
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

408 | P a g e

www.ijacsa.thesai.org

An Improved Sparrow Search Algorithm for Flexible

Job-Shop Scheduling Problem with Setup and

Transportation Time

Yi Li1, Song Han2, Zhaohui Li3, Fan Yang4, Zhengyi Sun5

School of Maritime Economics and Management, Dalian Maritime University, Dalian China1, 2, 3

Hangzhou Hollysys Automation Co., Ltd. Xi 'an branch, Xi’an China4

Graduate School of Information, Production and Systems, Waseda University, Kitakyushu Japan5

Abstract—This study addresses the low production efficiency

in manufacturing enterprises caused by the diversification of

order products, small batches, and frequent production

changeovers. Focusing on minimizing the makespan, this study

establishes a Flexible Job-Shop Scheduling Problem (FJSP) model

incorporating machine setup and workpiece transportation times,

and proposes an improved sparrow search algorithm to effectively

solve the problem. Based on the sparrow search algorithm, this

study proposes a novel location update strategy that expands the

search direction in each dimension and strengthens each

individual’s local search capability. In addition, a critical-path-

based neighborhood search strategy is introduced to enhance

individual search efficiency, and an earliest completion time

priority rule is employed during population initialization to

further improve solution quality. Several experiments are

conducted to validate the effectiveness of the improved strategy,

and the results are compared with those obtained using the

particle swarm optimization and gray wolf optimization

algorithms to demonstrate the efficiency of the proposed model

and algorithm. The improved sparrow search algorithm can

effectively generate feasible solutions for large-scale problems,

provide practical manufacturing scheduling schemes, and

enhance the production efficiency of manufacturing enterprises.

Keywords—Flexible job shop scheduling; machine setup;

transportation; sparrow search algorithm; earliest completion time

priority

I. INTRODUCTION

The Flexible Job Shop Scheduling Problem (FJSP) is a key
area in modern manufacturing. The growing complexity of
market demands, such as product diversification, small-batch
production, and frequent changeovers, has intensified the need
to consider setup and transportation times in production
scheduling. This makes FJSP research incorporating these
factors, a critical academic focus.

Scholars have conducted extensive research on the flexible
job shop scheduling problem under single constraints, either
setup time or transportation time. Defersha et al.[1], investigated
the flexible job shop scheduling problem considering worker-
machine setup times and proposed an improved simulated
annealing algorithm to solve it. Li et al.[2], proposed an
improved artificial immune system algorithm to solve the
flexible job shop scheduling problem considering setup
scenarios. Peng et al.[3], investigated the multi-objective

flexible job shop scheduling problem with job transportation
time and learning effect constraints, and proposed a hybrid
discrete multi-objective imperialist competitive algorithm to
solve the model. Zhang Guohui et al. [4], examined the impact
of machine installation, positioning, and other adjustment times
on the flexible job shop scheduling problem, and proposed an
improved genetic algorithm to solve the problem. Sadrzadeh [5],
proposed a hybrid artificial immune-particle swarm
optimization algorithm and validated its effectiveness through
numerical experiments. Zhang et al.[6], designed a genetic
algorithm with a tabu search procedure to solve the flexible job
shop scheduling problem with transportation constraints and
limited processing times. The aforementioned scholars have
proposed various algorithms to address the FJSP with either
setup or transportation times separately considered. However,
these studies have overlooked the interactions among
processing, setup, and transportation times. Setup times affect
the start time of processing tasks, whereas processing times
determine the start time of transportation tasks. The combined
effects of setup and transportation times result in varying
machine waiting times. Therefore, flexible job shop scheduling
problem that simultaneously incorporates setup and
transportation times is more consistent with real-world
production scenarios.

For the flexible job shop scheduling problem that
incorporates both setup and transportation times, An et al.[7],
proposed a hybrid multi-objective evolutionary algorithm based
on a Pareto elite storage strategy, aiming at minimizing the
makespan, total delay, total production cost, and total energy
consumption. Li et al.[8], simultaneously optimized energy
consumption and makespan, employing an improved Jaya
algorithm to solve the problem. Zhang et al.[9], proposed an
effective heuristic algorithm to minimize the makespan and total
energy consumption. Sun et al.[10], developed a hybrid multi-
objective evolutionary algorithm aimed at minimizing
makespan, total workload, critical machine workload, and
penalties for early or late completion. Rossi [11], investigated
the flexible job shop scheduling problem incorporating both
transportation and setup times, employing an ant colony
algorithm enhanced with pheromone mechanisms. In summary,
the primary approaches for solving the flexible job shop
scheduling problem encompass exact algorithms based on
mathematical programming, as well as intelligent evolutionary
methods such as the Genetic Algorithm (GA) [12], Tabu Search

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

409 | P a g e

www.ijacsa.thesai.org

(TS) [13], Ant Colony Optimization (ACO) [14], and Particle
Swarm Optimization (PSO) [15]. Traditional algorithms such as
genetic algorithms and tabu search often encounter limitations
when addressing these problems, including high dimensionality,
slow convergence, and challenging parameter tuning. In 2020,
Xue et al., proposed the Sparrow Search Algorithm (SSA) [16],
a novel population-based intelligent optimization method
characterized by simple principles, few parameters, and ease of
implementation, and has been widely applied in various fields
[17]. Although the SSA algorithm has also been applied to solve
the FJSP, its application to the FJSP with simultaneous
consideration of setup and transportation times remains
relatively rare.

Based on the aforementioned background, this study
incorporates the real production scenario of Dalian BL
Technology Co., Ltd. and formulates an integer programming
model for the flexible job shop scheduling problem, which
considers both setup and transportation times, aiming to
minimize the makespan. The effectiveness of the proposed
algorithm is verified using the CPLEX solver. As the data scale
increases, it becomes difficult for exact algorithms to solve the
problem in a short time. This study introduces enhanced
strategies, culminating in the design of an Improved Sparrow
Search Algorithm (ISSA) to solve the problem. Finally, the
effectiveness of these enhanced strategies and the efficiency of
the ISSA algorithm are validated using the small-scale Kacem
and medium-to-large-scale Brandimarte benchmark instances.

The remainder of this paper is organized as follows: Section
Ⅱ formulates the problem and constructs the mathematical
model. Section Ⅲ presents the encoding scheme and proposes
the improved sparrow search algorithm. Computational
experiments are conducted in Section Ⅳ, followed by results
and discussions in Section Ⅴ. Finally, conclusions are provided
in Section Ⅵ.

II. PROBLEM DESCRIPTION AND MODEL CONSTRUCTION

A. Problem Description

Dalian BL Technology Co., Ltd. is a multi-sector, order-
driven manufacturing enterprise. The orders they receive
typically consist of small batches and a wide variety of parts.
When processing different types of parts, the machines require
adjustments such as changing tool heads and adjusting machine
parameters. Additionally, when metal parts proceed to the next
processing step, they often need to be transferred to different
machines, and manual transport equipment is employed to move
the parts. Building on this manufacturing scenario, the workshop
scheduling problem can be formulated as a flexible job shop
scheduling problem (FJSP) that incorporates both setup and
transportation times, described as follows: there is a set of 𝑛
jobs, denoted by 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛}, and a set of 𝑚 machines,
denoted by 𝑀 = {𝑀1, 𝑀2, . . . , 𝑀𝑚} . Each job 𝐽𝑖 consists of 𝑗
operations, with the 𝑗 -th operation of job 𝐽𝑖 represented by 𝑂𝑖𝑗 .

Each operation can be processed on one or more machines;
however, each machine can process only one operation at a time.
Once an operation starts on a machine, it cannot be interrupted.
Operations within the same job must adhere to a prescribed
sequence, whereas there are no sequencing constraints among
operations from different jobs. At any given time, each job can
be processed on only one machine. Before any machine can

process a job, it must be adjusted by workers according to that
job’s characteristics; moreover, the machine requires re-
adjustment when switching between jobs. When transferring a
job’s operation to a different machine, transport equipment is
required to move the job.

The problem follows the standard constraints of the flexible
job shop scheduling problem while additionally accounting for
the effects of machine setup and transportation on the scheduling
process. Based on real-world conditions and the scope of this
research, the following constraints and assumptions are
proposed:

 If a job is processed consecutively on the same machine,
no transportation is required.

 If two or more consecutive operations on a machine
belong to the same job, no setup time is required for the
subsequent operation.

 Loading and unloading times are included in the overall
transportation time.

 Human resources and transport equipment are
sufficiently available and can respond in real-time.

B. Scenario Analysis

In the actual manufacturing scenario, processing can begin
only after setup is completed, thereby influencing the processing
start time. Similarly, transportation can commence only once an
operation finishes, affecting the start time of transportation.
Furthermore, subsequent processing can begin only after the
setup has been completed and the job has been transferred to the
next machine. The combined effects of setup and transportation
times influence the machine's waiting time. Consequently,
setup, transportation, and processing times are interrelated.

Taking the extended Kacem 4×5 dataset as an example, if
scheduling is carried out without accounting for setup and
transportation times, the resulting plan is shown in Fig. 1(a). If
this scheduling plan is applied directly in the workshop, a
significant delay in the overall makespan will result, as
illustrated in Fig. 1(b). However, after incorporating the effects
of setup and transportation times on the makespan, the proposed
model optimizes the scheduling plan, and the final outcome,
depicted in Fig. 1(c), achieves a shorter makespan compared to
the previous plan.

Processing stage

Setup Stage

Transport stage

76543210 111098

11

M4

M3

M2

M1

M5

31

21

12 32

22 33 41

23

42

3413

11 11 12 13

31 31 3433

33

41 41 42

21 21 22 23

32 32

32

76543210 111098

M4

M3

M2

M1

M5

12 16151413

12

12 12

23

13

13

23

13

32 32

23

33

33 33 41 41

42

42 42

11 11

31 31

21 21 22

76543210 111098

M4

M3

M2

M1

M5

12 16151413 191817 20 2221

32

(a) Initial scheduling scheme (c) The optimized scheduling scheme

(b) Initial program implementation

Fig. 1. Comparison of scheduling schemes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

410 | P a g e

www.ijacsa.thesai.org

C. Model Construction

The definitions of the model parameters are provided in
Table I.

TABLE I. PARAMETERS OF FJSP MODEL WITH SETUP TIME AND

TRANSPORTATION TIME

Parameter Definition

𝐽 Job set

𝑀 Machine set

𝑖, 𝑝 Job index

𝐽𝑖 A set of operations for job 𝑖

𝑗, 𝑞 Operation index

𝑘, 𝑙 Machine index

𝐶𝑖 Completion time of job 𝑖

𝑂𝑖𝑗 Operation 𝑗 of job 𝑖

𝑣𝑖𝑗 Start transportation time of 𝑂𝑖𝑗

𝑢𝑖𝑗 End transportation time of 𝑂𝑖𝑗

𝑠𝑖𝑗 Start setup time of 𝑂𝑖𝑗

𝐶𝑚𝑎𝑥 Maximum completion time

𝑒𝑖𝑗 Ends setup time of 𝑂𝑖𝑗

𝑔𝑖𝑗 Processing starts time of 𝑂𝑖𝑗

ℎ𝑖𝑗 End processing time of 𝑂𝑖𝑗

𝑇𝑖𝑗𝑘 Processing time on machine 𝑘 of 𝑂𝑖𝑗

𝑃𝑙𝑘 Transportation time from machine 𝑙 to 𝑘

𝑊𝑖𝑗𝑘 Setup time on machine of 𝑂𝑖𝑗

𝑧𝑖𝑗
For 𝑂𝑖𝑗 1 indicates that setup is required, 0 indicates that

setup is not required

𝑥𝑖𝑗𝑘
For 𝑂𝑖𝑗 1 indicates that processing on machine 𝑘, 0 indicates

not

𝑦𝑖𝑗𝑘𝑝𝑞
For𝑂𝑖𝑗 1 indicates that processing before 𝑂𝑝𝑞 on machine 𝑘,

0 indicates not

𝐿 A large positive number

𝑎

Virtual workpieces serve as start and end markers on the
machine, helping to enforce tight-front and tight back

constraints

Based on the problem description, the model is constructed
as follows:

𝑚𝑎𝑖𝑛𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝐶𝑖 (1)

ℎ𝑖𝑗 ≤ 𝑣𝑖𝑗+1 (2)

∑ 𝑥𝑖𝑗𝑘 = 1𝑘∈𝑀 (3)

𝑧𝑖𝑗 = {
1
1 − ∑ ∑ 𝑦𝑖𝑝𝑘𝑖𝑗𝑝∈{𝐽1,…,𝐽𝑗−1}𝑘∈𝑀

 (4)

ℎ𝑖𝑗 = 𝑔𝑖𝑗 + ∑ (𝑇𝑖𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘)𝑘∈𝑀 (5)

𝑒𝑖𝑗 = 𝑠𝑖𝑗 + ∑ (𝑊𝑖𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘)𝑘∈𝑀 ∙ 𝑧𝑖𝑗 (6)

𝑢𝑖𝑗 = 𝑣𝑖𝑗 + ∑ (𝑃𝑖𝑗𝑘 ∙ 𝑥𝑖(𝑗−1)𝑘) ∙ 𝑥𝑖𝑗𝑘𝑗,𝑘∈𝑀 (7)

ℎ𝑖𝑗 ≤ 𝑠𝑖𝑗 + 𝐿 ∙ (∑ 𝑦𝑖𝑗𝑘𝑝𝑞𝑘∈𝑀) (8)

∑ 𝑦𝑖𝑗𝑘𝑝𝑞 = 𝑥𝑖𝑗𝑘𝑝∈𝐽∪{𝑎},𝑞∈𝐽𝑝
 (9)

∑ 𝑦𝑝𝑞𝑘𝑖𝑗 = 𝑥𝑖𝑗𝑘𝑝∈𝐽∪{𝑎},𝑞∈𝐽𝑝
 (10)

𝑠𝑖𝑗 ≤ 𝑒𝑖𝑗 ≤ 𝑔𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝐶𝑖 (11)

𝑣𝑖𝑗 ≤ 𝑢𝑖𝑗 ≤ 𝑔𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝐶𝑖 (12)

Eq. (2) stipulates those operations of the same job must be
processed in sequence, and that transportation can commence
only after the preceding operation is finished. Eq. (3) indicates
that each process must be assigned to exactly one machine for
processing. Eq. (4) indicates whether an operation requires setup.
Eq. (5) represents the processing time constraints for the job.
Eq. (6) represents the setup phase time constraints for the job.
Eq. (7) represents the transportation phase time constraints for
the job. Eq. (8) imposes timing constraints between adjacent
operations and ensures that only one operation (whether setup or
processing) can be performed on a machine at a time. Eq. (9)
and Eq. (10) stipulate that if a job is being processed on a
machine, there must be one preceding and one succeeding
operation (including virtual operations). Eq. (11) and Eq. (12)
represents the time constraints for each phase of the operation,
requiring that the job must arrive at the machine and complete
the setup before production begins. Additionally, the setup and
transportation operations can occur independently.

III. ALGORITHM DESIGN

The flexible job shop scheduling problem that considers both
setup and transportation times, as investigated in this study, is
an NP-hard problem. As the problem size grows, exact
algorithms struggle to produce solutions within a short time.
Considering the sparrow search algorithm’s advantages—few
parameters and ease of implementation—this study adopts and
refines it to efficiently solve the aforementioned mixed-integer
programming model.

A. Encoding and Decoding

1) In Flexible job shop scheduling research, encoding

primarily addresses two aspects: operation sequencing and

machine selection. To address this challenge, a two-stage

encoding scheme—operation sequence and machine

sequence—is designed, as illustrated in Fig. 2.

1 2 3 2 3 1

2 4 1 1 3 3

Operation

Sequence

Machine

Sequence

O11 O21 O31 O22 O32 O12 1 2 3 2 3 1 2 4 1 1 3 3

J1 J2 J3 J2 J3 J1

M2 M4 M1 M1 M3 M3

Fig. 2. An example of encoding.

2) Operation Sequence (OS): Each element in the sequence

represents an operation for a job, and its position in the encoded

sequence determines the order in which operations are

performed. For example, if the OS sequence is1-2-1-3-2-3-1, it

means the sequence of operations for these three jobs is 𝑂11 −
𝑂21 − 𝑂12 − 𝑂31 − 𝑂22 − 𝑂32 − 𝑂13 .This encoding method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

411 | P a g e

www.ijacsa.thesai.org

ensures the sequential constraints among multiple operations of

each workpiece.

3) Machine Sequence (MS): Each element in the sequence

represents a machine, specifying which machine processes the

corresponding operation in the OS sequence. For example, if

the MS sequence is 1-3-1-2-3-1-3, then 𝑂11 is processed on

machine 𝑀1, and operation 𝑂21 is processed on machine 𝑀3.

By applying the Ranked Order Value (ROV) rule, one can
map continuous individual vectors to discrete individual vectors.
This process consists of two parts: encoding conversion for
operation sequencing and encoding conversion for machine
assignment. After decoding, one must evaluate the resulting
machining scheme’s quality and determine whether forward
insertion of the workpiece is necessary.

 The operation sequence conversion steps are illustrated
in Fig. 3.

 The machine encoding is mapped according to Eq. (13).

𝑚𝑜 = 𝑟𝑜𝑢𝑛𝑑 (
(𝜆+𝑚)(𝑚−1)

2𝑚
+ 1) (13)

The 𝑜 ∈ [1, 𝑑] represents the ordinal of the operation
sequence, where 𝑑 is the total number of operations. The
function, 𝑟𝑜𝑢𝑛𝑑() performs rounding. The parameter 𝜆 ∈
[−𝑚, 𝑚] indicates that the coded position corresponds to the
individual’s location in continuous space. The variable 𝑚
denotes the total number of machines, and 𝑚𝑜 denotes the
machine number selected for the corresponding operation 𝑂𝑖𝑗 .

Fig. 3. ROV Mapping.

B. Discoverers Location Update Strategy Optimization

An analysis of the discoverers’ location update strategy in
the sparrow population shows that when 𝑅2 is lower than 𝑆𝑇,
the coefficient’s range gradually shrinks from the initial [0,1]
interval to roughly [0,1] as the number of iterations 𝑖 increases
[16]. In particular, when 𝑖 is small, the coefficient is more l
likely to be close to 1, thereby reducing the sparrow’s range of
activity in each dimension of the search space. Because finders
constitute only a small fraction of the entire population, 𝑖
remains relatively small, causing the positional update factor to
tend toward 1. To address this issue, if 𝑅2 is less than ST, Eq.
(14) can be used for the position update; otherwise, Eq. (15) is
adopted.

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 ⋅ (2𝑡 + (−1)𝑡 ⋅ 𝑒𝑥𝑝 (
−𝑖

𝑎⋅𝑖𝑡𝑒𝑟
))

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 + 𝑄 ⋅ 𝐿

C. Critical Path-Based Neighborhood Search

To further enhance the SSA algorithm’s performance, a
critical-path-based neighborhood search method is integrated
into the basic SSA framework.

Processes located on the critical path often play a decisive
role in determining the final quality of the overall scheduling
scheme, as their completion times directly dictate the length of
the entire production cycle. By adjusting these critical processes
along with their adjacent operations, the algorithm explores
additional solution spaces, thereby enhancing the potential to
discover superior solutions. The procedure is as follows:

 Identify critical and non-critical operations;

 Randomly select one operation from the critical-
operation set and one from the non-critical-operation set
for swapping;

 New sequence feasibility check, the operation may be
exchanged to the machine without processing capacity.
The machine selection is carried out through the Earliest
Completion Time First rule;

 Fitness calculation- Assign machines based on the
workpiece coding sequence and machine coding, and
perform forward insertion strategy to explore better
results;

 Population update.

The pseudocode is as follows:

Algorithm 1: Critical path identification

Input: Operation Set

Begin:
 initialize CO

 for each operationOij:

 if hij= makespan then:

 put Oij in CO

 end if

 end for

 while CO != null then:

 delete first operation 𝑂'of CO

 T = ℎ𝑖𝑗of 𝑂'

 for Oij in Operation Set

 if hij= T then:

 put Oij in CO

 end if

 end for

 end while

 return all marked operation

End

D. Population Initialization

In the sparrow optimization algorithm, constructing the
initial population is the first step, influencing the subsequent
optimization process and outcomes. Although random
initialization maintains the abundance and diversity of the
population, the quality of individuals remains inconsistent. In

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

412 | P a g e

www.ijacsa.thesai.org

the initial phase of the algorithm, it may be difficult to quickly
find a high-quality solution, requiring numerous iterations to
gradually approach the optimal solution. This process raises the
algorithm’s computational cost and execution time. To enhance
the algorithm’s performance, this study employs random
generation and ECT rule-based initialization to produce 50% of
the population. The ECT rule dynamically calculates the
completion time of each operation on every machine and assigns
tasks to the machine with the earliest completion, thereby
eliminating unreasonable machine selections during
initialization and producing an initial solution that is both high
in quality and diverse.

The pseudocode is as follows:

Algorithm 2: ECT rule

Input: Current operation (Oij), process time on each machine (Tijk),

setup time on each machine (Wijk), transportation time between Ml

(processOij-1) to current machine Mk(Plk)

Begin:
 initialize 𝑡, 𝑝, 𝑤, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒, 𝑒𝑡

 for each machineMk:

 If Mkcan process Oijthen:

 𝑝 = 𝑇𝑖𝑗𝑘 , 𝑤 = 𝑊𝑖𝑗𝑘

 If Oij is the first operation of the Job or the first

operation on Mk or Oij and 𝑂𝑝𝑞 are from same job

then:
 𝑠𝑡 = 0

 end if
 if Oij is the first operation of the Job or Oij-1 is

processed on Mk then:

 𝑝 = 0

 else
 𝑝 = 𝑃𝑙𝑘
 end if
 completion_time = 𝑚𝑎𝑥(ℎ𝑖𝑗−1 + 𝑡𝑡, ℎ𝑝𝑞 + 𝑤) + 𝑡

 if completion_time ≤ 𝑒𝑡 then:

 mark current machine 𝑀𝑘 and update 𝑒𝑡

 end if
 end if
 end for
 return marked machine

End

IV. ANALYSIS OF NUMERICAL EXPERIMENTS

This study performs an ablation experiment to validate both
the effectiveness of the proposed algorithmic improvement
strategy and the algorithm’s overall efficiency. Additionally,
small-scale and medium-to-large-scale experiments were
conducted to further assess the algorithm’s efficiency. The
experiments were implemented in Java, running on an Intel(R)
Core(TM) i5-7500 CPU @ 3.40GHz processor with 8GB RAM
and the Windows 10 Professional operating system.

The experimental dataset consists of 15 newly created
instances (MK01–MK10, Kacem01–Kacem05), which is
generated by the small-scale Kacem dataset and the medium-
scale Brandimarte dataset [18]. The commissioning time and
shipping time are generated according to relevant strategies [19].

For the algorithm parameters, the population size exhibits a
critical trade-off in optimization algorithms: an undersized

population is prone to premature convergence to local optima,
whereas an excessively large population imposes prohibitive
computational overhead. Insufficient iteration cycles
compromise convergence completeness while introducing
substantial computational redundancy. The proportional
allocation between discoverers and followers critically
modulates the equilibrium between global exploration and local
exploitation capacities within the algorithm framework.
Through systematic orthogonal experimental design, the
optimal parameter configuration was determined as follows: The
population size was set to 𝑁 = 100, the maximum number of
iterations to 𝑁_𝑖𝑡𝑒𝑟 = 400, the discoverer proportion to 𝑃𝐷 =
20%, and the vigilant proportion to 𝑆𝐷 = 80%.

A. Validation of the Improvement Strategy's Effectiveness

The Improved Sparrow Search Algorithm integrates three
strategies into the standard algorithm: SSA1 denotes an
optimized discoverer location update strategy, SSA2 represents
population initialization via an ECT heuristic, and SSA3 adopts
a critical-path-based neighborhood search strategy. This study
designed eight sets of experiments to compare the strategies
presented in TABLE II. The eight algorithms were each run
independently ten times on the Brandimarte dataset, recording
their best, average, and variance values, as well as the solution
time.

TABLE II. ALGORITHM COMPARISON STRATEGY

SS

A

SS

A1

SS

A2

SS

A3

SSA

12

SSA

13

SSA

23

SSA1

23

Strate

gy 1
○ ● ○ ○ ● ● ○ ●

Strate

gy 2
○ ○ ● ○ ● ○ ● ●

Strate

gy 3
○ ○ ○ ● ○ ● ● ●

Note: ● indicates that the policy is applied; ○ indicates that the

policy is not applied

1) Analysis of the discoverer’s location update strategy:

Strategy I modifies the parameters of the sparrow population’s

position update formula, increasing the step size and direction

of the position update and enhancing the global search

capability of the sparrow search algorithm to avoid local

optima. In independent runs, the tenth solution comes closer to

the optimum, showing reduced variance. As illustrated in Fig.

4(a), SSA1 outperforms SSA in variance across 12 of the 15

datasets, exhibiting a reduction of over 50% in Mk08 and

Mk09. Fig. 4(b) to (d) presents comparative trials of the other

groups incorporating Strategies II and III.

2) Analysis of ECT rule strategies: Among the four

algorithms listed in Table II—SSA2, SSA12, SSA23, and

SSA123—incorporate the finder location update strategy. To

assess the impact of Strategy II, it is removed from these

algorithms and compared with SSA, SSA1, SSA3, and SSA13.

As a specific strategy, the ECT rule is tailored to the

characteristics of this problem and is thus highly suited to the

research in this chapter. The ECT rule quickly locates machines

with shorter completion times, complementing the sparrow

search algorithm. In conjunction with its global search

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

413 | P a g e

www.ijacsa.thesai.org

capability, this improves solution quality and efficiency. As

shown in Fig. 5(a) to (d), when the effects of Strategies I and

III are excluded, incorporating improved Strategy II yields

superior solution quality. Since the sparrow algorithm relies on

the current optimal solution when the sparrow population

undergoes positional updating during the iterative process, high

quality initial values can improve the solution quality. Results

from ten independent experimental runs reveal a notable

decrease in both the best and average values across all datasets,

with a more pronounced effect on larger datasets. The quality

of the initial population solution generated by the ECT rule and

the random generation method is shown in Fig. 6(a), and the

variance of the solution is shown in Fig. 6(b).

3) Critical path-based neighborhood search strategy

analysis: Among the algorithms listed in Table II, SSA3,

SSA13, SSA23, and SSA123 apply the location update strategy

and culling Strategy II is compared with algorithms SSA,

SSA1, SSA2, and SSA12. Incorporating Strategy III increases

the solution time while reducing the average solution value.

Since the processes on the critical path dictate the final

completion time, each iteration later applies Strategy III to swap

critical and non-critical processes. While this two-step

operation of identifying and exchanging key processes

increases computation time, it also enables a stronger local

search capability. Fig. 7. (a) to (d) compares the effects of

applying exclusion Strategies I and II and improvement strategy

III on the algorithm’s convergence performance. Incorporating

Strategy III, clearly enhances the sparrow population’s capacity

for precise searching, leading to higher-quality solutions across

iterations. The algorithm augmented by the improved Strategy

III achieves an even better optimal solution.

(a) Comparison of the variance of SSA and SSA1 (b) Comparison of the variance of SSA2 and SSA12

(c) Comparison of the variance of SSA3 and SSA13 (d) Comparison of variance of SSA23 and SSA123

Fig. 4. Comparison of variance between algorithms with Strategy I.

(a) Comparison of SSA and SSA2 results (b) Comparison of SSA1 and SSA12 results

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

414 | P a g e

www.ijacsa.thesai.org

(c) Comparison of SSA3 and SSA23 results (d) Comparison of SSA13 and SSA123 results

Fig. 5. Comparison of fitness between algorithms with Strategy II.

(a) Individual fitness of populations (b) Statistics on the fitness of the populations

Fig. 6. Comparison of iterative process between algorithms with Strategy III.

(a) SSA and SSA3 iterative process on Mk01 (b) SSA1 and SSA13 iterative process on Mk12

(c) SSA2 and SSA23 iterative process on Mk14 (d) SSA12 and SSA123 iterative process on Mk01

Fig. 7. Convergence under Strategies I-III; Strategies III shows improved precision and solution quality.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

415 | P a g e

www.ijacsa.thesai.org

B. Small-Scale Experimental Validation Analysis

In the small-scale experiments, Java was used to invoke the
CPLEX solver for comparison with the Improved Sparrow
Search Algorithm. The solution results for the small-scale
Kacem benchmark instances are presented in TABLE III. The
Improved Sparrow Search Algorithm’s solution time grows
slowly as the problem size increases. Moreover, the difference
between its objective function value and that of the exact
solution via CPLEX remains small—specifically, the gap
between the optimal solutions is only 1. However, from the
kacem8-8 instance onwards, ISSA runs significantly faster than
the solver, demonstrating the effectiveness of the Improved
Sparrow Search Algorithm.

TABLE III. COMPARISON OF CPLEX AND ISSA ON KACEM DATA SET

Dataset
CPLEX ISSA

𝒇 𝒕/𝒔 𝒇 𝒕/𝒔

kacem4-5 16 0.22 17 3.63

kacem8-8 22 32.03 24 10.61

kacem10-7 17 322.98 18 9.97

kacem10-10 11 37.13 12 11.11

kacem15-10 22 115200 23 35.59

C. Analysis of Large-Scale Experimental Validation

TABLE IV. presents the experimental results of the
Improved Sparrow Search Algorithm compared with the
standard sparrow search algorithm, the standard gray wolf
optimization algorithm, and the genetic algorithm. The
experiment uses the Brandimarte dataset, running each set of
algorithms independently ten times. The average value was
taken as the solution for each algorithm, and the performance
gap between the three algorithms and the best solution among
them was also recorded. From Table IV, it can be observed that
the Improved Sparrow Search Algorithm shows a significant
improvement in all 15 instances, with a minimum improvement
rate of 7.96% and an average improvement rate of 26.48%.
Moreover, the optimal values obtained by ISSA are consistently
better than those achieved by the gray wolf algorithm and the
genetic algorithm. The enhanced position updating strategy
strengthens the sparrow search algorithm’s global search
capability, helping it avoid local optima and consistently
discover superior solutions across all the 15 algorithms. In all 15
test instances, the Improved Sparrow Search Algorithm achieves
the optimal solution. 𝐺𝑔 denotes the gap between the optimal

values of the GWO, GA, and ISSA solutions. The GWO
algorithm’s smallest gap is 9.0%, with an average gap of 33%.
Meanwhile, when comparing the GA algorithm to ISSA, the
smallest gap is 20.3%, and the average gap is 56%. These
findings confirm that the ISSA algorithm developed in this study
exhibits superior stability, convergence, and efficiency when
solving FJSP problems involving setup and transportation times.

TABLE IV. COMPARISON OF ISSA, SSA, GWO AND GA

Dataset
ISSA SSA GWO GA

𝑓 𝑓 𝐺𝑔 𝑓 𝐺𝑔 𝑓 𝐺𝑔

Mk01 70.7 84 18.81% 91.0 28.7% 92.3 30.6%

Mk02 56.0 75 33.93% 83.1 48.4% 77.1 37.7%

Mk03 316.0 416 31.65% 439.4 39.1% 543.7 72.1%

Mk04 118.2 135 14.21% 141.2 19.5% 154.9 31.0%

Mk05 296.4 320 7.96% 341.6 15.2% 358.5 21.0%

Mk06 160.1 233 45.53% 246.1 53.7% 332.3 107.6%

Mk07 243.4 339 39.28% 362.2 48.8% 321.1 31.9%

Mk08 873.4 914 4.65% 952.0 9.0% 1050.6 20.3%

Mk09 596.2 720 20.76% 754.4 26.5% 1051.6 76.4%

Mk10 438.2 631 44.00% 652.2 48.8% 918.2 109.5%

Mk11 997.6 1113 11.57% 1145.1 14.8% 1221.8 22.5%

Mk12 830.0 963 16.02% 1010.0 21.7% 1090.7 31.4%

Mk13 737.5 1069 44.95% 1081.9 46.7% 1427.8 93.6%

Mk14 1037.2 1364 31.51% 1408.6 35.8% 1602.1 54.5%

Mk15 692.4 917 32.44% 952.8 37.6% 1407.0 103.2%

V. RESULTS AND DISCUSSION

Firstly, the experimental validation presented in Section IV
demonstrates that Strategy Ⅰ effectively improves the algorithm's
stability with better variance performance, while Strategy II
significantly improves the quality of initial solutions, thereby
accelerating the optimization process and elevating solution
quality. Additionally, Strategy III achieves considerable

improvements in both convergence speed and solution quality,
with only a marginal increase in computational complexity.

Secondly, experimental results on small-scale instances
show that the proposed algorithm produces solutions
comparable to those obtained by CPLEX solver, while
exhibiting superior computational efficiency. For small-scale
problems, our algorithm can effectively generate production

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

416 | P a g e

www.ijacsa.thesai.org

scheduling solutions. In large-scale experiments, the proposed
algorithm outperforms other classical algorithms in terms of
both solution accuracy and quality, demonstrating its
effectiveness in solving flexible job shop scheduling problems
that consider both setup and transportation times.

VI. CONCLUSION

Frequent production changes seriously impact the
productivity of discrete order-driven manufacturing enterprises.
This study considers the machine commissioning time caused
by production changeovers and the transportation time due to
workpiece changeovers on processing machines. A mixed-
integer programming model is formulated to minimize the
makespan, and an Improved Sparrow Search Algorithm is
proposed to solve it. Experimental comparisons with CPLEX,
the Gray Wolf Algorithm, and the Genetic Algorithm confirm
the algorithm’s effectiveness and efficiency. The results
demonstrate that the location updating strategy involving an
expanded search direction, the ECT-based population
initialization tailored to the problem, and the critical-path-based
neighborhood search strategy proposed herein significantly
enhance both solution efficiency and quality for the sparrow
search algorithm. Future research could refine this study by
incorporating employee resource constraints in machine
commissioning and the operation of transport equipment to
address more complex flexible job shop scenarios.

Future studies will advance this work by integrating
machine‑setup constraints and operator resource limitations for
material‑handling equipment, thereby refining the scheduling
model to accommodate more complex scenarios in flexible job
shop environments.

REFERENCES

[1] DEFERSHA F M, OBIMUYIWA D, YIMER A D. Mathematical model
and simulated annealing algorithm for setup operator constrained flexible
job shop scheduling problem[J]. Computers & Industrial Engineering,
2022, 171: 108487.

[2] LI J, LIU Z, LI C, et al. Improved artificial immune system algorithm for
type-2 fuzzy flexible job shop scheduling problem[J]. IEEE Transactions
on Fuzzy Systems, 2020, 29(11): 3234-3248.

[3] PENG Z, ZHANG H, TANG H, et al. Research on flexible job-shop
scheduling problem in green sustainable manufacturing based on learning
effect[J]. Journal of Intelligent Manufacturing, 2022, 33(6): 1-22.

[4] ZHANG G H, ZHU B Y, YANG Y Y, et al. Research on Flexible Job
Shop Scheduling Considering Adjustment Time[J]. Modular Machine
Tool & Automatic Manufacturing Technique, 2019(8): 152-156.

[5] SADRZADEH A. Development of Both the AIS and PSO for Solving the
Flexible Job ShopScheduling Problem[J]. Arabian Journal for Science
and Engineering, 2013, 38(12):3593-3604.

[6] ZHANG Q, MANIER H,MANIER M A. A genetic algorithm with tabu
search procedure for flexible job shop scheduling with transportation
constraints and bounded processing times[J]. Computers & Operations
Research, 2012, 39(7): 1713-1723.

[7] AN Y, CHEN X, ZHANG J, et al.A hybrid multi-objective evolutionary
algorithm to integrate optimization of the production scheduling and
imperfect cutting tool maintenance considering total energy
consumption[J]. Journal of Cleaner Production, 2020, 268: 121540.

[8] LI J, DENG J, LI C, et al. An improved Jaya algorithm for solving the
flexible job shop scheduling problem with transportation and setup
times[J]. Knowledge-Based Systems, 2020, 200: 106032.

[9] ZHANG H, XU G, PAN R, et al. A novel heuristic method for the energy-
efficient flexible job-shop scheduling problem with sequence-dependent
set-up and transportation time[J]. Engineering Optimization, 2022,
54(10): 1646-1667.

[10] SUN J, ZHANG G, LU J, et al. A hybrid many-objective evolutionary
algorithm for flexible job-shop scheduling problem with transportation
and setup times[J]. Computers & operations research, 2021, 132: 105263.

[11] ROSSI A. Flexible Job Shop Scheduling with Sequence-Dependent Setup and

Transportation Times by Ant Colony with Reinforced Pheromone

Relationships[J]. International Journal of Production Economics, 2014, 153:

253-267.

[12] ZHANG G, HU Y, SUN J, et al. An improved genetic algorithm for the flexible

job shop scheduling problem with multiple time constraints[J]. Swarm and

Evolutionary Computation, 2020, 54: 100664.

[13] SHEN L, DAUZÈRE-PÉRÈS S, NEUFELD J S. Solving the flexible job shop

scheduling problem with sequence-dependent setup times[J]. European

Journal of Operational Research, 2018, 265(2): 503-516.

[14] WANG L, CAI J, LI M, et al. Flexible job shop scheduling problem using an

improved ant colony optimization[J]. Scientific Programming, 2017, 2017:

9016303.

[15] KATO E R R, de Aguiar Aranha G D, Tsunaki R H. A new approach to solve

the flexible job shop problem based on a hybrid particle swarm optimization

and Random-Restart Hill Climbing[J]. Computers & Industrial Engineering,

2018, 125: 178-189.

[16] XUE J K, SHEN B. A novel swarm intelligence optimization approach:

sparrow search algorithm[J]. Systems Science & Control Engineering, 2020,

8(1): 22-34.

[17] LUAN F, LI R, LIU S Q, et al. An Improved Sparrow Search Algorithm for

Solving the Energy-Saving Flexible Job Shop Scheduling Problem[J].

Machines. 2022, 10(10): 847.

[18] KACEM I, HAMMADI S, BORNE P. Approach by localization and

multiobjective evolutionary optimization for flexible job-shop scheduling

problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 2002, 32(1): 1-13.

[19] PAL M, MITTAL M L, SONI G, et al. A multi-agent system for FJSP with

setup and transportation times[J]. Expert Systems with Applications, 2023,

216: 119474.

