
tensor, while the factor matrix is used to represent the feature 
information in each dimension. These two factorization methods 
are used for feature extraction and pattern recognition in 
multidimensional data analysis. The mathematical expression 
for CP factorization is shown in Eq. (3) [16]. 

1

( )
R

r r r r

r

y = a b c


                  (3) 

In Eq. (3), y  represents the target tensor, R  is the rank of 

the factorization, r  is the weight coefficient of the r th rank 

component, 
( )r r ra b c 

 represents the r th rank tensor, which 
is a tensor generated by the outer product of three vectors. The 
mathematical expression for Tucker factorization is shown in 
Eq. (4). 

1 2 2y C D H                     (4) 

In Eq. (4),   represents the core tensor and 
, ,C D H

 
represents the factor matrix. Further extension of Tucker 
factorization leads to block term factorization (BTD), as shown 
in Fig. 3 [17] 

In Fig. 3, each part is generated by modular multiplication of 
a kernel tensor and three factor matrices. The factorization result 
can be seen as representing the tensor as a combination of 
multiple low rank tensor blocks, with the core tensor describing 
the relationships within the blocks and the factor matrix 
describing the characteristics of the tensor in various 
dimensions. This factorization method is used to represent 
complex tensor structures more finely and is suitable for 
handling multi-modal or multidimensional data. 
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Fig. 3. BTD structure. 

B. HSI Fusion Algorithm Based on TV-CNMF and SCT-NMF 

To further enhance the effectiveness of HSI fusion, a mixed 
pixel factorization technique combining linear spectral mixing 
model is studied, and tensor factorization method is adopted to 
propose an HSI fusion algorithm based on TV-CNMF and 
sparse constrained tensor (SCT) -NMF to enhance image detail 
preservation and denoising effects. Tensor factorization is a 
method of multi-linear algebra, which is a high-dimensional 
extension of matrix factorization and can effectively handle 
three-dimensional and above data structures, such as video and 
audio. It can capture multidimensional interactions in data and 

uncover deep information, which is difficult to achieve through 
matrix factorization. Based on the CNMF model, this study 
enhances the sparsity description of HSI through sparse 
regularization of shortest endmember distance and abundance, 
and captures the segmentation smoothness of the image using 
differential operators to reduce the impact of noise on the fusion 
effect. A TV-CNMF HSI fusion algorithm, TV-CNMF, is 
proposed. The objective function of the algorithm is shown in 
Eq. (5) [18]. 

2

1 2 3 31 1 1,

1
min ( , )

2
x yFA B

CNMF A B AP B D B D B       (5) 
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In (5), 1 , 2  and 3  both represent regularization 

parameters, where 1  controls the strength of TV regularization 

and is used to enhance the spatial smoothness of the image. 2  
controls the intensity of sparse constraints to optimize spectral 

sparsity. 3  regulates the coupling relationship between HSI 
and MSI to balance the information from both data sources. To 
determine the optimal values of these hyper-parameters, a grid 

search method is employed in the study. The value range of 1  

is [0.1, 1, 10], the value range of 2  is [0.01, 0.1, 1], and the 

value range of 3  is [0.001, 0.01, 0.1]. Through grid search, the 
impact of different parameter combinations on model 
performance is systematically evaluated, and the optimal 

parameter combination ( 1 =1, 2 =0.1, 3 =0.01) is selected. 
However, this function involves constrained optimization, and 
the model contains numerous unknowns, making it quite 
difficult to solve directly. Therefore, it is necessary to transform 
Eq. (5) into an unconstrained optimization function and 
introduce auxiliary variables as constraint terms, as shown in Eq. 
(6). 

2

1 2 31 1

3 1

1 1

2 2

( ) ( )

h m xF

y R R

X AB Y A B AP B D B

D B l A l B

  

  

     

  

   (6) 

In Eq. (6), 
( )

R
l A

 represents 0A  , 
( )

R
l B

 represents 

0B  . After normalizing the objective function, A  and hB
 

are optimized respectively, and the updated formula for hB
 is 

obtained as shown in Eq. (7). 

T

h h T

h

A X
B B

A AB
                  (7) 

In Eq. (7),   represents the update rule. For the 

optimization problem of A , an auxiliary variable is first 
introduced, and the resulting sub-problem is shown in Eq. (8). 

2 2

1 1

1
arg min ( )

2
h F F R

A

X AB AP l I      (8) 

In Eq. (8), 1I  represents the auxiliary variable. Eq. (8) is 
derived to obtain the augmented Lagrangian function as shown 
in Eq. (9). 

2 2 21
1 1 1 1 1 1

1
( , , ) ( )

2 2
h F F FR

L I A Z X AB AP l I A I Z


           (9) 

In Eq. (9), 1Z
 represents the Lagrange multiplier and 1  

represents the penalty parameter. Using the augmented 

Lagrangian alternative direction method of multipliers 
(ADMM) for solving, the result is shown in Eq. (10). 
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                  (10) 

In Eq. (10), k  is the number of iterations. Similarly, the 

solution process of hB
 is shown in Fig. 4. 

Input variables Update Matrix Matrix operation

Update Lagrange 

multipliers

Output matrix

Input layer Convergence condition

Output layer
 

Fig. 4. The process of ADMM solving hB
. 

In Fig. 4, one variable is optimized at a time while the other 
variables are kept constant. By iterating through this loop, each 
variable is continuously optimized, and the optimal value of the 
objective function is ultimately approached. The final TV-
CNMF algorithm flow is shown in Fig. 5. 
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Fig. 5. TV-CNMF algorithm process. 

In Fig. 5, the input includes HSI with low spatial resolution 
and MSI with high spatial resolution, and the error function is 
minimized using the CNMF model. Among them, regularization 
terms are introduced to optimize the sparsity and smoothness of 

matrices A  and B . By alternately optimizing the loss function, 
the fused high-resolution HSI is finally obtained, and the 
ADMM algorithm is used to complete the optimization solution. 
When processing HSI fusion, although matrix factorization 
algorithm achieves good results, it may damage the spatial 
structure and spectral correlation of HSI, and fail to fully utilize 
all structural information of the images. The third-order tensor 
factorization is more suitable for HSI, reducing information loss, 
but there are shortcomings in preserving details. To this end, an 
SC-based image fusion algorithm called SCT-NMF is proposed, 
which combines NTF and NMF to effectively protect data 
structure information, explore spatial details, and enhance 
solution stability. Firstly, the BTD and NMF models are 
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combined, and the sparsity of semi norm constrained abundance 
is introduced to construct an efficient fusion model, as 
represented in Eq. (11). 

2 2

1 2 3
, , ,

1 1

1 1
min ( ) ( )

2 2

TR R
T

H r r r M r r r
C D H V

r r F

PC P D o C D Po 
 

     (11) 

In Eq. (11), H  and M  respectively represent the image 

data of HSI and MSI, V  represents the sparse coding matrix, ro
 

is the endmember vector, and P  represents the projection 
matrix. Due to the fact that the fusion model is a non-convex 
optimization problem, it is necessary to fix one variable while 
keeping the other variables constant during solving, so that the 
optimization problem for each fixed variable is convex. 
Therefore, the PAO method can be used to solve the variables 

, ,C D H
 in the model, and the outcomes are represented in Eq. 

(12). 

2

2

2

arg min ( , , )

arg min ( , , )

arg min ( , , )

pre

F
C

pre

F
D
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F
H

C g C D H C C

D g C D H D D

H g C D H H H







   



  

   


   12) 

In Eq. (12),   is a penalty parameter used to control the 
difference between the current iteration value and the previous 

iteration value. 1  is used to control the difference between the 

newly obtained C  and the 
preC  obtained in the previous 

iteration. 2  is used to control the difference between the 

newly obtained D  and the 
preD  obtained in the previous 

iteration. 3  is used to control the difference between the 

newly obtained H  and the 
preH  obtained in the previous 

iteration. 
( , , )g C D H

 is the objective function, representing 

the coupling relationship of 
, ,C D H

. 
preC , 

preD , and 
preH  represent the values of the previous iteration of 

, ,C D H
. The SCT-NMF algorithm flow is shown in Fig. 6.
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Fig. 6. SCT-NMF algorithm process. 

In Fig. 6, the SCT-NMF algorithm initializes the factor 

matrix 
, ,C D H

 and iteratively updates each matrix to 
minimize the objective function. The core idea of this algorithm 
is to use sparse regularization and tensor factorization 
techniques, combined with constraint conditions, to optimize the 
objective function until the convergence conditions are met. 

Finally, the algorithm outputs a sparse matrix O  and a sparse 

encoding matrix V , representing the feature representation and 
sparsity encoding of the data, respectively. Finally, by 
introducing the sparse encoding matrix of SCT-NMF into the 
objective function of TV-CNMF, both spatial details and SCs 
can be optimized simultaneously. Combining TV regularization 
with sparse encoding matrix can make the image fusion process 
more robust, reduce the influence of noise, and improve the 
effect of detail preservation. In the fused image results, TV-
CNMF can provide strong denoising and smoothing effects, 
while SCT-NMF can better protect the structural information 

and details of the image. In order to evaluate the computational 
efficiency of TV-CNMF and SCT-NMF algorithms, the 
complexity of TV-CNMF and SCT-NMF is analyzed using Big-
O representation. Assuming the size of the input HSI image is 
M N L  , where M  and N  are spatial dimensions, L  is spectral 

dimension, and r  is the factorized rank. The main 
computational cost of TV-CNMF comes from the optimization 
of matrix factorization and regularization terms. The time 

complexity of matrix factorization is )(O MNr , and the time 

complexity of TV regularization is 
)(O MrN

. Therefore, the 
overall time complexity of TV-CNMF is 

( )O MNr MrN kMN  
. The main computational overhead of 

SCT-NMF comes from tensor factorization and optimization of 
sparse constraints. The time complexity of tensor factorization 

is 
)(O MNrL

, and the time complexity of sparse constraints is 

)(O MN
. Therefore, the overall time complexity of SCT-NMF is 

( )O MNrL k MN 
. 
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IV. RESULTS 

A. Performance Testing of HSI Fusion Algorithm Based on 

TV-CNMF and SCT-NMF 

To confirm the performance of the raised fusion algorithm, 
it was tested against the Residual Selective Kernel Attention-
based U-net (RSKAU-net) [19] and the Efficient Phase-induced 
Gabor Cube Selection and Weighted Fusion (EPCS-WF) 
method [20]. Two datasets, AVIRIS and HYDICE, were 
selected, and Peak Signal-to-Noise Ratio (PSNR), Spectral 
Angle Mapper (SAM), and Root Mean Square Error (RMSE) 
were used as indicators. The outcomes are in Table Ⅰ. 

According to the data in Table Ⅰ, the proposed algorithm 
achieved a PSNR of 38.12 dB on the AVIRIS dataset, 
outperforming RSKAU-net (35.42 dB) and EPCS-WF (36.78 
dB) by 7.6%, indicating superior image reconstruction quality. 
SAM was 3.98°, which was 25.5% lower than RSKAU net and 
exhibited stronger spectral fidelity; and the RMSE was 0.031, 
lower than other algorithms, indicating the minimum 
reconstruction error. On the HYDICE dataset, the proposed 
algorithm achieved a PSNR of 37.56 dB, 7.7% higher than 
RSKAU-net. In addition, the SAM of the algorithm proposed in 

the research was 4.12°, which was 27.3% lower than RSKAU 
net. The RMSE was 0.033, which also outperformed other 
algorithms. Overall, the algorithm proposed in the research 
performed the best in terms of PSNR, SAM, and RMSE. It 
outperformed RSKAU net and EPCS-WF in terms of spectral 
fidelity, spatial resolution, and pixel-level error in reconstructed 
images, demonstrating excellent spectral and spatial property 
preservation capabilities. It was suitable for HSI fusion and 
analysis tasks. The loss function changes of the three algorithms 
on different datasets are shown in Fig. 7. 

TABLE I PERFORMANCE TEST RESULTS OF FUSION ALGORITHM 

Database Algorithm PSNR SAM RMSE 

AVIRIS 

RSKAU-net 35.42 5.34 0.042 

EPCS-WF 36.78 4.56 0.038 

Ours 38.12 3.98 0.031 

HYDICE 

RSKAU-net 34.87 5.67 0.045 

EPCS-WF 35.91 4.89 0.041 

Ours 37.56 4.12 0.033 
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Fig. 7. Changes in loss function on different datasets. 

Fig. 7(a) and Fig. 7(b) respectively show the trend of the loss 
function of three algorithms with iteration times on the AVIRIS 
and HYDICE datasets. Overall, the loss value gradually 
decreased as the number of iterations increased, and each 
algorithm eventually tended to converge. On the AVIRIS 
dataset, the initial loss of RSKAU net was relatively high, the 
decrease was slow, and the final loss value was significantly 
higher than other algorithms. The descent rate of EPCS-WF was 
slightly faster, but the final loss was still higher than the 
algorithm proposed by the research. The loss value of the 
algorithm proposed by the research decreased the fastest and 
was significantly better than other algorithms at the 100th 
iteration, resulting in the lowest loss value in the end. On the 
HYDICE dataset, both RSKAU net and EPCS-WF converged 
slowly, and the final loss value was higher than the algorithm 
proposed in the study. The algorithm proposed by the research 
not only had the fastest convergence speed and the best 
optimization performance on two datasets, but also had the 
lowest final loss value, indicating that its fusion performance 
and optimization effect were better than other algorithms. 
Meanwhile, it had good robustness and universality, and was 
suitable for HSI fusion tasks. Through ablation experiments, the 

specific contributions of each module to the algorithm's 
performance were gradually verified. Firstly, the complete 
algorithm consisted of multiple key components, including 
CNMF, sparse regularization TV, and ADMM. In ablation 
settings, the complete model was considered the baseline model, 
which included all modules. The algorithm that removed sparse 
regularization and only retained coupling tensor factorization 
and TV regularization was referred to as A1. The algorithm that 
removed TV regularization and only retained sparse 
regularization and coupling tensor factorization was referred to 
as A2. The algorithm that removed coupling factorization and 
replaced it with independent NMF was referred to as A3. The 
algorithm that removed all regularization terms and only used 
coupling factorization was referred to as A4. The algorithm that 
replaced the optimization strategy with a simple multiplication 
update method was referred to as A5. The ablation experiment 
results in the two datasets are shown in Table Ⅱ, using PSNR, 
SAM, and RMSE as evaluation indicators. 
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TABLE II RESULTS OF ABLATION EXPERIMENT 

Database Algorithm PSNR (dB) SAM (°) RMSE 

AVIRIS 

A1 38.12 3.98 0.031 

A2 36.45 4.76 0.038 

A3 36.23 4.91 0.042 

A4 35.15 5.45 0.048 

A5 34.52 5.72 0.052 

HYDICE 

A1 37.56 4.12 0.033 

A2 35.98 4.78 0.041 

A3 35.62 4.96 0.045 

A4 34.88 5.67 0.052 

A5 34.15 5.94 0.054 

According to Table Ⅱ, in the AVIRIS dataset, A1 had the 
best PSNR, SAM, and RMSE of 38.12dB, 3.98°, and 0.031, 
respectively. The PSNR of A2 and A3 decreased to 36.45dB and 
36.23dB respectively, SAM increased to 4.76° and 4.91°, and 
RMSE increased to 0.038 and 0.042, indicating that sparse 
regularization and TV regularization played an important role in 
spectral fidelity and reconstruction quality. The PSNR of A4 
decreased to 35.15dB, SAM increased to 5.45°, and RMSE 
reached 0.048. The PSNR of A5 further decreased to 34.52dB, 
SAM increased to 5.72°. RMSE was 0.052, indicating that the 
lack of regularization and coupling factorization significantly 
reduced model performance. In the HYDICE dataset, A1 had the 
best PSNR, SAM, and RMSE of 37.56dB, 4.12°, and 0.033, 
respectively. The PSNR of A2 and A3 decreased to 35.98dB and 
35.62dB, respectively, while SAM increased to 4.78° and 4.96°, 
and RMSE increased to 0.041 and 0.045. The PSNR of A4 was 
34.88dB, SAM was 5.67°, and RMSE was 0.052. Finally, in A5, 
PSNR decreased to 34.15dB, SAM increased to 5.94°, and 
RMSE was 0.054. Overall, A1 performed the best on both 
datasets, validating the effectiveness and importance of sparse 
regularization, TV regularization, and coupled factorization. 
The algorithm A5, which removed all regularization terms, 
performed the worst, further demonstrating the importance of 
regularization for model optimization and robustness. 

B. Analysis of the Effect of HSI Fusion Algorithm based on 

TV-CNMF and SCT-NMF 

To verify the application effect of the proposed algorithm, 
simulation experiments were conducted to compare and analyze 
the applicability of the algorithm under different lighting 
conditions and noise levels. Selecting SAM, Spectral 
Correlation Coefficient (SCC), and Spectral Mean Square Error 
(SMSE) as indicators, the results are shown in Table Ⅲ. 

In Table Ⅲ, under illumination conditions, the SAM of the 
proposed algorithm in high light environments was 3.89°, 
significantly better than RSKAU net and EPCS-WF. SCC was 
0.965, significantly higher than RSKAU net and EPCS-WF, 
while SMSE was the lowest, only 0.031, indicating that it could 
better preserve spectral information under high light conditions 
and had high spectral fidelity and low error. Under low light 
conditions, the SAM of the proposed algorithm was 4.32°, SCC 

was 0.952, and SMSE was 0.036, which were also superior to 
RSKAU net and EPCS-WF, demonstrating good spectral 
fidelity and robustness. At the noise level, the SAM of the 
proposed algorithm in high noise environments was 4.89°, and 
the SCC was 0.941, both significantly better than RSKAU net 
and EPCS-WF. The SMSE was the lowest, at 0.038, 
demonstrating strong noise resistance. Under low noise 
conditions, the proposed algorithm had a SAM of 5.02°, SCC of 
0.952, and SMSE of 0.041, which were also superior to the other 
two compared algorithms and maintained advantages in spectral 
fidelity and error control. 

TABLE III APPLICABILITY UNDER DIFFERENT LIGHTING CONDITIONS AND 

NOISE LEVELS 

Condition Algorithm SAM (°) SCC SMSE 

High light 

RSKAU-net 5.34 0.912 0.042 

EPCS-WF 4.56 0.932 0.038 

Ours 3.89 0.965 0.031 

Low light 

RSKAU-net 6.21 0.892 0.051 

EPCS-WF 5.02 0.915 0.045 

Ours 4.32 0.952 0.036 

High noise 

RSKAU-net 6.78 0.876 0.056 

EPCS-WF 5.89 0.903 0.048 

Ours 4.89 0.941 0.038 

Low noise 

RSKAU-net 7.12 0.896 0.058 

EPCS-WF 6.21 0.912 0.041 

Ours 5.02 0.952 0.063 

In Fig. 8(a) and Fig. 8(b) respectively show the CPU usage 
comparison of three methods under different lighting and noise 
conditions. In Fig. 8(a), under high light conditions, the RSKAU 
net method had the highest CPU utilization rate of 56.6%. The 
EPCS-WF method was 52.2%. The lowest calculation 
efficiency of the method proposed by the research was 50.6%, 
indicating that it had the highest computational efficiency. 
Under low light conditions, the CPU utilization rates of RSKAU 
net and EPCS-WF methods were 51.1% and 45.2%, 
respectively, while the proposed method remained the lowest at 
45.5%, demonstrating good computational efficiency and 
stability. In Fig. 8(b), under high noise conditions, the EPCS-
WF method had the highest CPU utilization rate of 60.5%. The 
RSKAU net method was 51.7%. The method proposed by the 
research was 53.3%, demonstrating higher resource utilization 
efficiency. Under low noise conditions, the CPU utilization rates 
of RSKAU net and EPCS-WF methods were 46.6% and 56.3%, 
respectively, while the proposed method was 59.8%, still 
performing well in terms of computational performance and 
resource utilization. The Salinas dataset and Chikusei dataset 
were selected for the study, with 100 randomly selected samples 
each, to evaluate the running time of the three algorithms in HSI 
fusion tasks. The results are shown in Fig. 9. 
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Fig. 8. Comparison of CPU usage under different lighting and noise conditions. 
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Fig. 9. Comparison of running time under different sample sizes. 

Fig. 9(a) and Fig. 9(b) show the trend of running time for 
different algorithms on different datasets, respectively. In Fig. 
9(a), the running time of the proposed method was consistently 
lower than that of RSKAU net and EPCS-WF, indicating better 
computational efficiency. Although the running time of EPCS-
WF was relatively low, as the sample size increased, the running 
time gradually increased, and the gap between the proposed 
method and the research gradually widened. The running time 
of RSKAU net was the highest, and the growth trend was the 
most significant, indicating that its computational cost was 
relatively high when processing large-scale samples. In Fig. 
9(b), the proposed method also showed the lowest running time, 
and the growth trend was relatively flat, indicating that the 
proposed method not only had advantages in computational 
efficiency, but also had good adaptability and stability on 
different datasets. The performance of EPCS-WF on this dataset 
was also relatively close to the proposed method, but still 
slightly higher. The running time of RSKAU net increased the 
fastest with an increase in sample size, further confirming its 
shortcomings in computational efficiency. Based on the results 
of the two datasets, the proposed method outperformed the other 
two methods in terms of running time, indicating that it could 
not only provide high-quality fusion results but also achieve 
them at a lower computational cost when processing HSI fusion 
tasks. This is particularly important for practical applications 
where computing resources are limited. The qualitative visual 
comparison results of the three methods in different scenarios 
are shown in Fig. 10. 

From Figs 10(a) to 10(d) show the original images of four 
scene images and the fusion results of three methods, 
respectively. As shown in the figure, in the sky scene, the 
proposed method could better capture the color gradient of the 
sky at sunset while maintaining the delicate texture of the clouds, 
while other methods may result in unnatural color transitions or 
loss of texture details. Under the EPCS-WF method, there were 
phenomena of exposure and distortion in the image. In the 
farmland scene, the method proposed by the research not only 
clearly displayed the outline of the farmland, but also preserved 
rich details of the soil and vegetation. In contrast, RSKAU net 
was not accurate enough in color reproduction, while EPCS-WF 
lacked detailed representation. For architectural scenes, both 
RSKAU net and the methods proposed by the research could 
display the subtle textures of windows and walls while 
maintaining the clarity of the building structure, while EPCS-
WF still needed to improve the richness of details. Finally, in the 
street scene, the proposed method could better restore the true 
colors of the street and trees, while maintaining high contrast 
and clarity of the image, resulting in a good display of the texture 
of the street and the details of the trees. However, color 
distortion occurred in the fused images of RSKAU net, while 
EPCS-WF lacked attention to detail. Overall, the method 
proposed in the study could effectively preserve the spectral and 
spatial information of HSI during fusion, while reducing noise 
interference and improving image quality. 
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Fig. 10. Qualitative visual comparison of images in different scenarios. 

V. DISCUSSION 

An HSI fusion algorithm based on TV-CNMF and SCT-
NMF was proposed in this study. By combining TV 
regularization and SCT, the spectral and spatial characteristics 
were optimized, and the convergence and computational 
efficiency of the model were improved through efficient 
optimization strategies. The experimental results on the AVIRIS 
and HYDICE datasets showed that the proposed method 
significantly outperformed RSKAU net and EPCS-WF in terms 
of PSNR, SAM, and RMSE. On the AVIRIS dataset, the PSNR 
of the proposed method reached 38.12 dB, which was 7.6% 
higher than RSKAU net, and the SAM decreased to 3.98°, which 
was 25.5% lower than RSKAU net. On the HYDICE dataset, 
PSNR reached 37.56 dB, an increase of 7.7% compared to 
RSKAU net, and SAM decreased to 4.12°, a decrease of 27.3%. 
In addition, the method proposed in the research performed 
particularly well under high noise and low light conditions, 
further verifying its robustness and applicability. Compared 
with reference [7], although the unsupervised deep tensor 
network proposed by Yang J et al. performed well in HSI and 
MSI fusion tasks, its robustness in handling complex lighting 
and noise conditions still needed to be improved. The method 
proposed by the research significantly improved robustness 
under high noise and low light conditions by introducing 
adaptive regularization strategies and efficient optimization 
algorithms, while reducing dependence on large-scale annotated 
data. Through ablation experiments, the key contributions of 
sparse regularization, TV regularization, and coupled 
factorization strategies to model performance were identified. 
The complete model performed the best on all indicators, 
demonstrating that the synergistic effect of each module 
significantly improved the fusion quality of images. Compared 
with existing algorithms, the proposed method not only had 
significant advantages in spectral fidelity and spatial resolution 
but also demonstrated lower computational costs and higher 
practical application potential. The method proposed in the 

research was suitable for HSI fusion tasks under complex 
lighting and noise conditions and could significantly improve 
the fusion quality of images, providing an effective solution for 
the analysis and application of HSI. 

VI. CONCLUSION 

In summary, an HSI fusion algorithm based on TV-CNMF 
and SCT-NMF was proposed, which significantly improved the 
spectral fidelity and spatial resolution of images by combining 
TV regularization and SCT. The experimental results showed 
that this method exhibited strong robustness and applicability 
under complex lighting and noise conditions. In addition, this 
method had broad practical application potential in fields such 
as satellite imaging and medical imaging. For example, in 
satellite imaging, this method could be used to process 
hyperspectral data in real-time, improving the accuracy of land 
cover classification and target recognition. In medical imaging, 
this method could be used for multi-modal image fusion to assist 
in disease diagnosis and treatment planning. However, there are 
still some limitations to the research, as the performance of the 
method may decrease in high noise or high dynamic 
environments, especially in extreme noise conditions or 
scenarios where the target is moving rapidly. Although the 
method proposed by the research improved computational 
efficiency, the time complexity and computational resource 
requirements were still high when processing ultra-high 
resolution HSI, which may limit its real-time performance in 
practical applications. Future research can further explore deep 
learning-based enhancement methods, such as designing deep 
neural network modules to optimize the selection of 
regularization parameters or enhance feature extraction 
capabilities, to further improve fusion performance. Meanwhile, 
adaptive regularization techniques can be studied to dynamically 
adjust regularization parameters based on the characteristics of 
input data, to improve the robustness of the algorithm under 
different lighting, noise, and dynamic conditions. In addition, for 
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the processing requirements of ultra-high resolution HSI, the 
time complexity and computational resource utilization of the 
algorithm can be further optimized, and the possibility of 
distributed computing or hardware acceleration can be explored. 
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