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Abstract—Cannabis addiction remains a growing public health 

concern, particularly due to its impact on cognition and sleep 

quality. Conventional screening tools, such as structured 

interviews and self-assessments, often lack objectivity and 

sensitivity. This study aims to develop and compare machine 

learning (ML) models for the prediction of cannabis addiction 

using cognitive performance (Montreal Cognitive Assessment – 

MoCA) and sleep quality (Pittsburgh Sleep Quality Index – PSQI) 

features. A total of 200 participants aged 13 to 24 were assessed, 

including 103 diagnosed addicts and 97 controls. Principal 

Component Analysis (PCA) was used to reduce data 

dimensionality and enhance model robustness. The study 

evaluated six supervised machine learning algorithms, namely 

Logistic Regression (LR), K-Nearest Neighbors (KNN), Support 

Vector Machine (SVM), Random Forest (RF), Extreme Gradient 

Boosting (XGBoost), and Multilayer Perceptron (MLP). Results 

showed that LR and MLP models achieved high sensitivity 

(85.71%) and specificity (100%) on the test set, outperforming the 

DSM-5-based CUD reference test (sensitivity = 71.43%). Although 

the RF and XGBoost models achieved perfect classification on the 

training set, their reduced performance on the test set indicates a 

potential overfitting issue. Integrating machine learning with 

validated psychometric assessments enables a more accurate and 

objective identification of cannabis addiction at early stages, thus 

supporting timely interventions and more effective prevention 

strategies. 
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I. INTRODUCTION 

In recent decades, cannabis use has increased sharply, 
making it one of the most popular psychoactive substances 
worldwide. In this context, the United Nations Office on Drugs 
and Crime (UNODC) released a report in 2022 that outlined 
drug use trends from 2010 to 2020 [1]. According to this 
document, the number of individuals aged 15 to 64 who used a 
psychoactive substance in a given year remained relatively 
constant compared to previous years, with approximately 284 
million people affected, or approximately 5.6% of the global 
population. Of these users, nearly 13.6%, or 38.6 million people, 
suffer from a drug use disorder. The report specifies that of these 
users, 13.6% of them, representing approximately 38.6 million 
individuals, have a drug use disorder. The report also indicates 

that cannabis was the most common psychoactive substance, 
with 209 million users, a significant increase of 23% compared 
to 2010. This consumption varies significantly by region. A 
systematic study revealed that the prevalence ranges from 0.42% 
to 43.90% in Europe, 1.40% to 38.12% in North and South 
America, 0.30% to 19.10% in Asia, and 1.30% to 48.70% in 
Oceania and Africa [2]. Numerous studies worldwide have 
extensively explored the cognitive, psychiatric, physical, and 
socioeconomic effects associated with cannabis use [3,4]. In this 
sense, this research has focused on cognitive deficits linked to 
cannabis use, including effects on executive functions, memory, 
attention, and decision-making abilities. The cognitive disorders 
are of greater concern due to their significant impact on the 
social, academic, and professional lives of those affected, 
particularly young adults whose cognitive abilities are still 
developing [5]. Furthermore, many studies highlight that sleep 
disturbances are generally associated with cannabis addiction. 
These disturbances concern the duration, quality, and efficiency 
of sleep [6], [7]. Sleep disturbances have been shown to be a 
predictive and aggravating factor in cannabis addiction [8], [9]. 
The sleep disturbance is measured using standardized 
instruments such as the Pittsburgh Sleep Quality Index (PSQI) 
[10]. 

Given these findings, cannabis addiction is often 
underdiagnosed due to the lack of objective, specific, and easily 
usable assessment tools for healthcare professionals [11]. 
Currently, screening for cannabis addiction relies primarily on 
structured or semi-structured clinical interviews and patient self-
assessment [12]. These methods generate a significant amount 
of subjectivity and are vulnerable to various response biases 
[13]. Therefore, given these methodological constraints, it 
would be preferable to use innovative approaches that reliably 
and objectively identify predictive signs of addiction at their 
earliest stages. In this sense, artificial intelligence (AI), and more 
specifically predictive models-based ML, appear to be a 
promising solution to overcome these limitations. Machine 
learning offers major advantages, such as the ability to 
simultaneously analyze a large number of complex variables, 
identify subtle patterns in clinical and psychometric data, and 
produce accurate, reproducible predictions that can be 
generalized to new populations [14]. Indeed, these models are 
widely used in various fields of health, in diagnostic prediction, 
risk stratification, and therapeutic personalization [15]. 
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Furthermore, the use of biomarkers such as cognitive status 
and sleep quality as features in an ML model could be a 
particularly interesting approach to predict cannabis addiction. 
Standardized cognitive tests such as the MoCA can offer a rapid, 
reliable and sensitive measure of global cognitive functions, 
allowing early detection of alterations associated with regular 
cannabis use [16]. Similarly, the objective assessment of sleep 
quality through the PSQI index provides a precise vision of the 
sleep disturbances often reported by cannabis users, in particular 
difficulties falling asleep, frequent night awakenings and poor 
subjective sleep quality [17]. These disorders could constitute 
interesting markers for early detection of cannabis. 

The main objective of this article is to develop, validate, and 
compare several machine learning approaches to effectively 
predict cannabis dependence by combining in-depth cognitive 
assessments with objective measures of sleep quality. 
Furthermore, the development of a machine learning-based 
predictive model could provide a clinical decision-making tool 
for healthcare professionals. These predictive models could 
facilitate early screening, rapid intervention, and individualized 
therapeutic management. 

This work constitutes an approach aimed at modernizing 
clinical practices in the field of addiction medicine. It also aims 
to strengthen primary and secondary prevention programs in the 
field of addiction medicine. Furthermore, this research can fill 
significant gaps in the current scientific literature and 
significantly contribute to improving knowledge regarding the 
complex interactions between cannabis use, cognitive 
functioning, and sleep quality. Furthermore, the use of ML in 
the field of addiction could contribute to the improvement and 
development of broader preventive strategies based on evidence. 

To facilitate understanding and readability, the paper is 
structured as follows: the next section provides a detailed review 
of relevant scientific literature, highlighting existing screening 
methods and the growing interest in machine learning-based 
approaches for addiction prediction. Subsequently, we describe 
the methodology, including data collection procedures, 
evaluation instruments, as well as statistical and machine 
learning techniques employed. The results section presents a 
comparative analysis of the performances achieved by different 
machine learning models, while the discussion section provides 
an in-depth interpretation of these findings, placing them in 
context with previous research and emphasizing their clinical 
implications. Finally, the conclusion summarizes the primary 
contributions of this study, acknowledges its limitations, and 
outlines avenues for future research. 

II. LITERATURE REVIEW 

Screening cannabis addiction represents a significant public 
health challenge, particularly given its growing global 
prevalence. Traditional diagnostic methods have shown 
limitations, prompting the exploration of advanced approaches 
such as ML. Over recent years, ML has become transformative 
in addiction research, enabling detailed analyses and predictions 
of addictive behaviors and treatment outcomes. For example, 
Likhith et al. [18], successfully applied ML algorithms to predict 
smartphone addiction by analyzing behavioral indicators like 
app usage patterns, notification-checking frequency, and 
psychological factors such as stress and anxiety. Similarly, 

Kumara et al. [19], utilized ML models, including Random 
Forest (RF) and Convolutional Neural Networks (CNN), to 
accurately identify addiction risk factors, addiction types, and 
relapse probabilities, significantly enhancing prevention and 
treatment efficacy. 

In clinical addiction research, diverse data sources have been 
leveraged to build predictive models that enhance risk 
assessment and treatment outcomes. Feng et al. [20], utilized 
neuroimaging data derived from functional Magnetic Resonance 
Imaging (fMRI) to predict symptoms of internet addiction, 
identifying distinct connectivity patterns in brain networks 
associated with addiction-related behaviors. Likewise, 
Pyzowski et al. [21], demonstrated that electronic medical 
records and prescription drug monitoring data could effectively 
be integrated into machine learning frameworks to predict 
opioid addiction risk, highlighting factors such as psychiatric 
history and socioeconomic background. The same authors also 
demonstrated the utility of clinical laboratory data, including 
patient adherence and buprenorphine treatment outcomes, in 
predicting short-term relapse, thereby providing actionable 
insights for clinicians. 

Additionally, recent studies explored innovative applications 
of ML models using alternative data sources, such as social 
media and self-reported surveys. Yang et al. [22], applied 
sentiment analysis using advanced Generative Adversarial 
Networks (GANs) on social media data, successfully predicting 
opioid relapse by identifying emotional triggers such as 
negativity or anxiety. Similarly, surveys capturing demographic 
data, phone usage behaviors, and psychological measures (e.g., 
stress or anxiety) have effectively predicted behavioral 
addictions, enabling early intervention strategies [18]. 

Furthermore, ML techniques have shown promise in 
distinguishing behavioral addictions like Internet gaming 
disorder from substance use disorders. Lee et al. [23], 
demonstrated the effectiveness of multimodal approaches 
combining neuropsychological assessments with 
Electroencephalography (EEG) features, achieving accuracy 
rates exceeding 70%. Such data-driven computational methods 
offer valuable insights into neural mechanisms underlying 
addictive behaviors, potentially informing targeted therapeutic 
interventions [24]. 

Despite these advancements, significant challenges remain. 
Bouhadja and Bouramoul [25], highlighted the critical role of 
data quality and diversity, emphasizing the need for robust, 
structured datasets to enhance predictive reliability. 
Unfortunately, the scarcity of comprehensive datasets remains a 
major hurdle in addiction research, often leading to overfitting 
and limited generalizability of ML models [26]. Moreover, 
methodological inconsistencies across studies, such as 
variability in study design and analysis methods, continue to 
pose barriers to reproducibility and validation of ML-derived 
predictions [27]. 

Another critical limitation identified in existing literature is 
the interpretability of ML models. Suva and Bhatia [28], noted 
that many ML algorithms function as "black boxes," making it 
difficult for clinicians to trust and implement their 
recommendations in real-world settings. In addition, ethical 
issues surrounding the use of sensitive personal data, including 
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risks of privacy breaches or misuse, remain prominent concerns 
in deploying these technologies clinically [29]. Finally, 
Bouhadja and Bouramoul [25], observed that models trained on 
specific populations may not generalize effectively to diverse 
clinical contexts, limiting their overall applicability. 

Addressing these challenges requires concerted efforts to 
standardize methodologies, enhance data collection and 
preprocessing techniques, and improve model transparency. 
Integrating objective, clinically validated biomarkers such as 
cognitive performance and sleep quality indicators into 
predictive ML models may further improve accuracy and 
clinical utility. Studies by Ewert et al. [16], and Edwards and 
Filbey [10], have already emphasized cognitive impairment and 
sleep disturbances as reliable, objective markers associated with 
cannabis misuse, underscoring their potential value in predictive 
modeling for addiction. 

In summary, advancing ML methodologies by addressing 
existing limitations can significantly enhance cannabis addiction 
screening, supporting early intervention and personalized 
treatment strategies. The current study aims precisely to 
contribute to these advancements, by proposing a robust ML-
based predictive framework utilizing validated psychometric 
tools. 

III. METHODOLOGY 

A. Population Study 

A population of 200 participants from both genders, aged 
between 13 to 24 years old, and who agreed to participate in this 
study. The sample of the study comprises two groups: 1) 103 
participants clinically identified as cannabis addict; 2) 97 control 
patients without cannabis addiction. 

The exclusion criteria included 1) patient refusing to 
participate in the study, 2) patient with serious behavioral issues 
who were unable to respond to the questions, 3) patients who, in 
addition to cannabis, were addicted to other psychoactive drugs. 

This study was conducted at the primary health center for 
addiction in Marrakech. The study was authorized by the 
regional health directorate. The procedures were conducted in 
accordance with the guidelines of the Declaration of Helsinki. 
All participants were informed prior to data collection about the 
purpose of the study. Every participant and/or their legal 
representative has given their written informed consent. 

B. Data Collection 

Following a consultation with the psychiatrist-addictologist 
of Marrakech, an anonymous questionnaire is used to collect 
data aimed at obtaining information on the sociodemographic, 
clinical, cognitive and sleep quality characteristics of the study 
population. 

1) The Montreal Cognitive Assessment (MoCA) test is a 

clinical neuropsychological test used to assess cognitive 

impairment. It consists of assessments of executive, visuo-

spatial, denominative, memory, attention, language, 

abstraction, recall and orientation functions (Table I). The 

highest possible score is 30 points. When the score does not 

exceed the threshold of 26, the patient is identified as having a 

cognitive impairment [30]. 

TABLE I.  DETAILED COMPOSITION AND SCORES ASSOCIATED WITH 

THE MOCA COGNITIVE ASSESSMENT TEST 

Attribute Name Component Points Assigned 

MoCA1 Visuospatial / Executive 5 points 

MoCA2 Naming (Denomination) 3 points 

MoCA3 Attention 6 points 

MoCA4 Language 3 points 

MoCA5 Abstraction 2 points 

MoCA6 Memory 5 points 

MoCA7 Orientation 6 points 

MoCA Total Score MoCA 30 points 

2) The Pittsburgh Sleep Quality Index (PSQI) is a test used 

to assess sleep quality. Consisting of 11 questions with a 

maximum score of 21, aimed at quantifying sleep efficiency 

and quality. Each item is rated from 0 to 3, and the sum of the 

scores from the seven components constitutes the global PSQI 

score, which ranges from 0 to 21 (Table II). A global PSQI 

score above 5 reflects poor sleep quality [31]. 

TABLE II.  COMPONENTS AND SCORING SYSTEM OF THE PITTSBURGH 

SLEEP QUALITY INDEX (PSQI) 

Attribute 

Name Component Description Score (0-3) 

PSQIC1 
Subjective Sleep 

Quality 

Overall perception 

of sleep quality 

0 = Very good 

3 = Very poor 

PSQIC2 Sleep Latency 
Time taken to fall 
asleep 

0 = <15 min 
3 = >60 min 

PSQIC3 Sleep Duration 
Total sleep hours 

per night 

0 = >7h 

3 = <5h 

PSQIC4 Sleep Efficiency 
Ratio of sleep time 
to time in bed 

0 = >85% 
3 = <65% 

PSQIC5 
Sleep 
Disturbances 

Frequency of sleep 

interruptions and 

issues 

0 = None 
3 = Daily 

PSQIC6 
Use of Sleep 

Medication 

Frequency of 

sleeping pill use 

0 = Never 

3 = Daily 

PSQIC7 
Daytime 

Dysfunction 

Impact of sleep 

deprivation on daily 
activities 

0 = None 

3 = Severe 

3) Cannabis Use Disorder (CUD) is a set of guidelines 

issued by the American Psychiatric Association to characterize 

problematic cannabis use in cognitive-behavioral, 

psychological and environmental terms. A score below 2 

indicates no addiction, a score between 2 and 3 indicates mild 

addiction, a score between 4 and 5 indicates moderate 

addiction, and a score above 6 indicates severe addiction [32]. 

Participants with a cannabis addiction are identified and 
diagnosed using this DSM-5 questionnaire. Participants are 
divided into two classes: 0: Non-Addict and 1: Addict. All 
addicts, regardless of the intensity of their addiction, are 
included in the addict class.  The gold standard for comparing 
the acquired models is the CUD questionnaire. 
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Analysis of the addictive profile according to DSM-5 criteria 
in our sample reveals a marked split between non-addicts and 
those with varying degrees of cannabis addiction. Among the 
participants, 46% (92 individuals) showed no signs of addiction, 
while 54% had some form of dependence: 18% suffered from 
mild addiction (36 individuals), 28% from moderate addiction 
(56 individuals) and 8% from severe addiction (16 individuals). 
These results indicate a significant prevalence of problematic 
cannabis use in our study population. Statistical analysis using 
the Chi-square test (χ² = 182.762, p < 0.001) revealed a highly 
significant association between cannabis use and the 
development of a DSM-5 addictive disorder. The p-value of less 
than 0.001 confirms that this relationship is not due to chance, 
and suggests a direct link between consumption and 
dependence. 

Looking at the distribution of addiction levels, it appears that 
all cases of moderate and severe addiction exclusively concern 
cannabis users. What's more, only 5.2% of individuals with mild 
addiction are classified as non-users, confirming that cannabis 
addiction is virtually non-existent among non-users; these 
results underline the high risk of dependence among users, with 
a high proportion of moderate to severe cases (36%), suggesting 
that regular use can lead to worsening addiction. 

B. Feature Engineering 

The input features consisted of 14 standardized sub-scores: 
seven from the MoCA (MoCAC1–MoCAC7) and seven from 
the PSQI (PSQIC1–PSQIC7), capturing key aspects of cognitive 
performance and sleep quality. All variables were normalized 
using z-score standardization to ensure comparability and 
facilitate model convergence. 

PCA was applied exclusively to the training data to prevent 
information leakage. The first three components, which 
accounted for approximately 53% of the total variance, were 
retained for comparison purposes. Both original and PCA-
transformed feature sets were fed into identical machine 
learning pipelines, allowing a controlled evaluation of their 
impact on classification performance. 

C. Machine Learning Models 

ML is a tool that allows a machine to acquire knowledge, 
build models, and analyze complex datasets without direct 
human intervention [33]. In this sense, ML has been widely used 
recently in many biomedical fields, including psychiatry and 
addiction [34], [35]. In general, the types of ML algorithms used 
in addiction research can be grouped as follows: supervised 
learning, unsupervised learning, deep learning (DL), and 
reinforcement learning (RL) [36]. 

In this study, six supervised machine learning algorithms 
were trained to predict cannabis addiction using cognitive and 
sleep quality features. All models were evaluated under two 
conditions: using the original standardized feature set and using 
the PCA-transformed data. This dual evaluation allowed us to 
assess the effect of dimensionality reduction on model 
performance. 

1) Logistic regression: Logistic regression (LR) is a very 
popular supervised ML model. It is used to predict a categorical 
dependent variable from a set of explanatory variables [37]. LR 
calculates the probability that an observation belongs to a 

particular class [38]. In this paper, the LR model is configured 
without intercepts and with a linear solver "liblinear". 

2) K-Nearest neighbors: The K-Nearest Neighbors (KNN) 
algorithm consists of calculating the distance between an 
unknown data point and its "k" nearest neighbors already 
classified. Subsequently, the label of the nearest class is 
assigned to the observation. The performance of the algorithm 
depends on the number of neighbors selected (k=1, 2, 3, ...), as 
well as the chosen distance (Euclidean, Manhattan, etc.)[39]. In 
this study, the optimization of the model focused on the choice 
of the number of neighbors (19, 21 and 23) to ensure robust 
decision-making, as well as on uniform weighting to simplify 
interpretation. The Manhattan distance was chosen as the 
metric because it is suitable for heterogeneous data and less 
sensitive to scale variations [40]. 

3) Support vector machine: The Support Vector Machine 

(SVM) is a robust linear classifier capable of distinguishing 

different classes from input data. Although there are infinitely 

many linear separators for classification problems, the SVM 

chooses an optimal one, ensuring maximum spacing between 

classes [41]. We used the Support Vector Machine (SVM) 

algorithm to classify addiction risk by optimizing its 

hyperparameters. The penalty C (0.1, 1, 10) was adapted to 

balance the separation margin and classification errors. Two 

kernels were tested: linear, suitable for separable data, and 

RBF, allowing to model complex relationships. 

4) Random forest: Random forest (RF) is a series of 

decision trees built from a randomly selected subset of the 

training data. Each tree is built from a distinct portion of the 

data and participates in the final decision through a majority 

vote [42]. The model was parameterized with a number of trees 

varying between 50, 75 and 100, a maximum depth of 3, and 

feature selection based on the square root of the total number of 

explanatory variables (max_features = 'sqrt'). In addition, the 

minimum node split criterion was tested with 25 and 30 

observations. 

5) XGBoost: XGBoost is an improved model of the 

gradient boosting algorithm. In ML, extreme gradient boosting 

is a method that is used to reduce the number of errors in 

predictive data analysis [43], [44]. XGBoost is an assembly of 

decision trees that predict residuals and correct the errors of 

previous decision trees [45]. The particularity of this algorithm 

is the improvement in accuracy and execution speed. It uses 

advanced techniques like L1 and L2 regularization, 

subsampling, and missing value handling to improve its 

performance [44]. In this paper, the XGBoost model is 

configured with a number of estimators varying between 50, 75, 

and 100, a maximum depth of 2, a learning rate from 0.005 to 

0.01, and subsampling of features and observations varying 

between 0.6 and 0.8 to reduce overfitting. 

6) MLP Neural network: The MLP Neural Network model 

is an architecture based on the use of multilayer neural networks 

(Multilayer Perceptron) capable of modeling complex 

functions thanks to a hierarchy of interconnected hidden 

layers[46]. In this paper, the MLP network architecture was 

intentionally simplified to reduce its complexity and limit 
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overfitting. Three hidden layer sizes (10, 15, and 20 neurons) 

were tested. Two activation functions (relu and tanh) were 

evaluated, as well as the adam optimization algorithm for its 

speed and stability. Regularization was adjusted via the alpha 

parameter with three values (0.1, 0.5, 1.0) to control the model 

complexity. Finally, an initial learning rate of 0.001 was used 

to ensure stable convergence. 

D. Experimental Design and Evaluation Strategy 

The dataset was split into a training set (80%) and an 
independent test set (20%) using stratified sampling to preserve 
class distribution. All data preprocessing steps, including z-
score standardization and dimensionality reduction via PCA, 
were strictly performed after the train-test split, and fitted 
exclusively on the training set to prevent data leakage. The PCA 
was applied on the correlation matrix of the training data, and 
the first three components were retained, accounting for 
approximately 53% of the total variance. This choice aimed to 
reduce dimensionality while preserving relevant variance and 
enabling visual analysis. PCA-transformed data were used for 
comparison with the full-feature models. 

In addition to this train–test evaluation, we implemented a 5-
fold stratified cross-validation on the training data to assess 
model robustness and generalization. Performance metrics 
accuracy, sensitivity, specificity, and AUC were computed on 
each fold and averaged. Standard deviations were also 
calculated to evaluate metric stability across folds. 

Final validation was conducted on the unseen 20% test set. 
Although confusion matrices were generated for Random Forest 
and XGBoost for visualization purposes, the model evaluation 
relied exclusively on three key indicators: sensitivity, 
specificity, and precision. These metrics were selected for their 
clinical interpretability and direct relevance to addiction 
screening, and were compared to the reference diagnostic 
criteria of the CUD-DSM5, used as the gold standard. 
Additionally, ROC curves and AUC values were computed to 
assess the global discriminatory power of each classifier. 

All experiments were conducted using Python 3.10, with 
scikit-learn (v1.2), XGBoost (v1.7), pandas (v1.5), and numpy 
(v1.23). A random seed (42) was fixed for reproducibility. 
Where applicable, hyperparameter tuning was performed using 
grid search, and class imbalance was handled using 
class_weight='balanced'. 

1) ROC curve: The ROC curve is a graphical representation 

that shows the sensitivity and specificity for all possible 

classification threshold values. It is a visual device that helps to 

establish a balance between true positives and false negatives 

[47]. The closer the curve is to the upper left corner implies a 

better quality of the model. 

2) AUC metric: AUC is a numerical indicator obtained 

based on the ROC curve. It illustrates the chance that the model 

produces the correct prediction based on a specific threshold 

and chosen attributes [48]. The closer it is to 1, the better the 

model will perform. 

3) Test validity: Sensitivity and specificity are two 

statistical criteria used to assess a test's validity [49], [50]. The 

ratio of actual diseased patients to all diseased patients is known 

as the sensitivity [51]. The test's sensitivity shows how well it 

can identify patients who are ill [49]. Conversely, specificity is 

defined as the proportion of real healthy patients who are not 

recognised among all healthy patients[51]. The test's specificity 

shows how well it can rule out healthy people [49]. Another 

metric, such as accuracy, which is the proportion of all correct 

hits among all participants, can also be used to solidify the 

validity [49]. 

IV. RESULTS 

Exploratory Data Analysis (EDA) was organized in two 
parts: on the one hand, the evaluation of continuous variables 
such as age, Age of first Cannabis Use (AFCU), Cannabis Use 
Duration(CCD), MoCA, and PSQI scores, using the 
Kolmogorov-Smirnov (KS) test to test normality and the Mann-
Whitney U test to compare distributions between addicted and 
non-addicted groups; On the other hand, the analysis focused on 
the cognitive components of the MoCA and the sleep quality 
parameters of the PSQI in order to highlight the statistical 
differences and their relevance in determining the addictive 
disorder. This methodology makes it possible to identify the 
most discriminating cognitive and behavioral markers, thus 
contributing to a better understanding and modeling of the risk 
of addiction. The Kolmogorov-Smirnov (KS) test was used to 
assess the normality of variable distributions in the addict and 
non-addict groups. A p-value < 0.05 indicates a significant 
deviation from a normal distribution, meaning that the variable 
does not follow a normal distribution (Table III). 

The results in Table III shows that most variables are 
significantly different (p < 0.01) between the groups, indicating 
notable impacts of cannabis addiction on cognition and sleep 
quality. Indeed, scores on the various MoCA components were 
significantly lower in addicts, except for the abstraction 
component, which was not significant (p = 0.054). Furthermore, 
the total MoCA score is highly significant (p < 0.01), implying 
an overall impairment of cognitive functions in addicts. 
Regarding the PSQI, most PSQI components showed significant 
differences (p < 0.01), suggesting impaired sleep quality in 
addicts. Furthermore, the Sleep Duration component (p = 0.182) 
was not significant, indicating that sleep duration did not differ 
significantly between groups. 

These results reinforce the idea that cannabis addiction 
negatively impacts cognitive function and sleep quality, 
although some aspects (abstraction and sleep duration) appear to 
be less affected. In this sense, PCA was therefore used to reduce 
the dimensionality of the dataset while retaining essential 
information from the MoCA and PSQI subcomponents. 
Applying PCA allows these subcomponents to be transformed 
into a reduced number of non-redundant variables, while 
maximizing the explained variance. The dimensionality 
reduction will allow the elimination of highly correlated 
variables to avoid information redundancy, the extraction of the 
main axes underlying cognitive deficits and sleep disorders in 
addicts, and the improvement of the efficiency of machine 
learning models by reducing the risk of overfitting.
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TABLE III.  COMPARATIVE ANALYSIS OF COGNITIVE AND SLEEP PARAMETERS BETWEEN ADDICTS AND NON-ADDICTS USING THE MOCA AND PSQI TEST 

 Non-addict Addict  

 Means ±SD KS p-value Means±SD KS p-value 
Mann-

Whitney U 
Z p-value 

Age 20.08±2.11 0.21 <0.01 21.23±2.84 0.238 <0.01 6323.5 3.272 0.001 

AFCU 2.41±5.48 0.505 <0.01 15.75±2.46 0.223 <0.01 9352.5 11.068 <0.01 

CCD 00 00 00 4±2.2 0.204 <0.01 9991.0 13.010 <0.01 

TEST MoCA     

Visuospatial/ executive 4.55±0.48 0.383 <0.01 4,05±0.84 0.22 <0.01 3310.5 -4.490 <0.01 

Naming 3±0.00   2.88±0.32 0,52 <0.01 4413.5 -3.459 <0.01 

Attention 4,23±0,62 0,31 <0.01 3,79±0,97 0,24 <0.01 3684.0 -3.485 <0.01 

Language 2,95±0.22 0,54 <0.01 2,5±0,56 0,34 <0.01 2820.5 -6.856 <0.01 

Abstraction 1,33±0,56 0,43 <0.01 1,17±0,55 0,37 <0.01 4348.5 -1.925 0.054 

Memory 4,40±0,55 0,34 <0.01 3,46±0,86 0.30 <0.01 2041.0 -7.895 <0.01 

Orientation 5,95±0.2 0,54 <0.01 5,72±0,45 0,46 <0.01 3843.5 -4.435 <0.01 

MoCA 26,40±1,06 0,22 <0.01 23,58±2,74 0,18 <0.01 1445.5 -8.805 <0.01 

TEST PSQI     

Subjective sleep quality 1,10 ±0,74 0,29 <0.01 1,40 ±0,67 0,31 <0.01 6203.0 3.213 0.001 

Sleep latency 1,41±0,79 0,31 <0.01 2,17±0,70 0,26 <0.01 7522.5 6.553 <0.01 

Sleep duration 1,05±0,72 0,32 <0.01 0,80±0,60 0,36 <0.01 4537.0 -1.336 0.18 

Habitual sleep efficiency 0,50±0.87 0,41 <0.01 0,96±1.1 0,24 <0.01 6736.5 4.651 <0.01 

Sleep disturbances 1,25±0,61 0,38 <0.01 1.6 ±0,61 0,30 <0.01 6463.5 4.038 <0.01 

Use of sleeping medication 0,14 ± 0.43 0.50 <0.01 1,32±1.1 0.20 <0.01 8105.5 8.527 <0.01 

Daytime dysfunction and 

sleepiness 
0,90±0.85 0.24 <0.01 1,46 ± 0.8 0.24 <0.01 6726.5 4.468 <0.01 

PSQI 6,37±2,83 0,16 <0.01 10,02±3,57 0,12 0,001 8037.0 7.474 <0.01 

M ± SD: Mean ± Standard Deviation., KS (D): Kolmogorov-Smirnov test statistic; (p < 0.05 indicates a significant deviation from normality). 

The Mann-Whitney test comparing the Addict and Non-Addict groups. A p-value < 0.05 indicates a significant difference between groups; The Z value represents the standardized statistic of the Mann-Whitney U test

 
Fig. 1. Distribution of the variance explained and cumulative by the principal 

components from PCA. 

Analysis of explained variance reveals that the first 
components express a large part of the variance (Fig. 1). Indeed, 
it is necessary to faithfully represent the data. In addition, the 
cumulative variance shows the progressive accumulation of 
explained variance. With 7 to 8 components, about 80% of the 
total variance is captured, indicating that a large part of the 
information is preserved. Beyond 10 components, the curve 
reaches a plateau within 100%, indicating that the last 

components bring little new information. The first component 
captures a significant part of the information (about 30%), 
followed by the second, which captures about 15%. The 
following components have a decreasing contribution, 
suggesting that only a few principal components are involved. 

The Fig. 2 represents the projection of individuals into the 
space of the first three principal components resulting from the 
PCA. Each point corresponds to an individual, with a distinction 
between non-addicts (in blue) and addicts (in red). The 
observation shows that the two groups (addicts and non-addicts) 
occupy relatively distinct regions, although some areas present 
an overlap. Thus, the first three principal components express a 
significant part of the total variance, showing a separation 
between the groups in three dimensions. Furthermore, a more 
marked concentration of red and blue points in certain regions 
implies that the PCA has succeeded in capturing structural 
differences between the groups. The separation between the 
groups indicates that the principal components contain relevant 
discriminating information for the prediction of the diagnosis 
(addict vs. non-addict). However, the presence of an overlap 
states that some individuals are more difficult to classify, 
justifying the use of more complex models to improve accuracy. 
The obtained projection justifies the use of PCA in the 
preprocessing step for ML. 
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Fig. 2. Projection of individuals into the PCA component space according to 

addictive status. 

In summary, the EDA highlighted redundancies and 
overlaps between some variables, justifying the application of 
ACP to better structure the information. In this sense, feature 

engineering focused on the selection of relevant indicators 
related to cognitive functions and sleep quality (MoCA and 
PSQI), with the aim of improving both the robustness and 
interpretability of the model. The performance of the models is 
assessed by exploiting the ROC curves shown in Fig. 3. 

The results shows that all the tested models reveal an 
excellent classification capacity, with AUC values greater than 
0.90. Indeed, on the test set, the best performances are obtained 
by the LR and the MLP neural network, both reaching an AUC 
of 0.94, closely followed by the RF (AUC = 0.93) and the SVM 
(AUC = 0.92). 

These results show that the chosen variables, in particular the 
principal components resulting from the PCA, are congruent for 
the discrimination between addicted and non-addicted 
individuals. Regarding performance on the training set, the most 
complex models, such as RF (AUC = 0.97) and SVM (AUC = 
0.96), have a very high learning capacity. Additionally, these 
two models show a more marked discrepancy with the results 
obtained on the test set, which may indicate overfitting. 
However, RL and the MLP neural network present stable and 
balanced results between training and testing, reflecting good 
generalization capacity. 

 
Fig. 3. ROC Curves for classification models on training and test sets for cannabis addiction prediction. 

These observations indicate that all models perform well, but 
the most balanced approaches, such as an MLP can be favored 
for a robust practical implementation and reliable prediction of 
cannabis addiction risk. 

Table IV summarizes the sensitivity, specificity, and 
accuracy of six machine learning models (LR, KNN, SVM, RF, 
XGBoost, and MLP Neural Network) compared to the clinical 
reference test (CUD-DSM5). Evaluations were conducted on 
both training and test datasets. On the test set, all models 
exhibited a specificity of 100%, indicating an excellent ability 
to correctly identify non-addicted individuals. However, 
sensitivity varied significantly across models, highlighting 
differences in their capacity to detect addicted subjects 
accurately. 

The RF classifier demonstrated the highest performance on 
the test set, with a sensitivity of 90.48% and an accuracy of 95%, 
closely followed by LR and MLP Neural Network, each 
achieving sensitivities of 85.71% and accuracies of 92.5%. In 
contrast, the CUD-DSM5 clinical test, serving as the gold 
standard, had notably lower sensitivity (71.43%) and accuracy 

(85%), indicating a potential limitation in reliably identifying 
individuals with cannabis addiction. 

Certain models, such as RF and XGBoost, achieved perfect 
performance on the training data but showed decreased 
performance on the test data, suggesting overfitting and thus 
limiting their practical applicability. Conversely, LR and the 
MLP Neural Network showed consistent performance between 
training and testing phases, highlighting their stability and 
suitability for real-world applications. 

Overall, these results underscore that machine learning 
models significantly outperform the conventional CUD-DSM5 
clinical screening tool in detecting cannabis addiction. LR and 
MLP models emerge as particularly reliable and generalizable 
options, combining high predictive accuracy with strong 
robustness. 

To further examine the classification behavior of the best-
performing models, confusion matrices were generated for 
Random Forest and XGBoost, both trained on PCA-transformed 
features (Fig. 4). These matrices display the number of true and 
false classifications for both training and test sets. 
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TABLE IV.  COMPARATIVE PERFORMANCE METRICS (SENSITIVITY, 
SPECIFICITY, AND ACCURACY) OF MACHINE LEARNING MODELS VERSUS THE 

CUD-DSM5 REFERENCE TEST ON TRAINING AND TEST DATASETS 

 

Sensitivity Specificity Accuracy 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

LR 87.8 85.71 87.18 100.0 87.5 92.5 

KNN 96.34 76.19 89.74 100.0 93.13 87.5 

SVM 93.9 80.95 88.46 100.0 91.25 90.0 

RF 100.0 90.48 100.0 100.0 100.0 95.0 

XGBOOST 100.0 80.95 100.0 100.0 100.0 90.0 

MLP 90.24 85.71 89.74 100.0 90.0 92.5 

CUD 69.51 71.43 100.0 100.0 84.38 85.0 

 
Fig. 4. Confusion matrices for training and test sets: comparison between 

random forest and XGBoost models. 

On the training data, both models achieved perfect 
classification: all positive and negative cases were correctly 
identified, yielding 100% sensitivity and 100% specificity. 

On the test set, both classifiers maintained perfect specificity 
(no false positives). However, some false negatives were 
observed: RF misclassified two positive cases (sensitivity = 
90.48%), and XGBoost misclassified four (sensitivity = 
80.95%). Accuracy on the test set was 95.0% for Random Forest 
(95% CI: 83.50% to 98.62%) and 90.0% for XGBoost (95% CI: 
76.95% to 96.04%). 

These results suggest that while both models effectively 
avoided false alarms, RF provided a slightly better recall and 
generalization on unseen data compared to XGBoost. 

To evaluate the generalization performance of the 
classification models, a 5-fold cross-validation was conducted 
using both the original standardized features and the PCA-
transformed components. Table V summarizes the average 
performance across folds, including accuracy, sensitivity, 
specificity, and AUC, each reported with their corresponding 
standard deviation. 

Among the models trained on the raw feature set, RF 
achieved the best overall performance with an average accuracy 
of 0.938 ± 0.034, sensitivity of 0.915 ± 0.049, specificity of 
0.962 ± 0.031, and an AUC of 0.985 ± 0.022. XGBoost followed 
closely, showing the highest sensitivity (0.927 ± 0.045) and a 
strong AUC (0.970 ± 0.033), suggesting its effectiveness in 
detecting positive cases. The MLP classifier also demonstrated 
competitive performance, with an AUC of 0.968 ± 0.039. 

When PCA was applied prior to training, a slight decrease in 
performance was observed across most models. For instance, the 
AUC for RF (PCA) dropped to 0.967 ± 0.035, and for XGBoost 
(PCA) to 0.941 ± 0.030. The decline was more pronounced for 
models such as LR (PCA) and MLP (PCA), where sensitivity 
and AUC values were considerably lower compared to their raw 
counterparts. 

These results indicate that while PCA offers a reduction in 
dimensionality, it does not necessarily improve classification 
performance. Models trained on the full standardized feature set 
consistently outperformed those using the reduced component 
space. 

TABLE V.  5-FOLD CROSS-VALIDATED CLASSIFICATION PERFORMANCE 

OF MACHINE LEARNING MODELS WITH AND WITHOUT PCA. MEAN ± 

STANDARD DEVIATION (SD) ARE REPORTED FOR EACH METRIC 

Models 
Accuracy 

(±SD) 

Sensitivity 

(±SD) 

Specificity 

(±SD) 

AUC 

(±SD) 

RF(Raw) 
0.938 ± 

0.034 

0.915 ± 

0.049 

0.962 ± 

0.031 

0.985 

± 
0.022 

XGBoost (Raw) 
0.931 ± 
0.050 

0.927 ± 
0.045 

0.937 ± 
0.068 

0.970 

± 

0.033 

LR (Raw) 
0.856 ± 
0.058 

0.842 ± 
0.097 

0.873 ± 
0.079 

0.936 

± 

0.054 

SVM (Raw) 
0.919 ± 
0.054 

0.879 ± 
0.098 

0.962 ± 
0.050 

0.973 
± 

0.030 

KNN (Raw) 
0.856 ± 

0.058 

0.793 ± 

0.122 

0.924 ± 

0.047 

0.949 
± 

0.039 

MLP (Raw) 
0.925 ± 

0.061 

0.926 ± 

0.060 

0.923 ± 

0.101 

0.968 
± 

0.039 

RF(PCA) 
0.912 ± 

0.070 

0.915 ± 

0.063 

0.911 ± 

0.084 

0.967 

± 
0.035 

XGBoost (PCA) 
0.875 ± 

0.059 

0.866 ± 

0.089 

0.884 ± 

0.064 

0.941 

± 
0.030 

LR (PCA) 
0.850 ± 
0.054 

0.843 ± 
0.081 

0.859 ± 
0.061 

0.916 

± 

0.053 

SVM (PCA) 
0.887 ± 
0.058 

0.926 ± 
0.062 

0.846 ± 
0.065 

0.901 

± 

0.043 

KNN (PCA) 
0.856 ± 

0.070 

0.852 ± 

0.117 

0.859 ± 

0.024 

0.923 
± 

0.022 

MLP (PCA) 
0.869 ± 

0.054 

0.877 ± 

0.089 

0.859 ± 

0.061 

0.889 
± 

0.074 
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V. DISCUSSION 

This study demonstrates the potential of machine learning 
(ML) to enhance early screening for cannabis addiction by 
leveraging objective measures from standardized cognitive and 
sleep quality assessments. The integration of features from the 
MoCA and PSQI allowed the ML models to identify addiction-
related patterns with high accuracy. 

Our results reveal that LR and the MLP achieved the most 
balanced performance on the independent test set, with 
sensitivity and specificity both reaching 85.71% and 100%, 
respectively. These models outperformed the CUD-DSM5 gold 
standard, which reached only 71.43% sensitivity. This suggests 
that ML models can detect subtle psychometric variations 
associated with cannabis addiction that conventional tools may 
overlook. 

Despite the high training accuracy observed in RF and 
XGBoost models (100%), their performance dropped on the test 
set (sensitivity = 90.48% and 80.95%, respectively), revealing 
overfitting. This highlights the necessity of cross-validation and 
model regularization, especially when working with limited 
sample sizes. 

To ensure robustness, a 5-fold stratified cross-validation was 
conducted. Cross-validated performance metrics (Accuracy, 
Sensitivity, Specificity, and AUC) were computed for both raw 
and PCA-transformed datasets. Across all models, cross-
validation confirmed high stability. Notably, RF trained on raw 
data achieved the highest AUC (0.985 ± 0.022), followed 
closely by XGBoost (0.970 ± 0.033) and MLP (0.968 ± 0.039). 

The study also explored PCA as a dimensionality reduction 
strategy. Although PCA was applied strictly on the training data 
to prevent information leakage, its benefit on model 
performance was mixed. While it helped reduce collinearity and 
improve interpretability, models trained on raw features often 
outperformed those using PCA-transformed features. This can 
be attributed to the fact that the first three components retained 
only 53% of the variance, potentially omitting important 
information. 

Our findings are consistent with prior literature that 
employed ML in addiction detection. For example, Lee et al. 
[23], used EEG and neuropsychological data for behavioral 
addiction classification, and Coelho et al.[12] showed moderate 
sensitivity for clinical tests like CUDIT-R. In contrast, our ML 
pipeline, using readily available psychometric tools, achieved 
higher classification performance and better generalization. 

Importantly, our study underscores that simple, interpretable 
models such as LR can perform on par with, or better than, 
complex models, particularly when paired with appropriate 
feature engineering and validation strategies. This is especially 
relevant in clinical practice, where transparency and 
reproducibility are crucial for model adoption. 

However, limitations must be acknowledged. The relatively 
small and localized sample limits external validity. Additionally, 
addiction status was treated as a binary label, which 
oversimplifies the continuum of substance use behavior. Future 
work should explore multi-class or severity-level prediction, and 

test the models in broader populations and longitudinal 
frameworks. 

In summary, ML models trained on cognitive and sleep 
features offer a promising and cost-effective approach to support 
early detection of cannabis addiction. Their integration into 
clinical workflows could enhance existing screening strategies, 
promoting timely intervention and better patient outcomes. 

VI. CONCLUSION 

This study demonstrated the potential of machine learning 
techniques in improving the early detection of cannabis 
addiction using objective and validated assessment tools such as 
the Montreal Cognitive Assessment and the Pittsburgh Sleep 
Quality Index. The predictive models developed, particularly 
LR and MLP achieved high sensitivity and specificity, 
outperforming traditional clinical tools such as the DSM-5-
based screening.  Models trained on raw standardized features 
performed better than those using PCA-transformed data, 
indicating that dimensionality reduction was unnecessary in this 
context. These findings support the potential of ML enhanced 
screening tools to assist clinicians in the early identification of 
at-risk individuals based on routine assessments. 

Future research should aim to validate these findings on 
larger and more heterogeneous populations. Incorporating 
complementary data such as neuroimaging, genetic markers, or 
behavioral tracking could enhance prediction accuracy. 
Longitudinal studies are also needed to evaluate the ability of 
these models to monitor addiction trajectories over time. Finally, 
embedding explainable AI mechanisms would improve clinical 
interpretability and foster greater trust in real-world 
applications. 
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