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Abstract—The convergence of Software-Defined Networking 

(SDN) and the Internet of Things (IoT) has enabled a more 

adaptable framework for managing SDN-enabled IoT (SD-IoT) 

applications, but it also introduces significant cyber security risks. 

This study proposes a lightweight and explainable intrusion 

detection system (IDS) based on a hybrid Levy Arithmetic 

Algorithm (LAA) for SD-IoT environments. By integrating Levy 

randomization with the Arithmetic Optimization Algorithm 

(AOA), the LAA enhances feature selection efficiency while 

minimizing computational overhead. The model was evaluated 

using the NSL-KDD and UNSW-NB15 datasets. Experimental 

results demonstrate that the LAA outperformed baseline models, 

achieving up to 89.2% F1-score and 95.4% precision, while 

maintaining 100% detection of normal behaviors. These outcomes 

highlight the proposed system's potential for accurate and efficient 

detection of cyber-attacks in resource-constrained SD-IoT 

environments. 
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I. INTRODUCTION 

A. Background 

The Internet of Things (IoT) emerged from the rapid 
development of intelligent sensors recently and the need for 
device connectivity [1]. IoT presents broad opportunities in the 
healthcare, industrial, and supply chain industries, requiring 
robust stability, resilience, scalability, versatility, and control 
[2]. Moreover, IoT components have limits to their capabilities 
and contain embedded chips with various configurations. 
Traditional networks have become increasingly complex due to 
IoT-specific demands. Software-Defined IoT (SD-IoT) seeks to 
bring Software-Defined Networking (SDN) to the IoT by 
providing resource flexibility and network management for 
existing networks. SDN is considered a key technology to 
develop next-generation networks [3]. 

SDN transforms conventional Internet architecture via the 
separation of management and data layers [4]. Therefore, the 
management layer features more intelligence, programming, 
and innovation and accesses all SD-IoT components where 
resources and traffic can be efficiently managed. The security 
challenges associated with SD-IoT prevent its applications from 
being realized sooner. First of all, security concerns stem from 
the shared decision-making power of SD-IoT [5]. Attackers can 
quickly initiate and take over central controllers by conducting 

and applying malicious techniques and tactics like Denial of 
Service (DoS), Distributed DoS (DDoS), and malware, 
implement erroneous policies, and degrade network 
performance. Consequently, a security strategy must be a core 
part of the SD-IoT design to protect against cyber-attacks and 
maintain functionality [6]. 

B. Problem Statement 

A Network Intrusion Detection System (NIDS) is a tool 
developed to track and examine traffic on a network to identify 
threats, breaches, or illegal activities [7]. Signature-driven (also 
called misuse-focused or knowledge-based) and anomaly-based 
(also called behavior-based) methodologies are two primary 
methods for detecting intrusions into IoT systems [8]. It is 
possible to create a hybrid detection mechanism by combining 
both. However, this would require a lot of energy and resources 
to implement. Unlike anomaly-based systems that detect attacks 
based on traffic patterns, signature-driven systems classify 
traffic based on known threats. Existing and well-known attacks 
are well-protected by signature-based systems [9]. 

The rise of SD-IoT networks demands adaptive security 
mechanisms to address diverse cyber threats. While, commonly 
used, traditional methods like user authentication and encryption 
lack the flexibility to detect a wide range of evolving attacks in 
dynamic environments [10]. Intrusion Detection Systems (IDS), 
particularly those powered by machine learning, have proven 
effective in analyzing network traffic to identify attack patterns 
more accurately [11]. However, in resource-constrained SD-IoT 
systems, IDS models must be lightweight, analyzing only 
critical traffic features to maintain efficiency. Identifying these 
key attributes is a challenge. Moreover, ML-based IDS 
predictions are often tricky for cyber security experts to 
interpret, creating a need for Explainable Artificial Intelligence 
(XAI). XAI enhances transparency, allowing experts to 
understand and trust the decisions made by these models in 
cyber defense [12]. 

Applications such as geothermal energy extraction and 
underground mining increasingly rely on interconnected sensors 
and automated control systems for real-time monitoring and 
safety management. These cyber-physical environments, which 
include complex geological modeling and simulation efforts 
[13], are inherently vulnerable to cyber threats, thereby 
reinforcing the need for robust and lightweight intrusion 
detection systems in SD-IoT settings. 
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C. Research Objectives 

This study aims to address critical challenges in SD-IoT 
security by proposing an innovative solution for building a 
lightweight machine learning-based IDS. The main objective is 
to develop an efficient IDS by selecting an optimal subset of 
features, minimizing computational complexity, and conserving 
computing resources. The research introduces a novel feature 
selection method using the Levy-Arithmetic Algorithm (LAA), 
which applies the Levy flight random step theory to the 
Arithmetic Optimization Algorithm (AOA) to enhance search 
efficiency. Key contributions to this research include: 

 Defining a security model for SD-IoT applications; 

 Introducing a lightweight IDS using minimal features 
optimized by LAA; 

 Training machine learning models such as Multi-Layer 
Perceptron, XGBoost, Random Forest, and Decision 
Tree on the selected features. 

The remainder of the paper is structured as follows: 
Section II comprehensively reviews scholarly sources. 
Section  III discusses the proposed method. Section IV presents 
the experimental setup and results. Section V outlines the 
primary outcomes, highlights the contributions, and suggests 
future research. 

II. RELATED WORK 

This section reviews the existing research on IDS for IoT 
deployments, listed in Table I. It highlights machine learning-
based algorithms, feature selection techniques, and bio-inspired 
optimization algorithms for coping with resource constraints. 

Rahman, et al. [14], proposed two approaches to overcome 
the limitations of centralized IDS for resource-limited 
endpoints: semi-distributed and decentralized. They used 

concurrent machine-learning algorithms to distribute the 
computing workload, with the semi-distributed scenario 
involving simultaneous modeling on the edge for feature 
selection and multiple classification layers. The decentralized 
scenario involved independent processes for feature selection 
and multi-layer perceptron classification, then amalgamated by 
a coordinated edge or fog for decision-making. The proposed 
approaches shows potential for detection accuracy equivalent to 
centralized IDS. 

Forestiero [15], devised a technique for identifying 
irregularities in IoT using activity footprints. IoT2Vec, an 
embedding methodology, is used to depict devices and services 
using dense vectors. These vectors are allocated to mobile agents 
that adhere to an adapted bio-inspired paradigm. This approach 
facilitates intelligent global behavior derived from local 
movement rules recognized by all agents. A similarity rule 
facilitates each agent's selective application of movement rules, 
promoting automatic proximity among similar agents. The 
approach may detect solitary agents exhibiting anomalous 
behaviors, perhaps revealing intruders or malevolent users. 

Li, et al. [16], used an Artificial Neural Network (ANN) to 
identify anomalous activity in a healthcare IoT system. The 
precision of recognition is significantly influenced by the 
characteristics inputted into the artificial neural network. 
Identifying relevant and distinctive aspects of network traffic is 
a critical and complex challenge due to its substantial influence 
on learning. The suggested approach utilizes the butterfly 
optimization algorithm to determine the ideal features for 
learning in an artificial neural network. The findings, achieving 
an accuracy of 92%, confirm the algorithm's efficacy in 
detecting discriminative aspects of traffic patterns. The 
suggested technique surpassed the performance of decision 
trees, support vector machines, and ant colony optimization used 
in prior research for the same objective. 

TABLE I.  COMPARATIVE ANALYSIS OF IDS APPROACHES FOR IOT DEPLOYMENTS 

Reference Approach Feature selection Algorithm/model Key findings 

[14] 
Semi-distributed and decentralized IDS 

approaches 

Concurrent machine 

learning algorithms for 
workload distribution 

Multi-layer Perceptron 

classification 

Distributed IDS models show detection 

accuracy equivalent to centralized IDS. 

[15] 
Activity footprint analysis using 
IoT2Vec embedding 

Bio-inspired selective 
movement rules 

Mobile agents 

following adapted bio-

inspired paradigms 

The method detects anomalous behaviors by 
identifying isolated agents. 

[16] Anomaly detection in healthcare IoT 
Butterfly optimization 
algorithm 

Artificial neural 
network 

Achieved 93.2% accuracy, outperforming 

decision trees, SVM, and ant colony 

optimization in feature selection. 

[17] 
Hybrid metaheuristic-deep learning for 

IoT intrusion detection 

Harris hawk optimization 
and fractional derivative 

mutation 

LSTM and GRU 

models 

Outperformed other approaches in accuracy 

and efficiency on public datasets. 

[18] 
Detection of botnets using hybrid 

metaheuristics and machine learning 

Modified firefly 

optimization 

Hybrid CNN and 

quasi-recurrent neural 

network 

Superior performance for botnet detection in 

cloud-based IoT systems. 

[19] 
IDS using variable searching pattern 

optimization for feature selection 

Variable searching 

pattern optimization 

Deep recurrent neural 

network 

Achieved 96.1% accuracy, effectively 

identifying intrusions. 

[20] 

Hybrid IDS using grey wolf 

optimization and support vector 

machine 

GWO for kernel function 

and parameter 

optimization 

SVM with GWO 

Outperformed other models in F-score, recall, 

precision, and accuracy on TON_IoT and NSL-

KDD datasets. 
 

Sanju [17], presented a hybrid metaheuristic-deep learning 
methodology to improve the detection of intrusions in IoT 
systems. An enhanced metaheuristic approach using an 
ensemble of Recurrent Neural Networks (RNNs) is used to 

improve intrusion detection in IoT. Various attack kinds in IoT 
systems are discerned by using LSTM and GRU models, which 
are forms of RNNs. Feature selection is conducted using Harris 
Hawk optimization and fractional derivative mutation. The 
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evaluation of the suggested methodology used publicly 
accessible datasets, and the empirical study indicated that it 
outperforms other comparable approaches for accuracy and 
efficiency. It offers a viable technique for improving intrusion 
detection in IoT systems and may serve as a basis for future 
research in this domain. 

Almuqren, et al. [18] introduced a Hybrid Metaheuristics 
with a Machine Learning-based Botnet Detection (HMMLB-
BND) approach inside a cloud-assisted IoT system. HMMLB-
BND concentrates on identifying and categorizing Botnet 
assaults inside the cloud-based IoT ecosystem. The Modified 
Firefly Optimization (MFO) algorithm is used for feature 
selection. HMMLB-BND employs a hybrid convolutional 
neural network and quasi-recurrent neural network module to 
identify botnets. The chaotic butterfly optimization approach is 
used for optimum hyperparameter tuning. A series of 
simulations were conducted on the N-BaIoT dataset, and the 
experimental results indicated the superiority of HMMLB-BND 
compared to other current methodologies. 

Jayasankar, et al. [19] suggested an IDS using variable 
searching pattern optimization for feature selection with an 
optimum deep recurrent neural network model in an IoT context. 
It consists of a two-phase procedure: feature selection and 
incursion classification. In the first step, an ideal set of features 
is identified with variable searching pattern optimization. 
Subsequently, in the second phase, breaches are recognized and 
classified using the DRNN model. The hyperparameters of the 
DRNN are optimally selected using the Nadam optimizer. A 
comprehensive simulation study of the model is verified using a 
benchmark IDS dataset, and the results demonstrate the 
effectiveness of intrusion detection. The suggested model 
effectively identifies intrusions with an accuracy of 96.1%. 

Ghasemi and Babaie [20] developed a hybrid intrusion 
detection technique using Grey Wolf Optimization (GWO) and 
Support Vector Machine (SVM). The SVM distinguishes 
between anomalous and normal records, while the GWO 
identifies the kernel function, selects features, and optimizes 
parameters for the SVM to enhance classification accuracy. The 
simulations demonstrate that the proposed method surpasses 
others in detection accuracy, precision, recall, and F-score on the 
NSL-KDD and TON_IoT datasets. 

III. PROPOSED METHOD 

This section summarizes the graphical abstract used for the 
proposed model (LAA), which differs from conventional 
methods of selecting features. Detailed architectural pipelines 
for the model are described below. A methodology is described 
in the next section to elucidate the output (prediction) of the 
model. Fig. 1 illustrates a lightweight, explainable IDS. 

This section presents a detailed method for determining 
appropriate features for devices with storage limitations. As a 
result, model performance improves owing to decreased 
calculation time and resource use. Machine learning relies on 
selecting a subset of optimum features from the available feature 
dimensions [21]. In this way, the dimensions of the feature 
vector become smaller, computation time decreases, and 
machine learning performance improves. A variety of feature 
selection techniques are used to reduce dimension. Some 

techniques for selecting features include LAA, information gain, 
and correlation coefficients. 

AOA applies a metaheuristic strategy for analyzing 
exploration and exploitation balances based on math operations, 
like Addition, Subtraction, Multiplication, and Division. AOA is 
primarily inspired by the application of Arithmetic operators to 
resolve Arithmetic problems. According to Fig. 2, Arithmetic 
operators are arranged in a hierarchy according to their 
ascending dominance. The optimization procedure starts by 
randomly generating candidate solutions (X) given by Eq. (1). 
Best candidate solutions are considered the best-obtained or 
nearly optimum solutions in each iteration. 

𝑋 =

(

 
 

𝑥1,1 ⋯ ⋯ 𝑥1,𝑗 𝑥1,𝑛−1 𝑥1,𝑛
𝑥2,1 ⋯ ⋯ 𝑥2,𝑗 ⋯ 𝑥2,𝑛
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

𝑥𝑛−1,1 ⋯ ⋯ 𝑥𝑛−1,𝑗 ⋯ 𝑥𝑛−1,𝑛
𝑥𝑛,1 ⋯ ⋯ 𝑥𝑛,𝑗 𝑥𝑛,𝑛−1 𝑥𝑛,𝑛 )

 
 

 (1) 

Prior to the AOA commencement, it must choose the search 
strategy (i.e., exploration or exploitation). The Math Optimizer 
Accelerated (MOA) function is a coefficient derived from Eq. 
(2) used in subsequent search stages. 

𝑀𝑂𝐴(𝐶𝑖𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶𝑖𝑡𝑒𝑟 × (
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝑖𝑡𝑒𝑟
)           (2) 

where, 𝑀𝑂𝐴(𝐶𝑖𝑡𝑒𝑟) represents the value of the function at 
iteration t, 𝑀𝑖𝑡𝑒𝑟  indicates the maximum number of iterations, 
𝐶𝑖𝑡𝑒𝑟  indicates the current iteration and Min and Max are the 
lowest and highest accelerated values. 

In the AOA, the Division and Multiplication operators 
generate highly dispersed values during mathematical 
computations, enhancing the search process's exploration phase. 
However, due to their high dispersion, these operators struggle 
to converge on the target as efficiently as the Addition and 
Subtraction operators. The exploration phase focuses on 
identifying near-optimal solutions, often requiring several 
iterations. At this stage, Division and Multiplication operators 
play a key role in enhancing communication between the 
exploration and exploitation phases, ultimately supporting the 
search process. 

AOA’s exploration operators randomly scan the search 
space across different regions, aiming to identify better solutions 
using two primary strategies: the Division and Multiplication 
strategies, as represented in Eq. (3). This search phase is 
governed by the MOA function, with the condition r1 > MOA. 
As illustrated in Fig. 3, the Division operator is activated when 
r2 < 0.5, while the Multiplication operator remains inactive until 
the Division task is completed. If the condition is not met, the 
Multiplication operator takes over. A stochastic scaling 
coefficient is also applied to introduce more diversity into the 
exploration, ensuring that a broader range of regions within the 
search space is evaluated. 

𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟 + 1) =

{
 
 

 
 

𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,    𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) ÷𝑀𝑂𝑃 ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,     𝑜ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 
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Fig. 1. System model. 
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Fig. 2. Arithmetic operators. 

 

Fig. 3. Search space of AOA. 

where, r2 represents a random number ranging from 0 to 1, 
μ regulates search operations as a control parameter, ε is a 
constant parameter for avoiding zero, and MOP gives a 
probability function-based math optimizer. Multiplication and 
subtraction operators have low precedence, allowing local 
searches to find the optimum outcome. The candidate solution 
is updated iteratively based on Eq. (4) to reach the optimal result.  

𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟 + 1)

=

{
 
 

 
 

𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,           𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,         𝑜ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4) 

In Eq. (3) and Eq. (4), Math Optimizer Probability (MOP) is 
the key function for finding the optimal value and determining 
its capability, determined by Eq. (5). 

𝑀𝑂𝑃(𝐶𝑖𝑡𝑒𝑟) = 1 −
(𝐶𝑖𝑡𝑒𝑟)

1
𝑎⁄

(𝑀𝑖𝑡𝑒𝑟)
1
𝑎⁄
 (5) 

The Levy Random Step (LRS) denotes random walking in 
which the size of the steps follows a statistical distribution 
termed the Levy pattern. Its thick tails characterize this 

distribution, indicating that extreme or unusual events happen 
more often than normal occurrences. In a Lévy random walk, the 
step dimensions and orientations are sampled from this 
distribution, yielding many little steps interspersed with 
occasional significant leaps in random directions. This 
unpredictability must be regulated to successfully direct efforts 
toward optimum solutions while reducing departures from the 
best potential outcomes. Random steps are stochastic processes 
that involve taking a series of unpredictable steps, as expressed 
mathematically in Eq. (6). 

𝑆𝑛 =∑ 𝑥𝑖 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
𝑛

𝑖=1
 (6) 

where, Sn is the sum of consecutive steps and xi represents 
each random step. The notion of Lévy random steps and flights, 
given by the French mathematician Paul Lévy, stems from the 
first investigations of stochastic processes in physics, including 
particle motion in fluids and gases. Levy walks and steps have 
been extensively studied and used across several disciplines, 
demonstrating their efficacy in optimization issues and other 
applications. The essence of a Lévy random step is rooted in the 
Lévy distribution, distinguished by its thick tails, which 
markedly enhance the probability of extreme step sizes relative 
to a normal distribution. The probability of a Lévy step may be 
mathematically estimated as shown in Eq. (7). 

𝐿(𝑥) ≈ |𝑥|1−𝑎 (7) 

where, α controls the tail heaviness, typically in the range 
0<α≤2. The Levy distribution probability density function is 
expressed as in Eq. (8). 

𝐿(𝑥) =
1

𝜋
∫ 𝑒−𝛾𝜏

𝑎
𝑐𝑜𝑠(𝜏𝑥)𝑑𝜏

∞

0

 (8) 

where, γ is a scaling parameter, usually set to 1, and τ is a 
small-time interval. As α increases, the distribution shifts closer 
to the mean, while lower values of α correspond to a distribution 
further from the mean. Mantegna's approach produces random 
numbers according to the Lévy distribution. This algorithm 
effectively generates Levy steps by sampling two random 
variables from normal distributions. The equation for producing 
Lévy steps is given in Eq. (9). 

𝑆 =
𝜈

|𝜈|
1
𝑎⁄
 (9) 

where, ν is a normally distributed variable, standard 
deviations σν determined by the Levy distribution's 
characteristics. 

The LRS is advantageous in optimization algorithms as it 
facilitates rapid search space exploration via integrating both 
little, frequent steps and substantial, infrequent leaps. This dual 
nature enables the algorithm to evade local optima and progress 
toward more advantageous areas of the search space, hence 
increasing the probability of identifying a global optimum. 

The fundamental components of metaheuristic algorithms, 
specifically the search space, assessment mechanism, position 
modification technique, new solution acceptance criteria, and 
stopping conditions, are crucial in determining their 
effectiveness. AOA is known for its simplicity and broad 
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applicability to various optimization problems. However, it may 
struggle with more complex problems, often getting trapped in 
local optima or requiring numerous iterations to reach the 
optimal solution. The AOA employs a math-optimized 
likelihood, as shown in Eq. (5), which adjusts iteratively and 
determines possible solutions within the search area, as 
described in Eq. (3) and Eq. (4). 

To overcome these limitations, the proposed Levy 
Arithmetic Algorithm (LAA) introduces LRS into the AOA 
framework. By incorporating these steps, potential solutions can 
occasionally make broad, random shifts, allowing the algorithm 
to discover unexplored areas of the search domain and 
increasing the likelihood of discovering better optimal solutions. 

In the LAA, candidate solutions are updated using the 
arithmetic operators from AOA and enhanced by the LRS, 
generating stochastic jumps based on the Levy pattern. This 
enables the solutions to shift randomly to new positions, 
promoting a more extensive search for optimal solutions in each 
cycle. The direction and scale of these jumps are influenced by 
decision variables (Dim) and population size (N), determined by 
the dimensionality of the problem and the characteristics of the 
LRS. While incorporating LRS allows for a broader search 
space exploration, it may be slower than the standard AOA to 
reach the optimum solution. 

In LAA, the exploration phase, governed by Eq. (3), and the 
exploitation phase, defined by Eq. (4), are altered by LRS (S), as 
described in Eq. (9), and are expressed mathematically in Eq. 
(10) and Eq. (11). 

𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟 + 1) =

{
 
 

 
 

𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ 𝑆 × (𝑀𝑂𝑃 + 𝜀) ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,     𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × 𝑆 ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,     𝑜ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 

𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟 + 1) =

{
 
 

 
 

𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑆 ×𝑀𝑂𝑃 ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,     𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × 𝑆 ×

((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,      𝑜ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

using Eq. (10) and Eq. (11) enhances candidate solution 
diversity and prevents the algorithm from becoming stuck in 
local optima. By incorporating the LRS into the LA, the 
algorithm explores larger areas more effectively, thereby 
continuously discovering better solutions that traditional 
arithmetic optimization methods might miss. At first, fitness 
functions and best solutions are determined from objective 
functions, decision variables, and conditions, and they are 
dynamically modified based on the algorithm parameters and 
the potential solutions. 

Three key variables (r1, r2, r3) are critical in narrowing the 
searching space based on four different operations: addition, 
subtraction, multiplication, and division, as defined by the Levy 
flight formulation, enabling the algorithm to approach the 
optimal solution. Integrating LRS enhances the algorithm's 
ability to search globally, making it more robust and efficient, 
thereby increasing the chances of identifying the global 

optimum. This method proves particularly useful in resolving 
optimization issues in which a number of local optima must be 
investigated before reaching the global best solution. 

IV. RESULTS AND DISCUSSION 

A. Datasets 

Two widely used datasets are used to analyze the proposed 
LAA for intrusion detection in SD-IoT environments: UNSW-
NB15 and NSL-KDD. UNSW-NB15 is commonly used in 
intrusion detection research and contains 43 features, including 
primary network attributes and security features. It includes a 
class feature with several categories: Exploits, DoS, Fuzzers, 
Normal, and Backdoors. The dataset comprises 257,673 
instances, 70% used for training and 30% for testing. 
NSL- KDD, as an improved version of the KDD Cup 1999 
dataset, contains 42 attributes and focuses on four major types 
of attacks: Remote to Local (R2L), User to Root (U2R), DoS, 
and Probe. The dataset comprises 148,517 records, with 85% 
assigned to training and 15% for testing. Both datasets are 
significant for testing the efficiency of IDS models, as they 
cover a broad range of network traffic and cyber-attack 
scenarios, providing comprehensive benchmarks for assessing 
performance. 

B. Evaluation Metrics 

The proposed LAA was assessed using a number of standard 
metrics, such as accuracy, precision, recall (true positive rate), 
and F1-score, commonly used in IDS research. 

 Accuracy: This parameter determines the total 
correctness of the algorithm by evaluating the proportion 
of correctly classified instances relative to the total 
number of instances, calculated by Eq. (12). 

𝐴 =
TN + TP 

FN + FP + TN + TP 
 (12) 

where, FN is a false negative, FP is a false positive, TN is a 
true negative, and TP is a true positive. 

 Precision: It determines the quality of positive 
predictions by multiplying the number of true positives 
by the number of positive predictions, calculated using 
Eq. (13). 

𝑃 =
TP 

FP + TP 
 (13) 

 Recall: This metric represents the model's capacity to 
detect all positive instances correctly and is calculated 
using Eq. (14). 

𝑅 =
TP 

TP + FN 
 (14) 

 F1-score: Precision and recall can be balanced by a 
harmonic mean when data is imbalanced, as defined in 
Eq. (15). 

𝐹 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (15) 
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C. Environment 

The experimental setup for evaluating LAA was performed 
on a system equipped with an Intel Core i5-8250U CPU running 
at 3.4 GHz with a Quad-Core configuration supported by 16 GB 
of DDR4 RAM. The operating system used was Windows 10 
(64-bit), ensuring compatibility with the tools employed in the 
experiment. MATLAB was utilized to implement the LAA, 
while Python was used for data pre-processing and additional 
statistical analysis. This computational environment provided 
adequate resources to efficiently run the experiments, ensuring 
that the LAA's performance could be fairly compared with the 
baseline models in terms of speed and accuracy. 

D. Baseline Models 

The effectiveness of LAA was evaluated by comparing it 
with well-established machine learning models of IDS. These 
included the SVM, which identifies the optimal hyper plane for 
classification tasks; Decision Tree (DT), which splits data based 
on feature values for decision-making; and Random Forest (RF), 
a method of constructing multiple decision trees to maximize 
accuracy and minimize over fitting. Additionally, models like 
ANN, which captures complex patterns in data, and Logistic 
Regression (LR), a simpler model estimating binary outcomes, 

were used. Other baseline models included K-Nearest 
Neighbors (KNN), a distance-based classifier; Naive Bayes 
(NB), a probabilistic model based on Bayes’ theorem; and 
AdaBoost, a boosting technique that combines weak classifiers 
to form a more robust classifier. These models served as 
benchmarks to demonstrate how LAA compares accuracy, 
computational efficiency, and detection capabilities. 

E. Performance Evaluation 

Fig. 4 shows the precision of the LAA and other algorithms 
for detecting intrusions in the UNSW-NB15 dataset. The LAA 
achieved the highest precision for several attack types, including 
Fuzzers (83.2%), Reconnaissance (85.5%), and Exploits 
(79.8%), while maintaining 100% precision for detecting 
normal behaviors. This high precision enhances the real-time 
performance of IoT systems, especially in hyper-automation 
processes. Although KNN and AdaBoost performed well in 
detecting Generic attacks with 100% precision, LAA's overall 
performance outpaced all other models. Fig. 5 demonstrates that 
in the NSL-KDD dataset, LAA delivered 95.4% precision, 
excelling at detecting anomaly attacks (Probe, DoS, U2R, and 
R2L), while DT achieved 93.1% and KNN reached 91.7%. 
Other models, such as LR and SVM, achieved precision scores 
of 90.2% and 89.6%, respectively. 

 

Fig. 4. Precision comparison under UNSW-NB15. 

 

Fig. 5. Precision comparison under NSL-KDD. 
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Fig. 6. Recall comparison under UNSW-NB15. 

 

Fig. 7. Recall comparison under NSL-KDD. 

Regarding recall, as depicted in Fig. 6, LAA outperformed 
other machine learning models in detecting cyber-attacks in the 
UNSW-NB15 dataset. Specifically, LAA achieved 85.4% recall 
for Fuzzers, 98.2% for Generic, and 80.5% for Reconnaissance 
attacks. The LAA also demonstrated 100% recall for detecting 
normal behaviors, ensuring high sensitivity in recognizing 
benign activities. In Fig. 7, LAA’s recall in the NSL-KDD 
dataset stood at 87.8%, efficiently detecting anomaly categories 
such as Probe, DoS, U2R, and R2L. Comparatively, KNN 
achieved a recall of 85.5%, DT reached 84.6%, and NB provided 
84.3%. Lower recall values were recorded for models like 
AdaBoost (64.4%) and SVM (61.7%). 

Fig. 8 and Fig. 9 compares the F1-score across different 
algorithms for both datasets. In the UNSW-NB15 dataset, the 
LAA attained the highest F1-score of 87.4%, surpassing models 
such as ANN (83.2%), AdaBoost (82.2%), and SVM (78.9%). 
Other algorithms like DT (75.8%), KNN (74.1%), and NB 
(60.7%) recorded lower F1-scores, highlighting the superior 

performance of the LAA. For the NSL-KDD dataset, LAA again 
led with an F1-score of 89.2%, while DT and KNN followed 
with 88.5% and 87.3%, respectively. Models like ANN, LR, and 
SVM lagged with F1-scores of 82.1%, 73.2%, and 73.1%, 
respectively. NB exhibited the lowest F1-score at 46.2%. 

These findings are consistent with recent studies that 
emphasize the importance of hybrid optimization in IDS 
performance. For example, the model proposed by Sanju [17], 
which integrates metaheuristics with deep learning, also 
demonstrates competitive F1-scores; however, our method 
achieved higher precision and recall across both datasets. 
Similarly, the approach by Almuqren, et al. [18] using Modified 
Firefly Optimization for botnet detection shows high 
performance, yet lacks the lightweight and explainable 
characteristics emphasized in our LAA framework. Compared 
to the SVM–GWO hybrid by Ghasemi and Babaie [20], our 
model achieved superior accuracy and a more balanced 
F1- score, particularly in detecting diverse attack classes under 
constrained environments. 
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Fig. 8. F1-score comparison under UNSW-NB15. 

 

Fig. 9. F1-score comparison under NSL-KDD. 

V. CONCLUSION 

In this study, we introduced LAA as a novel and efficient 
method for enhancing intrusion detection in SD-IoT 
environments. By integrating LRS with the AOA, the LAA 
achieved a more dynamic balance between exploration and 
exploitation, efficiently navigating complex search spaces and 
identifying optimal solutions for feature selection. The 
experimental results on the NSL-KDD and UNSW-NB15 
datasets demonstrated that the suggested LAA-based IDS model 
outperformed conventional machine learning algorithms in key 
performance indicators such as F1-score, recall, precision, and 
accuracy. The LAA's ability to achieve high detection rates 
while maintaining computational efficiency makes it 
particularly well-suited to resource-constrained SD-IoT 
systems. The proposed LAA presents a significant advancement 
in intrusion detection, providing a robust, lightweight, and 
explainable solution for detecting cyber-attacks in SD-IoT 
environments. 

Despite these promising results, the study has certain 
limitations. First, the performance of the LAA is somewhat 
dependent on the fine-tuning of algorithmic parameters, which 
may require domain-specific expertise. Second, although 

benchmark datasets such as NSL-KDD and UNSW-NB15 
ensure comparability, the model’s effectiveness on real-world, 
heterogeneous SD-IoT traffic remains to be assessed. Finally, 
while the method is computationally efficient in experimental 
settings, its scalability and real-time performance under 
production-scale environments require further validation. Future 
work can explore the extension of LAA to other IoT applications 
and networks, as well as the development of more advanced 
hybrid models to further improve detection rates and reduce 
computational costs. 
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