
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

408 | P a g e  

www.ijacsa.thesai.org 

An Improved Sparrow Search Algorithm for Flexible 

Job-Shop Scheduling Problem with Setup and 

Transportation Time

Yi Li1, Song Han2, Zhaohui Li3, Fan Yang4, Zhengyi Sun5 

School of Maritime Economics and Management, Dalian Maritime University, Dalian China1, 2, 3 

Hangzhou Hollysys Automation Co., Ltd. Xi 'an branch, Xi’an China4 

Graduate School of Information, Production and Systems, Waseda University, Kitakyushu Japan5 

 

 
Abstract—This study addresses the low production efficiency 

in manufacturing enterprises caused by the diversification of 

order products, small batches, and frequent production 

changeovers. Focusing on minimizing the makespan, this study 

establishes a Flexible Job-Shop Scheduling Problem (FJSP) model 

incorporating machine setup and workpiece transportation times, 

and proposes an improved sparrow search algorithm to effectively 

solve the problem. Based on the sparrow search algorithm, this 

study proposes a novel location update strategy that expands the 

search direction in each dimension and strengthens each 

individual’s local search capability. In addition, a critical-path-

based neighborhood search strategy is introduced to enhance 

individual search efficiency, and an earliest completion time 

priority rule is employed during population initialization to 

further improve solution quality. Several experiments are 

conducted to validate the effectiveness of the improved strategy, 

and the results are compared with those obtained using the 

particle swarm optimization and gray wolf optimization 

algorithms to demonstrate the efficiency of the proposed model 

and algorithm. The improved sparrow search algorithm can 

effectively generate feasible solutions for large-scale problems, 

provide practical manufacturing scheduling schemes, and 

enhance the production efficiency of manufacturing enterprises. 

Keywords—Flexible job shop scheduling; machine setup; 
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I. INTRODUCTION 

The Flexible Job Shop Scheduling Problem (FJSP) is a key 
area in modern manufacturing. The growing complexity of 
market demands, such as product diversification, small-batch 
production, and frequent changeovers, has intensified the need 
to consider setup and transportation times in production 
scheduling. This makes FJSP research incorporating these 
factors, a critical academic focus. 

Scholars have conducted extensive research on the flexible 
job shop scheduling problem under single constraints, either 
setup time or transportation time. Defersha et al.[1], investigated 
the flexible job shop scheduling problem considering worker-
machine setup times and proposed an improved simulated 
annealing algorithm to solve it. Li et al.[2], proposed an 
improved artificial immune system algorithm to solve the 
flexible job shop scheduling problem considering setup 
scenarios. Peng et al.[3], investigated the multi-objective 

flexible job shop scheduling problem with job transportation 
time and learning effect constraints, and proposed a hybrid 
discrete multi-objective imperialist competitive algorithm to 
solve the model. Zhang Guohui et al. [4], examined the impact 
of machine installation, positioning, and other adjustment times 
on the flexible job shop scheduling problem, and proposed an 
improved genetic algorithm to solve the problem. Sadrzadeh [5], 
proposed a hybrid artificial immune-particle swarm 
optimization algorithm and validated its effectiveness through 
numerical experiments. Zhang et al.[6], designed a genetic 
algorithm with a tabu search procedure to solve the flexible job 
shop scheduling problem with transportation constraints and 
limited processing times. The aforementioned scholars have 
proposed various algorithms to address the FJSP with either 
setup or transportation times separately considered. However, 
these studies have overlooked the interactions among 
processing, setup, and transportation times. Setup times affect 
the start time of processing tasks, whereas processing times 
determine the start time of transportation tasks. The combined 
effects of setup and transportation times result in varying 
machine waiting times. Therefore, flexible job shop scheduling 
problem that simultaneously incorporates setup and 
transportation times is more consistent with real-world 
production scenarios. 

For the flexible job shop scheduling problem that 
incorporates both setup and transportation times, An et al.[7],   
proposed a hybrid multi-objective evolutionary algorithm based 
on a Pareto elite storage strategy, aiming at minimizing the 
makespan, total delay, total production cost, and total energy 
consumption. Li et al.[8], simultaneously optimized energy 
consumption and makespan, employing an improved Jaya 
algorithm to solve the problem. Zhang et al.[9], proposed an 
effective heuristic algorithm to minimize the makespan and total 
energy consumption. Sun et al.[10], developed a hybrid multi-
objective evolutionary algorithm aimed at minimizing 
makespan, total workload, critical machine workload, and 
penalties for early or late completion. Rossi [11], investigated 
the flexible job shop scheduling problem incorporating both 
transportation and setup times, employing an ant colony 
algorithm enhanced with pheromone mechanisms. In summary, 
the primary approaches for solving the flexible job shop 
scheduling problem encompass exact algorithms based on 
mathematical programming, as well as intelligent evolutionary 
methods such as the Genetic Algorithm (GA) [12], Tabu Search 
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(TS) [13], Ant Colony Optimization (ACO) [14], and Particle 
Swarm Optimization (PSO) [15]. Traditional algorithms such as 
genetic algorithms and tabu search often encounter limitations 
when addressing these problems, including high dimensionality, 
slow convergence, and challenging parameter tuning. In 2020, 
Xue et al., proposed the Sparrow Search Algorithm (SSA) [16], 
a novel population-based intelligent optimization method 
characterized by simple principles, few parameters, and ease of 
implementation, and has been widely applied in various fields 
[17]. Although the SSA algorithm has also been applied to solve 
the FJSP, its application to the FJSP with simultaneous 
consideration of setup and transportation times remains 
relatively rare. 

Based on the aforementioned background, this study 
incorporates the real production scenario of Dalian BL 
Technology Co., Ltd. and formulates an integer programming 
model for the flexible job shop scheduling problem, which 
considers both setup and transportation times, aiming to 
minimize the makespan. The effectiveness of the proposed 
algorithm is verified using the CPLEX solver. As the data scale 
increases, it becomes difficult for exact algorithms to solve the 
problem in a short time. This study introduces enhanced 
strategies, culminating in the design of an Improved Sparrow 
Search Algorithm (ISSA) to solve the problem. Finally, the 
effectiveness of these enhanced strategies and the efficiency of 
the ISSA algorithm are validated using the small-scale Kacem 
and medium-to-large-scale Brandimarte benchmark instances. 

The remainder of this paper is organized as follows: Section 
Ⅱ formulates the problem and constructs the mathematical 
model. Section Ⅲ presents the encoding scheme and proposes 
the improved sparrow search algorithm. Computational 
experiments are conducted in Section Ⅳ, followed by results 
and discussions in Section Ⅴ. Finally, conclusions are provided 
in Section Ⅵ. 

II. PROBLEM DESCRIPTION AND MODEL CONSTRUCTION 

A. Problem Description 

Dalian BL Technology Co., Ltd. is a multi-sector, order-
driven manufacturing enterprise. The orders they receive 
typically consist of small batches and a wide variety of parts. 
When processing different types of parts, the machines require 
adjustments such as changing tool heads and adjusting machine 
parameters. Additionally, when metal parts proceed to the next 
processing step, they often need to be transferred to different 
machines, and manual transport equipment is employed to move 
the parts. Building on this manufacturing scenario, the workshop 
scheduling problem can be formulated as a flexible job shop 
scheduling problem (FJSP) that incorporates both setup and 
transportation times, described as follows: there is a set of  𝑛 
jobs, denoted by 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛}, and a set of 𝑚 machines, 
denoted by 𝑀 = {𝑀1, 𝑀2, . . . , 𝑀𝑚} . Each job 𝐽𝑖  consists of 𝑗 
operations, with the 𝑗 -th operation of job 𝐽𝑖 represented by 𝑂𝑖𝑗 . 

Each operation can be processed on one or more machines; 
however, each machine can process only one operation at a time. 
Once an operation starts on a machine, it cannot be interrupted. 
Operations within the same job must adhere to a prescribed 
sequence, whereas there are no sequencing constraints among 
operations from different jobs. At any given time, each job can 
be processed on only one machine. Before any machine can 

process a job, it must be adjusted by workers according to that 
job’s characteristics; moreover, the machine requires re-
adjustment when switching between jobs. When transferring a 
job’s operation to a different machine, transport equipment is 
required to move the job. 

The problem follows the standard constraints of the flexible 
job shop scheduling problem while additionally accounting for 
the effects of machine setup and transportation on the scheduling 
process. Based on real-world conditions and the scope of this 
research, the following constraints and assumptions are 
proposed: 

 If a job is processed consecutively on the same machine, 
no transportation is required. 

 If two or more consecutive operations on a machine 
belong to the same job, no setup time is required for the 
subsequent operation. 

 Loading and unloading times are included in the overall 
transportation time. 

 Human resources and transport equipment are 
sufficiently available and can respond in real-time. 

B. Scenario Analysis 

In the actual manufacturing scenario, processing can begin 
only after setup is completed, thereby influencing the processing 
start time. Similarly, transportation can commence only once an 
operation finishes, affecting the start time of transportation. 
Furthermore, subsequent processing can begin only after the 
setup has been completed and the job has been transferred to the 
next machine. The combined effects of setup and transportation 
times influence the machine's waiting time. Consequently, 
setup, transportation, and processing times are interrelated. 

Taking the extended Kacem 4×5 dataset as an example, if 
scheduling is carried out without accounting for setup and 
transportation times, the resulting plan is shown in Fig. 1(a). If 
this scheduling plan is applied directly in the workshop, a 
significant delay in the overall makespan will result, as 
illustrated in Fig. 1(b). However, after incorporating the effects 
of setup and transportation times on the makespan, the proposed 
model optimizes the scheduling plan, and the final outcome, 
depicted in Fig. 1(c), achieves a shorter makespan compared to 
the previous plan. 
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Fig. 1. Comparison of scheduling schemes 
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C. Model Construction 

The definitions of the model parameters are provided in 
Table I. 

TABLE I.  PARAMETERS OF FJSP MODEL WITH SETUP TIME AND 

TRANSPORTATION TIME 

Parameter Definition 

𝐽 Job set 

𝑀 Machine set 

𝑖, 𝑝 Job index 

𝐽𝑖 A set of operations for job 𝑖 

𝑗, 𝑞 Operation index 

𝑘, 𝑙 Machine index 

𝐶𝑖 Completion time of job 𝑖 

𝑂𝑖𝑗 Operation 𝑗 of job 𝑖 

𝑣𝑖𝑗  Start transportation time of 𝑂𝑖𝑗 

𝑢𝑖𝑗 End transportation time of 𝑂𝑖𝑗 

𝑠𝑖𝑗 Start setup time of 𝑂𝑖𝑗 

𝐶𝑚𝑎𝑥 Maximum completion time 

𝑒𝑖𝑗 Ends setup time of 𝑂𝑖𝑗 

𝑔𝑖𝑗 Processing starts time of 𝑂𝑖𝑗 

ℎ𝑖𝑗 End processing time of 𝑂𝑖𝑗 

𝑇𝑖𝑗𝑘 Processing time on machine 𝑘 of 𝑂𝑖𝑗 

𝑃𝑙𝑘 Transportation time from machine 𝑙 to 𝑘 

𝑊𝑖𝑗𝑘 Setup time on machine of 𝑂𝑖𝑗 

𝑧𝑖𝑗  
For 𝑂𝑖𝑗  1 indicates that setup is required, 0 indicates that 

setup is not required 

𝑥𝑖𝑗𝑘 
For 𝑂𝑖𝑗 1 indicates that processing on machine 𝑘, 0 indicates 

not 

𝑦𝑖𝑗𝑘𝑝𝑞 
For𝑂𝑖𝑗 1 indicates that processing before 𝑂𝑝𝑞 on machine 𝑘, 

0 indicates not 

𝐿 A large positive number 

𝑎 

Virtual workpieces serve as start and end markers on the 
machine, helping to enforce tight-front and tight back 

constraints 

Based on the problem description, the model is constructed 
as follows: 

𝑚𝑎𝑖𝑛𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝐶𝑖                              (1) 

ℎ𝑖𝑗 ≤ 𝑣𝑖𝑗+1                                       (2) 

∑ 𝑥𝑖𝑗𝑘 = 1𝑘∈𝑀                                      (3) 

𝑧𝑖𝑗 = {
1                                                   
1 − ∑ ∑ 𝑦𝑖𝑝𝑘𝑖𝑗𝑝∈{𝐽1,…,𝐽𝑗−1}𝑘∈𝑀

                    (4) 

ℎ𝑖𝑗 = 𝑔𝑖𝑗 + ∑ (𝑇𝑖𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘)𝑘∈𝑀                          (5) 

𝑒𝑖𝑗 = 𝑠𝑖𝑗 + ∑ (𝑊𝑖𝑗𝑘 ∙ 𝑥𝑖𝑗𝑘)𝑘∈𝑀 ∙ 𝑧𝑖𝑗                      (6) 

𝑢𝑖𝑗 = 𝑣𝑖𝑗 + ∑ (𝑃𝑖𝑗𝑘 ∙ 𝑥𝑖(𝑗−1)𝑘) ∙ 𝑥𝑖𝑗𝑘𝑗,𝑘∈𝑀                 (7) 

ℎ𝑖𝑗 ≤ 𝑠𝑖𝑗 + 𝐿 ∙ (∑ 𝑦𝑖𝑗𝑘𝑝𝑞𝑘∈𝑀 )                        (8) 

∑ 𝑦𝑖𝑗𝑘𝑝𝑞 = 𝑥𝑖𝑗𝑘𝑝∈𝐽∪{𝑎},𝑞∈𝐽𝑝
                          (9) 

∑ 𝑦𝑝𝑞𝑘𝑖𝑗 = 𝑥𝑖𝑗𝑘𝑝∈𝐽∪{𝑎},𝑞∈𝐽𝑝
                          (10) 

𝑠𝑖𝑗 ≤ 𝑒𝑖𝑗 ≤ 𝑔𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝐶𝑖                         (11) 

𝑣𝑖𝑗 ≤ 𝑢𝑖𝑗 ≤ 𝑔𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝐶𝑖                        (12) 

Eq. (2) stipulates those operations of the same job must be 
processed in sequence, and that transportation can commence 
only after the preceding operation is finished. Eq. (3) indicates 
that each process must be assigned to exactly one machine for 
processing. Eq. (4) indicates whether an operation requires setup. 
Eq. (5) represents the processing time constraints for the job. 
Eq. (6) represents the setup phase time constraints for the job. 
Eq. (7) represents the transportation phase time constraints for 
the job. Eq. (8) imposes timing constraints between adjacent 
operations and ensures that only one operation (whether setup or 
processing) can be performed on a machine at a time. Eq. (9) 
and Eq. (10) stipulate that if a job is being processed on a 
machine, there must be one preceding and one succeeding 
operation (including virtual operations). Eq. (11) and Eq. (12) 
represents the time constraints for each phase of the operation, 
requiring that the job must arrive at the machine and complete 
the setup before production begins. Additionally, the setup and 
transportation operations can occur independently. 

III. ALGORITHM DESIGN 

The flexible job shop scheduling problem that considers both 
setup and transportation times, as investigated in this study, is 
an NP-hard problem. As the problem size grows, exact 
algorithms struggle to produce solutions within a short time. 
Considering the sparrow search algorithm’s advantages—few 
parameters and ease of implementation—this study adopts and 
refines it to efficiently solve the aforementioned mixed-integer 
programming model. 

A. Encoding and Decoding 

1) In Flexible job shop scheduling research, encoding 

primarily addresses two aspects: operation sequencing and 

machine selection. To address this challenge, a two-stage 

encoding scheme—operation sequence and machine 

sequence—is designed, as illustrated in Fig. 2. 

1 2 3 2 3 1

2 4 1 1 3 3

Operation 

Sequence

Machine 

Sequence

O11 O21 O31 O22 O32 O12 1 2 3 2 3 1 2 4 1 1 3 3

J1 J2 J3 J2 J3 J1

M2 M4 M1 M1 M3 M3

 

Fig. 2. An example of encoding. 

2) Operation Sequence (OS): Each element in the sequence 

represents an operation for a job, and its position in the encoded 

sequence determines the order in which operations are 

performed.  For example, if the OS sequence is1-2-1-3-2-3-1, it 

means the sequence of operations for these three jobs is 𝑂11 −
𝑂21 − 𝑂12 − 𝑂31 − 𝑂22 − 𝑂32 − 𝑂13 .This encoding method 
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ensures the sequential constraints among multiple operations of 

each workpiece. 

3) Machine Sequence (MS): Each element in the sequence 

represents a machine, specifying which machine processes the 

corresponding operation in the OS sequence. For example, if 

the MS sequence is 1-3-1-2-3-1-3, then 𝑂11 is processed on 

machine 𝑀1, and operation 𝑂21 is processed on machine 𝑀3. 

By applying the Ranked Order Value (ROV) rule, one can 
map continuous individual vectors to discrete individual vectors. 
This process consists of two parts: encoding conversion for 
operation sequencing and encoding conversion for machine 
assignment. After decoding, one must evaluate the resulting 
machining scheme’s quality and determine whether forward 
insertion of the workpiece is necessary. 

 The operation sequence conversion steps are illustrated 
in Fig. 3. 

 The machine encoding is mapped according to Eq. (13). 

𝑚𝑜 = 𝑟𝑜𝑢𝑛𝑑 (
(𝜆+𝑚)(𝑚−1)

2𝑚
+ 1)                  (13) 

The 𝑜 ∈ [1, 𝑑]  represents the ordinal of the operation 
sequence, where 𝑑  is the total number of operations. The 
function, 𝑟𝑜𝑢𝑛𝑑()  performs rounding. The parameter 𝜆 ∈
[−𝑚, 𝑚] indicates that the coded position corresponds to the 
individual’s location in continuous space. The variable 𝑚 
denotes the total number of machines, and 𝑚𝑜  denotes the 
machine number selected for the corresponding operation 𝑂𝑖𝑗 . 

 

Fig. 3. ROV Mapping. 

B. Discoverers Location Update Strategy Optimization 

An analysis of the discoverers’ location update strategy in 
the sparrow population shows that when 𝑅2 is lower than 𝑆𝑇, 
the coefficient’s range gradually shrinks from the initial [0,1] 
interval to roughly [0,1] as the number of iterations 𝑖 increases 
[16]. In particular, when 𝑖  is small, the coefficient is more l 
likely to be close to 1, thereby reducing the sparrow’s range of 
activity in each dimension of the search space. Because finders 
constitute only a small fraction of the entire population, 𝑖 
remains relatively small, causing the positional update factor to 
tend toward 1. To address this issue, if 𝑅2 is less than ST, Eq. 
(14) can be used for the position update; otherwise, Eq. (15) is 
adopted. 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 ⋅ (2𝑡 + (−1)𝑡 ⋅ 𝑒𝑥𝑝 (
−𝑖

𝑎⋅𝑖𝑡𝑒𝑟
))

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 + 𝑄 ⋅ 𝐿

C. Critical Path-Based Neighborhood Search 

To further enhance the SSA algorithm’s performance, a 
critical-path-based neighborhood search method is integrated 
into the basic SSA framework. 

Processes located on the critical path often play a decisive 
role in determining the final quality of the overall scheduling 
scheme, as their completion times directly dictate the length of 
the entire production cycle. By adjusting these critical processes 
along with their adjacent operations, the algorithm explores 
additional solution spaces, thereby enhancing the potential to 
discover superior solutions. The procedure is as follows: 

 Identify critical and non-critical operations; 

 Randomly select one operation from the critical-
operation set and one from the non-critical-operation set 
for swapping; 

 New sequence feasibility check, the operation may be 
exchanged to the machine without processing capacity. 
The machine selection is carried out through the Earliest 
Completion Time First rule; 

 Fitness calculation- Assign machines based on the 
workpiece coding sequence and machine coding, and 
perform forward insertion strategy to explore better 
results; 

 Population update. 

The pseudocode is as follows:  

Algorithm 1: Critical path identification 

Input: Operation Set 

Begin: 
 initialize CO 

 for each operationOij: 

  if hij= makespan then: 

   put Oij in CO 

  end if 

 end for 

 while CO != null then: 

  delete first operation 𝑂'of CO 

  T = ℎ𝑖𝑗of 𝑂' 

  for Oij in Operation Set 

   if hij= T then: 

    put Oij in CO 

   end if 

  end for 

 end while 

 return all marked operation 

End 

D. Population Initialization 

In the sparrow optimization algorithm, constructing the 
initial population is the first step, influencing the subsequent 
optimization process and outcomes. Although random 
initialization maintains the abundance and diversity of the 
population, the quality of individuals remains inconsistent. In 
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the initial phase of the algorithm, it may be difficult to quickly 
find a high-quality solution, requiring numerous iterations to 
gradually approach the optimal solution. This process raises the 
algorithm’s computational cost and execution time. To enhance 
the algorithm’s performance, this study employs random 
generation and ECT rule-based initialization to produce 50% of 
the population. The ECT rule dynamically calculates the 
completion time of each operation on every machine and assigns 
tasks to the machine with the earliest completion, thereby 
eliminating unreasonable machine selections during 
initialization and producing an initial solution that is both high 
in quality and diverse. 

The pseudocode is as follows: 

Algorithm 2: ECT rule 

Input: Current operation (Oij), process time on each machine (Tijk), 

setup time on each machine (Wijk), transportation time between Ml 

(processOij-1) to current machine Mk(Plk) 

Begin: 
 initialize 𝑡, 𝑝, 𝑤, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒, 𝑒𝑡 

 for each machineMk: 

  If Mkcan process Oijthen: 

   𝑝 = 𝑇𝑖𝑗𝑘 , 𝑤 = 𝑊𝑖𝑗𝑘  

   If Oij is the first operation of the Job or the first 

operation on Mk  or Oij  and 𝑂𝑝𝑞 are from same job 

then: 
    𝑠𝑡 = 0  

   end if 
   if Oij  is the first operation of the Job or Oij-1  is 

processed on Mk then: 

    𝑝 = 0  

   else 
    𝑝 = 𝑃𝑙𝑘  
   end if 
   completion_time = 𝑚𝑎𝑥(ℎ𝑖𝑗−1 + 𝑡𝑡, ℎ𝑝𝑞 + 𝑤) + 𝑡 

   if completion_time ≤ 𝑒𝑡 then: 

    mark current machine 𝑀𝑘 and update 𝑒𝑡 

   end if 
  end if 
 end for 
 return marked machine 

End 

IV. ANALYSIS OF NUMERICAL EXPERIMENTS 

This study performs an ablation experiment to validate both 
the effectiveness of the proposed algorithmic improvement 
strategy and the algorithm’s overall efficiency. Additionally, 
small-scale and medium-to-large-scale experiments were 
conducted to further assess the algorithm’s efficiency. The 
experiments were implemented in Java, running on an Intel(R) 
Core(TM) i5-7500 CPU @ 3.40GHz processor with 8GB RAM 
and the Windows 10 Professional operating system. 

The experimental dataset consists of 15 newly created 
instances (MK01–MK10, Kacem01–Kacem05), which is 
generated by the small-scale Kacem dataset and the medium-
scale Brandimarte dataset [18]. The commissioning time and 
shipping time are generated according to relevant strategies [19]. 

For the algorithm parameters, the population size exhibits a 
critical trade-off in optimization algorithms: an undersized 

population is prone to premature convergence to local optima, 
whereas an excessively large population imposes prohibitive 
computational overhead. Insufficient iteration cycles 
compromise convergence completeness while introducing 
substantial computational redundancy. The proportional 
allocation between discoverers and followers critically 
modulates the equilibrium between global exploration and local 
exploitation capacities within the algorithm framework.  
Through systematic orthogonal experimental design, the 
optimal parameter configuration was determined as follows: The 
population size was set to 𝑁 = 100, the maximum number of 
iterations to 𝑁_𝑖𝑡𝑒𝑟 = 400, the discoverer proportion to 𝑃𝐷 =
20%, and the vigilant proportion to 𝑆𝐷 = 80%. 

A. Validation of the Improvement Strategy's Effectiveness 

The Improved Sparrow Search Algorithm integrates three 
strategies into the standard algorithm: SSA1 denotes an 
optimized discoverer location update strategy, SSA2 represents 
population initialization via an ECT heuristic, and SSA3 adopts 
a critical-path-based neighborhood search strategy. This study 
designed eight sets of experiments to compare the strategies 
presented in TABLE II.  The eight algorithms were each run 
independently ten times on the Brandimarte dataset, recording 
their best, average, and variance values, as well as the solution 
time. 

TABLE II.  ALGORITHM COMPARISON STRATEGY 

 
SS

A 

SS

A1 

SS

A2 

SS

A3 

SSA

12 

SSA

13 

SSA

23 

SSA1

23 

Strate

gy 1 
○ ● ○ ○ ● ● ○ ● 

Strate

gy 2 
○ ○ ● ○ ● ○ ● ● 

Strate

gy 3 
○ ○ ○ ● ○ ● ● ● 

Note: ● indicates that the policy is applied; ○ indicates that the 

policy is not applied 

1) Analysis of the discoverer’s location update strategy: 

Strategy I modifies the parameters of the sparrow population’s 

position update formula, increasing the step size and direction 

of the position update and enhancing the global search 

capability of the sparrow search algorithm to avoid local 

optima. In independent runs, the tenth solution comes closer to 

the optimum, showing reduced variance. As illustrated in Fig. 

4(a), SSA1 outperforms SSA in variance across 12 of the 15 

datasets, exhibiting a reduction of over 50% in Mk08 and 

Mk09. Fig. 4(b) to (d) presents comparative trials of the other 

groups incorporating Strategies II and III. 

2) Analysis of ECT rule strategies: Among the four 

algorithms listed in Table II—SSA2, SSA12, SSA23, and 

SSA123—incorporate the finder location update strategy. To 

assess the impact of Strategy II, it is removed from these 

algorithms and compared with SSA, SSA1, SSA3, and SSA13. 

As a specific strategy, the ECT rule is tailored to the 

characteristics of this problem and is thus highly suited to the 

research in this chapter. The ECT rule quickly locates machines 

with shorter completion times, complementing the sparrow 

search algorithm. In conjunction with its global search 
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capability, this improves solution quality and efficiency. As 

shown in Fig. 5(a) to (d), when the effects of Strategies I and 

III are excluded, incorporating improved Strategy II yields 

superior solution quality. Since the sparrow algorithm relies on 

the current optimal solution when the sparrow population 

undergoes positional updating during the iterative process, high 

quality initial values can improve the solution quality. Results 

from ten independent experimental runs reveal a notable 

decrease in both the best and average values across all datasets, 

with a more pronounced effect on larger datasets. The quality 

of the initial population solution generated by the ECT rule and 

the random generation method is shown in Fig. 6(a), and the 

variance of the solution is shown in Fig. 6(b). 

3) Critical path-based neighborhood search strategy 

analysis: Among the algorithms listed in Table II, SSA3, 

SSA13, SSA23, and SSA123 apply the location update strategy 

and culling Strategy II is compared with algorithms SSA, 

SSA1, SSA2, and SSA12. Incorporating Strategy III increases 

the solution time while reducing the average solution value. 

Since the processes on the critical path dictate the final 

completion time, each iteration later applies Strategy III to swap 

critical and non-critical processes. While this two-step 

operation of identifying and exchanging key processes 

increases computation time, it also enables a stronger local 

search capability. Fig. 7. (a) to (d) compares the effects of 

applying exclusion Strategies I and II and improvement strategy 

III on the algorithm’s convergence performance. Incorporating 

Strategy III, clearly enhances the sparrow population’s capacity 

for precise searching, leading to higher-quality solutions across 

iterations. The algorithm augmented by the improved Strategy 

III achieves an even better optimal solution. 

 
(a) Comparison of the variance of SSA and SSA1   (b) Comparison of the variance of SSA2 and SSA12 

 
(c) Comparison of the variance of SSA3 and SSA13   (d) Comparison of variance of SSA23 and SSA123 

Fig. 4. Comparison of variance between algorithms with Strategy I. 

 
(a) Comparison of SSA and SSA2 results    (b) Comparison of SSA1 and SSA12 results 
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(c) Comparison of SSA3 and SSA23 results   (d) Comparison of SSA13 and SSA123 results 

Fig. 5. Comparison of fitness between algorithms with Strategy II. 

 
(a) Individual fitness of populations    (b) Statistics on the fitness of the populations 

Fig. 6. Comparison of iterative process between algorithms with Strategy III. 

 
(a) SSA and SSA3 iterative process on Mk01   (b) SSA1 and SSA13 iterative process on Mk12 

 
(c) SSA2 and SSA23 iterative process on Mk14   (d) SSA12 and SSA123 iterative process on Mk01 

Fig. 7. Convergence under Strategies I-III; Strategies III shows improved precision and solution quality. 
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B. Small-Scale Experimental Validation Analysis 

In the small-scale experiments, Java was used to invoke the 
CPLEX solver for comparison with the Improved Sparrow 
Search Algorithm. The solution results for the small-scale 
Kacem benchmark instances are presented in TABLE III.  The 
Improved Sparrow Search Algorithm’s solution time grows 
slowly as the problem size increases. Moreover, the difference 
between its objective function value and that of the exact 
solution via CPLEX remains small—specifically, the gap 
between the optimal solutions is only 1. However, from the 
kacem8-8 instance onwards, ISSA runs significantly faster than 
the solver, demonstrating the effectiveness of the Improved 
Sparrow Search Algorithm. 

TABLE III.  COMPARISON OF CPLEX AND ISSA ON KACEM DATA SET 

Dataset 
CPLEX ISSA 

𝒇 𝒕/𝒔 𝒇 𝒕/𝒔 

kacem4-5 16 0.22 17 3.63 

kacem8-8 22 32.03 24 10.61 

kacem10-7 17 322.98 18 9.97 

kacem10-10 11 37.13 12 11.11 

kacem15-10 22 115200 23 35.59 

C. Analysis of Large-Scale Experimental Validation 

TABLE IV. presents the experimental results of the 
Improved Sparrow Search Algorithm compared with the 
standard sparrow search algorithm, the standard gray wolf 
optimization algorithm, and the genetic algorithm. The 
experiment uses the Brandimarte dataset, running each set of 
algorithms independently ten times. The average value was 
taken as the solution for each algorithm, and the performance 
gap between the three algorithms and the best solution among 
them was also recorded. From Table IV, it can be observed that 
the Improved Sparrow Search Algorithm shows a significant 
improvement in all 15 instances, with a minimum improvement 
rate of 7.96% and an average improvement rate of 26.48%. 
Moreover, the optimal values obtained by ISSA are consistently 
better than those achieved by the gray wolf algorithm and the 
genetic algorithm. The enhanced position updating strategy 
strengthens the sparrow search algorithm’s global search 
capability, helping it avoid local optima and consistently 
discover superior solutions across all the 15 algorithms. In all 15 
test instances, the Improved Sparrow Search Algorithm achieves 
the optimal solution. 𝐺𝑔  denotes the gap between the optimal 

values of the GWO, GA, and ISSA solutions. The GWO 
algorithm’s smallest gap is 9.0%, with an average gap of 33%. 
Meanwhile, when comparing the GA algorithm to ISSA, the 
smallest gap is 20.3%, and the average gap is 56%. These 
findings confirm that the ISSA algorithm developed in this study 
exhibits superior stability, convergence, and efficiency when 
solving FJSP problems involving setup and transportation times. 

TABLE IV.  COMPARISON OF ISSA, SSA, GWO AND GA 

Dataset 
ISSA SSA GWO GA 

𝑓 𝑓 𝐺𝑔 𝑓 𝐺𝑔 𝑓 𝐺𝑔 

Mk01 70.7 84 18.81% 91.0 28.7% 92.3 30.6% 

Mk02 56.0 75 33.93% 83.1 48.4% 77.1 37.7% 

Mk03 316.0 416 31.65% 439.4 39.1% 543.7 72.1% 

Mk04 118.2 135 14.21% 141.2 19.5% 154.9 31.0% 

Mk05 296.4 320 7.96% 341.6 15.2% 358.5 21.0% 

Mk06 160.1 233 45.53% 246.1 53.7% 332.3 107.6% 

Mk07 243.4 339 39.28% 362.2 48.8% 321.1 31.9% 

Mk08 873.4 914 4.65% 952.0 9.0% 1050.6 20.3% 

Mk09 596.2 720 20.76% 754.4 26.5% 1051.6 76.4% 

Mk10 438.2 631 44.00% 652.2 48.8% 918.2 109.5% 

Mk11 997.6 1113 11.57% 1145.1 14.8% 1221.8 22.5% 

Mk12 830.0 963 16.02% 1010.0 21.7% 1090.7 31.4% 

Mk13 737.5 1069 44.95% 1081.9 46.7% 1427.8 93.6% 

Mk14 1037.2 1364 31.51% 1408.6 35.8% 1602.1 54.5% 

Mk15 692.4 917 32.44% 952.8 37.6% 1407.0 103.2% 
 

V. RESULTS AND DISCUSSION 

Firstly, the experimental validation presented in Section IV 
demonstrates that Strategy Ⅰ effectively improves the algorithm's 
stability with better variance performance, while Strategy II 
significantly improves the quality of initial solutions, thereby 
accelerating the optimization process and elevating solution 
quality. Additionally, Strategy III achieves considerable 

improvements in both convergence speed and solution quality, 
with only a marginal increase in computational complexity. 

Secondly, experimental results on small-scale instances 
show that the proposed algorithm produces solutions 
comparable to those obtained by CPLEX solver, while 
exhibiting superior computational efficiency. For small-scale 
problems, our algorithm can effectively generate production 
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scheduling solutions. In large-scale experiments, the proposed 
algorithm outperforms other classical algorithms in terms of 
both solution accuracy and quality, demonstrating its 
effectiveness in solving flexible job shop scheduling problems 
that consider both setup and transportation times. 

VI. CONCLUSION 

Frequent production changes seriously impact the 
productivity of discrete order-driven manufacturing enterprises. 
This study considers the machine commissioning time caused 
by production changeovers and the transportation time due to 
workpiece changeovers on processing machines. A mixed-
integer programming model is formulated to minimize the 
makespan, and an Improved Sparrow Search Algorithm is 
proposed to solve it. Experimental comparisons with CPLEX, 
the Gray Wolf Algorithm, and the Genetic Algorithm confirm 
the algorithm’s effectiveness and efficiency. The results 
demonstrate that the location updating strategy involving an 
expanded search direction, the ECT-based population 
initialization tailored to the problem, and the critical-path-based 
neighborhood search strategy proposed herein significantly 
enhance both solution efficiency and quality for the sparrow 
search algorithm. Future research could refine this study by 
incorporating employee resource constraints in machine 
commissioning and the operation of transport equipment to 
address more complex flexible job shop scenarios. 

Future studies will advance this work by integrating 
machine‑setup constraints and operator resource limitations for 
material‑handling equipment, thereby refining the scheduling 
model to accommodate more complex scenarios in flexible job 
shop environments. 
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