
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

427 | P a g e  

www.ijacsa.thesai.org 

Reinforcement Learning-Driven Cluster Head 

Selection for Reliable Data Transmission in Dense 

Wireless Sensor Networks

Longyang Du*, Qingxuan Wang, Zhigang ZHANG 

School of Artificial Intelligence, Jiaozuo University, Jiaozuo 454000, Henan, China 

 

 
Abstract—Wireless Sensor Networks (WSNs) have made 

significant advances towards practical applications. Data 

gathering in WSNs has been carried out using various techniques, 

such as multi-path routing, tree topologies, and clustering. 

Conventional systems lack a reliable and effective mechanism for 

dealing with end-to-end connection, traffic, and mobility 

problems. These deficiencies often lead to poor network 

performance. We propose an Internet of Things (IoT)-integrated 

densely distributed WSN system. The system utilizes a tree-based 

clustering approach dependent on the installed sensors' density. 

The cluster head nodes are structured in a tree-based cluster to 

optimize the process of gathering data. Each cluster's most 

efficient aggregation node is selected using a fuzzy inference-based 

reinforcement learning technique. The decision is based on three 

crucial factors: algebraic connectedness, bipartivity index, and 

neighborhood overlap. The proposed method significantly 

enhances energy efficiency and outperforms existing methods in 

bit error rate, throughput, packet delivery ratio, and delay. 

Keywords—Energy efficiency; wireless sensor networks; 
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I. INTRODUCTION 

A. Overview 

Wireless Sensor Networks (WSNs) represent a paradigm 
shift in global technological scenarios and consist of many 
autonomous sensor nodes capable of carrying out extensive 
sensing, computation, and communication [1]. Through 
strategic deployment, WSN nodes reside in a wide range of 
environments [2]. WSNs constitute a fundamental 
infrastructure that enables computing systems to gather data, 
process, and transmit it in real-time from the physical world [3]. 
This pervasive connectivity opens up applications for numerous 
fields, such as environmental monitoring, medical care, 
manufacturing, and sustainable communities [4], [5]. 

The collaborative nature of sensor nodes within WSNs 
enables the creation of distributed systems capable of collecting 
and relaying useful information on environmental parameters, 
object movement, health indicators, and other relevant data [6]. 
The inherent characteristic of WSNs, which can be modified to 
accommodate dynamic and adversarial environments, allows 
the generation of actionable intelligence, enhancing decision-
making processes and improving situational awareness [7], [8]. 

Like constitutive models, which model the behavior of 
weak rock masses under different states of stress, taking into 
account pore pressure and temperature [9], WSNs must 

combine several environmental parameters to achieve optimal 
data collection and network operation. Yet, the deployment and 
operation of WSNs also entail inherent constraints, such as 
energy limitations [10], scalability issues [11], data security 
concerns [12], and network reliability [13], which demand 
innovative solutions and algorithms that ensure optimal 
performance and overcome these constraints. Despite these 
concerns, WSNs are a fundamental technology that drives 
innovation, revolutionizing businesses and enhancing our 
understanding of the world [14]. 

B. Motivation and Contribution 

Several methodologies have been proposed, encompassing 
diverse techniques such as multi-path routing, tree structures, 
clustering, and cluster trees, yet they often struggle to ensure a 
robust and reliable system addressing mobility, traffic 
dynamics, and end-to-end connectivity individually [15-17]. 
Consequently, these shortcomings frequently lead to 
suboptimal network performance, hindering their full potential 
in practical applications. To solve these challenges, this study 
introduces a novel scheme tailored to a densely distributed 
WSN system model. 

With a tree-based cluster formation strategy, a flexible 
deployment density for sensor nodes is accommodated under 
this innovative framework. Each cluster in this meticulously 
structured architecture is meticulously organized around a 
singular cluster head node, a design crafted to streamline and 
optimize energy-efficient data-gathering processes. A 
distinguishing element in this scheme is incorporating a fuzzy 
logic engine and reinforcement learning. This sophisticated 
system dynamically determines optimal data-gathering nodes 
within clusters embedded within a densely distributed WSN. 
This decision-making process requires the evaluation of three 
key metrics: algebraic connectivity, bipartivity index, and 
neighborhood overlap. 

The proposed approach intelligently assigns data collection 
tasks, promoting efficiency and energy savings in the network. 
Like machine learning techniques, such as regression and 
clustering algorithms, assist in analyzing the effects of various 
factors on business economics [18], this approach enables 
effective data-driven decision-making for optimizing resource 
usage and improving network performance. This study has 
made the following primary contributions: 

 Advanced multi-cluster data collection: We introduce a 
novel multi-cluster data collection strategy tailored for 
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densely distributed WSNs, addressing the complexities 
of large-scale monitoring applications. 

 Cluster formation based on energy and delay factors: We 
propose a robust approach to select cluster heads within 
each cluster, leveraging energy and delay factors to 
optimize the network's performance for lifespan, 
throughput, packet delivery rate, and reliable links for 
mobile sensors. 

 Reinforcement Learning-based Fuzzy Logic Engine 
(RL-FLE): We use incorporated RL-FLE for intelligent 
decision-making, empowering cluster heads to 
dynamically determine optimal data-gathering nodes 
based on link efficiency among neighboring nodes. 

 Improved performance indicators: The proposed 
approach demonstrates superior performance over 
traditional protocols (LEACH, HEED, MBC) by 
maximizing link stability and enhancing critical 
performance indicators, including packet delivery rate, 
bit error rate, end-to-end delay, and throughput. 

 Reduced buffer occupancy and network traffic: Our 
proposed scheme effectively reduces buffer occupancy 
and minimizes network traffic, verifying its efficiency in 
managing data flow and ensuring resource optimization 
compared to existing protocols. 

 Potential for energy savings: Experiments reveal the 
potential for substantial energy savings, emphasizing the 
energy-efficient nature of the proposed approach for 
sustainable and long-term network operation. 

The study is structured as follows: Section II reviews related 
research. Section III presents the methodology, detailing the 
approach, algorithms, and framework used in the study. Section 
IV analyzes the findings, comparing them with existing studies 
and discussing their implications. Finally, Section V 
summarizes the key insights, highlights the contributions, and 
suggests potential directions for future research. 

II. RELATED WORKS 

Table I summarizes methodologies, key contributions, 
evaluation metrics, and results from related works concerning 
data collection, energy efficiency, and network optimization. 

TABLE I.  OVERVIEW OF RECENT ROUTING PROTOCOLS 

Reference Methodology Key contributions Results 

[19] 

Secure mobile sensor 

network with cloud 
integration 

Optimizing performance through efficient routing, energy 

consumption, and security enhancement. 

Lightweight and congestion equilibrium-focused data collection 
scheme. Transmission facilitated via AND-OR graph mechanism. 

Secure access to collected data for cloud computing. 

Significant energy savings and enhanced 

network stability 

[20] Rechargeable WSNs 

Far-relay approach for proportional energy consumption. 

Optimal scheduling with Opt-JoDGE. Buffer-battery-aware adaptive 
scheduling with NO-BBA. 

NO-BBA closely approaches Opt-JoDGE 

performance, especially in scenarios with 
acceptable delay levels. 

[21] 
Data gathering in WSNs 

with obstacles 

Cluster construction with ant colony optimization and hierarchical 

aggregation. 
MS tour formation with multi-agent reinforcement learning and 

Cluster construction with ant colony optimization and hierarchical 

aggregation. 

DGOB addresses energy consumption and 
data gathering delay challenges in WSNs 

with obstacles. 

[22] 
Trust-aware and energy-
efficient data gathering 

Clustering, tree construction, and watchdog selection with particle 
swarm optimization. 

Variable-length particles for the unknown number of watchdogs. 

TEDG algorithm significantly improves 
energy efficiency and extends network 

longevity. 

[23] 
RLSSA-CDG for energy 

efficiency in WSNs 

RLSSA-CDG combines CDG with sleep scheduling in a distributed 

algorithm. 
Q-learning algorithm for active node selection. 

RLSSA-CDG outperforms other 
algorithms, demonstrating its energy 

efficiency and superiority in network 

lifespan extension. 

[24] 
Clustering with mobile 

data collector 

Mobile data collector traverses the network for effective data 

collection. 

An optimized approach to mobile data 

collection, demonstrating effectiveness in 

both balanced and unbalanced network 
topologies. 

[25] 

Energy-aware and 

cluster-based data 

aggregation 

Fuzzy logic and CapSA for clustering and routing. 

CEDAR performs better than prior 

research in delay, packet delivery rate, and 

network lifespan. 

[26] 
Multi-channel design for 
high throughput in 

WSNs 

Utilizes a subset of cluster heads with multiple radios. 

Genetic algorithm for clustering, routing, and channel assignment. 

It achieves a significant increase in 

throughput, reduced energy consumption, 

and improved energy utilization compared 
to previous schemes. 

 

The increasing utilization of lightweight sensors has driven 
the advancement of emerging technologies in various domains. 
One notable trend is integrating cloud services in applications 
that handle large volumes of observational data. However, the 
dynamic and time-sensitive nature of these environments 
requires enhanced performance. Eco-friendly systems require 
stable and reliable data transmission. Additionally, many green 

network solutions are vulnerable to unforeseen situations 
resulting from broadcasting on unreserved mediums. 

To meet the mentioned demands, Haseeb, et al. [19], have 
introduced a secure mobile sensor network that integrates cloud 
technology to optimize performance through efficient routing, 
energy consumption, and security enhancement. Their work 
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makes significant contributions in several aspects. Firstly, it 
focuses on establishing a stable and error-free system for 
collecting data from mobile sensors to reduce unnecessary 
energy usage. The proposed data-gathering method is 
lightweight and maintains congestion equilibrium. An AND-
OR graph mechanism facilitates green data transmission from 
mobile data sources to the cloud, which reduces routing gaps 
and retransmissions. Cloud computing can provide secure 
access to the collected data from constraint-oriented green 
environments. 

Liu, et al. [20], studied energy harvesting and joint data 
gathering challenges in battery-powered WSNs by employing 
mobile sinks. As a mobile sink travels along a predetermined 
route, sensor nodes harvest energy from its RF circuits. 
Meanwhile, these nodes relay sensor data to the sink. A far-
relay strategy is proposed to address the proportional 
relationship between energy consumption and energy 
harvesting at a sensor node, determined by the distance squared 
among sensor nodes. This strategy aims to choose sensor nodes 
near the path to facilitate data transmission to nodes located at 
a greater distance. The far-relay technique involves formulating 
a network utility maximization issue and introducing an 
optimum scheduling strategy considering time slot scheduling, 
relay selection, and power allocation regulations. 

To tackle the issue of effectively managing sensor power 
and minimizing the delay in capturing data, mainly when 
obstacles are present, Najjar-Ghabel, et al. [21], have 
introduced DGOB, which gathers data in WSNs with obstacles. 
DGOB employs node clustering and a mobile sink to collect 
cluster heads' data, minimizing network energy usage. The 
algorithm follows a two-phase process: cluster construction and 
mobile sink tour formation. DGOB employs two methods to 
create superior clusters in the cluster construction phase. The 
first phase involves the combination of hierarchical aggregation 
with ant colony optimization to produce resilient clusters under 
adverse conditions. In the subsequent iterations, the Genetic 
Algorithm (GA) updates the current clusters, thus improving 
the cluster development process. In the second stage, DGOB 
presents a proficient approach to constructing tours by 
combining multi-agent reinforcement learning and GA. The 
success of DGOB is confirmed by comprehensive simulation 
findings, demonstrating a 34 per cent reduction in energy usage 
and an 80 per cent increase in network longevity compared to 
existing techniques. 

Soltani, et al. [22], have presented a trustworthy and energy-
aware data aggregation algorithm to enhance data collection 
efficiency in WSNs. It consists of several vital stages, namely 
clustering, tree formation, and watchdog determination, each 
framed as an optimization problem and optimized by the 
Particle Swarm Optimization (PSO) algorithm. The watchdog 
selection stage can be particularly noteworthy as it involves 
particles of variable length due to the unknown number of 
watchdogs. To address this challenge, a new particle 
representation and initialization scheme is developed. The 
proposed algorithm has demonstrated significant improvements 
in performance metrics through extensive simulations. It 
significantly improves energy efficiency in delivering data to 
the sink node, decreases nodes' residual energy standard 

deviation by 81per cent, and extends the network's lifespan to 
129per cent. 

Wang, et al. [23], have introduced the Reinforcement 
Learning-based Sleep Scheduling Approach for Compressed 
Data Collection (RLSSA-CDC) to enhance energy efficiency in 
WSNs. This algorithm combines Compressive Data Collection 
(CDC) with sleep scheduling to reduce data transmission and 
minimize energy consumption in WSNs. Unlike previous 
approaches that faced challenges with centralized optimization 
problems and increased control message exchanges, RLSSA-
CDC is formulated as a distributed algorithm. This framework 
minimizes control message exchanges and adapts to the 
variance in residual node energy, preventing nodes from 
premature energy depletion. 

Meddah, et al. [24], suggest a novel strategy to mitigate 
energy waste in WSNs by utilizing Mobile Data Collector 
(MDC) devices. An MDC device collects data efficiently from 
sensor nodes by traversing the network. Their proposed 
method, called the Tree Clustering algorithm with MDC, aims 
to establish an optimized traveling path through a subset of 
cluster heads while minimizing the travel distance. The cluster 
heads are chosen by a competitive selection system that 
considers several factors, including packet transmission rate, 
closeness to the root of the tree, node energy level, and 
proximity to the next cluster head. The efficacy of the suggested 
approach was evaluated using simulation tests done on both 
balanced and unbalanced network topologies. 

Mohseni, et al. [25], developed a Clustered Energy-
conscious Data Aggregation Routing protocol called CEDAR, 
incorporating a fuzzy logic model and Capuchin Search 
Algorithm (CapSA). It comprises two steps: cluster creation 
and extra/intra-cluster routing. Initially, sensor nodes are 
clustered using fuzzy logic. Then, CapSA determines optimal 
paths between cluster heads, the base station, and cluster nodes. 
As demonstrated by the simulations conducted in the MATLAB 
simulator, CEDAR is superior to existing research concerning 
packet delivery rate, latency, and network lifetime. 

Shahryari, et al. [26], have addressed high-throughput WSN 
requirements by implementing the multi-channel framework 
designed explicitly for heterogeneous WSNs. This approach 
aimed to overcome the limitations present in existing multi-
channel methodologies, which often suffer from low 
throughput and significant overhead. Their innovative solution 
introduced a paradigm that utilized a subset of high-level nodes, 
known as cluster heads, with multiple radios within the 
network. These cluster heads efficiently transfer captured data 
from standard sensors to the base station. To achieve this, an 
energy-saving and high-throughput algorithm was developed to 
manage routing, clustering, and channel assignment processes 
in this diverse WSN setup. 

The first stage focused on forming a spanning tree among 
the super nodes while intelligently determining appropriate 
channels for their radios. They introduced a novel multi-
objective cost function extending the network lifetime over 
conventional tree construction methods. Additionally, this 
function effectively manages interference, improving overall 
throughput across the network. In the subsequent stage, the 
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algorithm determined the optimal selection of cluster heads and 
channels for standard nodes. Their algorithm demonstrated a 
substantial increase in throughput through extensive 
simulations due to multiple channel utilization. Moreover, it 
achieved notable reductions in energy consumption per 
transmitted bit to the base station, achieving an impressive 
improvement of 21.6 per cent and 48.3 per cent, respectively, 
compared to prior schemes. 

III. PROPOSED METHOD 

The mobile sink-centric information collection approach 
prevalent in densely distributed WSNs often consumes more 
energy by sensor nodes closer to the sink node, leading to 
energy holes. Existing Expectation Maximization (EM)-based 
clustering approaches have attempted to mitigate this problem 
by optimizing the number of clusters to minimize energy 
consumption. However, these approaches struggle to determine 
cluster heads effectively, especially as the scale and node 
density of the network increase, resulting in increased energy 
consumption and shorter network lifetime. To meet these 
challenges, this study presents a novel tree-based clustering 
scheme supported by robust cluster heads to prolong network 
lifetime and improve energy efficiency. 

A single cluster head node controls each cluster to ensure 
efficient information collection. First, RL-FLE determines 
strong cluster heads within clusters of densely distributed 

WSNs. This determination relies on three key variables: 
neighborhood coverage, mathematical connectivity, and 
bipartivity index. Then, dynamic network reconfiguration is 
performed by moving the sink to a different position and 
consolidating the cluster head node when node failures occur in 
a cluster. This adaptive framework is expected to prolong 
network lifespan and minimize energy usage. The effectiveness 
of the suggested strategy is determined through a comparative 
analysis of existing methods. 

A static and energy-efficient routing scheme is introduced 
for the complex and diverse IoT ecosystem. The evaluation of 
this approach involved implementing a transmission algorithm 
in a network with over a thousand nodes deployed in areas of 
200 to 300 square meters, with varying amounts of nodes. The 
evaluation results underline the suitability and effectiveness of 
static routing methods for mobile IoT applications. The 
architecture of the proposed approach follows a layered 
structure, similar to the traditional layered architecture used in 
network systems. However, the relay layer is excluded because 
it is not included in the system. The model represents a 
hierarchical network structure in which all sensor nodes remain 
static and stick to static routing-based transmission. Fig. 1 
visually depicts a wireless sensor architecture based on a 
mobile sink. This model uses mobile sinks in the network to 
acquire information gathered by fixed sensor nodes. 

 
Fig. 1. Network model. 

In WSN, the traditional cluster head selection approach 
considers energy, delay, and distance parameters. However, in 
the context of IoT networks, it becomes crucial to analyze the 
specific parameters of IoT devices. Since WSNs are closely 
linked to IoT devices, it is essential to consider parameters such 
as temperature and load characteristics of these devices. 
Therefore, the cluster head selection strategy should consider 
energy, delay, distance, temperature, and load factors. Ideally, 

lower temperature, load, delay, and distance values are 
preferred. 

The delay value commonly falls within the range of 0 to 1. 
Eq. (1) computes the delay sensor nodes encounter when 
transmitting data to the mobile sink. To decrease this delay, 
decreasing the number of participants in each cluster is 
necessary. N denotes the total quantity of sensor nodes, S(Nv) 
indicates cluster node signal strength, and S(Nv’) signifies 
mobile sink node signal strength. 
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𝐷(𝑁𝑣 , 𝑁𝑣′) =

𝑆

𝑛
(𝑁𝑣) − 𝑆(𝑁𝑣′)

𝑞 = 1

𝑁
 

(1) 

Eq. (2) calculates the distance between the mobile sink and 
cluster heads. 𝑑𝑖𝑠𝑡(𝑁𝑣 , 𝑁𝑣′)  calculates Euclidean distances 

between a typical node (𝑁𝑣) and the mobile sink node (𝑁𝑣′) in 
dense sensor networks. 

𝑑𝑖𝑠𝑡(𝑁𝑣 , 𝑁𝑣′) = √(𝑥𝑛𝑣
− 𝑥𝑛𝑣′

) + (𝑦𝑛𝑣
− 𝑦𝑛𝑣′

) (2) 

To increase the network's longevity, each cluster node's 
battery level is considered when calculating the remaining 
power. As packets are forwarded, each node expends energy 
according to its type, length, frequency, and distance. The 
power provided by node xi, denoted as RP(xi), is determined by 
the total node count within ith cluster. A higher value of RP(xi) 
indicates that a node has more stable and energy-rich power 
reserves, potentially extending its lifetime and improving 
network reliability. The residual power of node xi is calculated 
as shown in Eq. (3), which helps in identifying stable nodes for 
long-term cluster membership. 

𝑅𝑃(𝑥𝑖) =
∑ 𝐸𝑃𝑥𝑗𝑥𝑗∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖

𝑛𝑖

 (3) 

Information collection hubs are selected by cluster heads 
according to three factors: neighborhood overlap (NOVER), 
Algebraic Connectivity (AC), and Bipartivity Index (BI). 
NOVER is a quantitative measure to evaluate shared adjacency 
between the terminal hubs. It is used effectively for group 
detection, with a lower NOVER value indicating that the 
connection is likely to connect two different groups, while a 
higher NOVER value suggests a connection between nodes 
within the same group. The BI refers to the capacity to partition 
the vertices of a tree structure into two separate sets so that all 
edges connect vertices from one set to the other. There are no 
edges between vertices within the same set. This bipartite 
property of the graph is an essential consideration in the 
selection process. 

AC is a metric that quantifies a network's resilience 
regarding link distances. A higher algebraic connectivity value 
indicates the network is more likely to remain connected even 
after one or more connection distances, demonstrating its 
resilience. On the other hand, a lower value suggests that the 
network could be fragmented by removing links. Fuzzy logic is 
used to combine these three variables and evaluate the 
immediate reward of the choice. Fuzzy logic enables the 
evaluation of connection efficiency from the cluster head node 
to each neighboring hub. 

In addition to the instant reward, the long-term reward of 
the selection is also considered. The behavior of nearby hubs 
influences the fairness of selecting data-gathering stations. This 
is considered by assessing distances between data gathering 
points and cluster head nodes. The closer the information-
gathering hub is to the center, the more favorable it is regarding 
long-term reward. 

By considering these metrics and incorporating fuzzy logic, 
the cluster head hub can make informed decisions about 
selecting the information-gathering hub. The evaluation 
considers both the instant and long-term rewards, ensuring 
efficient and fair information gathering in the network. The 
evaluation value for each neighbor is calculated by the cluster 
head node using the following steps: 

 Fuzzification: NOVER, BI, and AC values are converted 
into fuzzy values by applying predefined membership 
functions and linguistic terms. These membership 
functions define membership degrees for fuzzy sets 
determined by input values. This step allows the crisp 
values of the metrics to be represented as fuzzy values. 

 Defining and applying IF/THEN statements: The fuzzy 
outcomes derived from the fuzzification process are 
matched with predetermined IF/THEN criteria. These 
rules define the relationship between the fuzzy inputs 
(NOVER, BI, and AC) and the desired output 
(evaluation value for the neighbor). The rules are 
designed based on expert knowledge or derived from 
data analysis. The fuzzy values are aggregated through 
logical operations (such as AND, OR) embedded inside 
the IF/THEN rules to determine the ranking of the 
neighbor. 

 Defuzzification: The imprecise numerical value acquired 
from the preceding phases is transformed into a precise 
numerical value using a predetermined output 
membership function and defuzzification process. The 
output membership function assigns a degree of 
membership to various numerical values based on the 
fuzzy value. The defuzzification method calculates a 
crisp value from the fuzzy output value, typically by 
taking the centroid or weighted average of the 
membership function. 

The AC value of a system quantifies the network's ability to 
withstand connection failures. The term refers to the secondary 
lowest eigenvalue of the Laplacian matrix associated with the 
system. Log(A) is used to measure a system's resilience to 
failures of connections. A degree vector Di and adjacency 
matrix A(i,j) are used to calculate this value. The algebraic 
connectivity, computed using Eq. (4), measures the resilience 
of the cluster’s internal topology. 

𝐿(𝑖, 𝑗) = {
−𝐴(𝑖, 𝑗)  𝑓𝑜𝑟 𝑖 ≠ 𝑗
𝐷𝑖              𝑓𝑜𝑟 𝑖 = 𝑗

 (4) 

The BI is employed to quantify the level of bipartivity in a 
graph. The range of the value is from 0 to 1. A value of 1 
signifies that the graph is bipartite and no frustrated edges 
connect vertices within the same segment. It will fall below 1 if 
there are no true bipartite graphs. Eq. (5) provides the 
bipartivity index, enabling an assessment of structural 
separation within the communication graph. 

𝐵𝑃𝐼(𝐺) =
∑ cosh (𝜆𝑗)𝑛

𝑗=1

∑ sinh (𝜆𝑗)𝑛
𝑗=1 + cosh(𝜆𝑗)

 (5) 
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We assess the degree of overlap in neighborhood overlap 
among the cluster head and neighboring nodes. Due to the 
difficulty in obtaining an accurate assessment of this overlap in 
densely deployed WSN settings, we choose immediate 
neighboring hubs from the cluster head's gauge neighborhood 
overlap. We define this metric using Eq. (6). NCH (u) refers to 
the cluster head node and NCN(v) represents its neighbor 
nodes. 

𝑁𝑂𝑉𝐸𝑅(𝑢 − 𝑣) =
2 × |𝑁𝐶𝐻(𝑢)⋂𝑁𝐶𝐻(𝑣)|

|𝑁𝐶𝐻(𝑢)|+|𝑁𝐶𝐻(𝑣)| − 2
 (6) 

Fig. 2 depicts the fuzzy inference system, with NOVER, BI, 
and AC as inputs. After performing the fuzzification process, 
the defuzzification procedure generates an output to determine 
optimal cluster heads. Input and output membership functions 
are formulated using a triangular function. Fig. 3 illustrates the 
fuzzy participation functions for NOVER, BI, and AC. These 
functions define the degree of belonging to specific linguistic 
variables (e.g., Bad, Medium, Good) for NOVER, (e.g., Light, 

Medium, Heavy) for BI, and (e.g., Low, Medium, High) for 
AC. 

Fig. 4 shows the IF/THEN rules the cluster head uses to 
calculate the rank of participating nodes. These rules map the 
fuzzy input values (obtained from the participation functions) 
to the desired output, representing the participating nodes' 
evaluation rank. Different rules may apply simultaneously, and 
these rules are combined using the Min-Max strategy. Since 
multiple rules can apply simultaneously, the evaluation results 
from different rules are combined using the Min-Max strategy. 
This strategy selects the minimum (worst) value among the 
evaluations as the overall evaluation result. 

Defuzzification is carried out to produce a precise numerical 
number that represents the competence value of the node. The 
output membership function, demonstrated in Fig. 5, assigns 
degrees of membership to various numerical values according 
to the fuzzy output value. The Center of Gravity (COG) 
approach, commonly called the centroid method, is employed 
for defuzzification. Defuzzified values are represented by x-
coordinates, which correspond to a node's competence value. 

 

Fig. 2. Fuzzy inference system. 
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Fig. 3. Fuzzy membership functions for inputs. 

 
Fig. 4. Fuzzy logic rules. 
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Fig. 5. Fuzzy membership function for the output. 

The study presents a fuzzy-based reinforcement learning 
algorithm to determine the value of action and state relations 
(Q(i, a)) to acquire optimum fuzzy combination rules. It begins 
with initialization, setting Q(i, a) and V(i, a) to zero for all states 
i and actions a, and introducing control parameters such as 
kmax and A. The algorithm progresses through states and 

actions, selecting actions based on fuzzy combination rules and 
updating values accordingly. 

After each action execution, the Q-value is updated using a 
reinforcement learning rule considering the observed reward, 
discount factor, and the maximum Q-value for subsequent 
actions. The process iterates until it reaches the desired number 
of iterations (kmax). Finally, the algorithm calculates optimal 
decisions at each state by selecting actions that maximize the 
learned Q-values. The termination condition marks the 
conclusion of the algorithm, providing a comprehensive 
framework for learning optimal fuzzy combination rules 
through fuzzy-based reinforcement learning. 

Fig. 6 depicts the flowchart for the proposed algorithm and 
provides a visual representation of the steps involved. Fig. 7 
provides a pseudocode for the proposed algorithm. To 
summarize, the algorithm begins by initializing the Q-values 
and visit counts. It then takes actions based on fuzzy 
combination rules and updates the Q-values by incorporating 
rewards and the highest Q-value of the next state. This process 
is iterated until a specified exit condition is satisfied. 

 
Fig. 6. Flowchart of the proposed algorithm. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

435 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 7. The pseudocode of cluster formation. 

IV. RESULTS AND DISCUSSION 

The proposed method (RL-FLE) was evaluated through 
simulations performed under different parameter 
configurations and provided valuable results. To make a 
comparative analysis with LEACH, CEDAR, PSO, HEED, and 
MBC, an execution study was carried out using the system test. 
The simulation scenario encounters 100 identical sensor nodes 
and 9 cluster heads, all possessing limitless battery capacity, 
spread across a 1000 × 1000 m² region. Furthermore, a fixed 
sink node with inexhaustible energy stores was strategically 
placed beyond the surveillance area. The simulations 
considered specific performance parameters: the MicaZ 
platform, the ZigBee application with a packet size of 127 
bytes, and compliance with IEEE 802.15.4 standards. 

The sensor nodes were modeled using a linear battery model 
with a capacity of 1200 mAh, while the two-ray signal 
propagation model was employed to capture wireless signal 
behavior. In the simulation setup, the information envelope 
within a cluster had a fixed size of 512 bytes. The transmission 
range within a cluster was limited to 40 m, ranging from 80 m 
to 120 m between clusters. Notably, the detection range for 
clustering was set at 20 m. The base station, the central data 
collection point, was positioned at coordinates (x = 500, y = 
1050). Lastly, the energy parameters assigned to each sensing 
node amounted to 300 mJ. 

The performance evaluation of the suggested data-gathering 
strategy entailed modeling diverse network parameters, 
including latency, total energy consumption, bit error rate, 
throughput, and packet delivery rate. Fig. 8 to Fig. 11 illustrate 
the correlation between network efficiency and node count. It 
is crucial to emphasize that both MBC and LEACH have 
restrictions on maximizing throughput, reducing latency, 
minimizing total energy usage, and maintaining a high packet 
delivery percentage as the network grows. 

Fig. 8 shows the average end-to-end delay across seven 
clustering protocols under varying node densities. RL-FLE 
performs better than conventional schemes by minimizing 
packet delivery latency using intelligent cluster head election 
through reinforcement learning and link efficiency. In 
comparison, LEACH and MBC experience higher delays due 
to their lesser adaptiveness towards dense traffic environments. 

Fig. 9 highlights the total energy consumed by sensor nodes 
during data transmission. RL-FLE indicates the least energy 
consumption due to its effective data routing via stable and 
dense cluster heads. The conventional methods, such as HEED 
and LEACH, cause higher energy consumption through 
ineffective cluster head rotation or lack of context learning. 

Fig. 10 illustrates the network throughput of various 
protocols. RL-FLE performs better by reducing packet loss and 
optimizing data flow paths. CEDAR performs similarly, 
whereas LEACH and HEED perform poorly due to excessive 
retransmissions and the absence of a dynamic load-balancing 
mechanism. 
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Fig. 8. Network delay comparison. 

 

Fig. 9. Energy usage comparison. 

 

Fig. 10. Throughput comparison. 

 

Fig. 11. Performance comparison. 

Fig. 11 shows the performance of various protocols under 
increased node mobility. RL-FLE exhibits low and steady delay 
despite high-speed movement due to learning-based adaptation. 
Other protocols experience poor performance due to static 
cluster head strategies. 

The proposed scheme demonstrates superior performance 
in a mobile sensor environment compared to CEDAR, PSO, 
LEACH, MBC, and HEED, as indicated in Fig. 12 and Fig. 13. 
The findings from simulations reveal that the suggested system 
successfully builds solid links and adjusts to situations with 
high levels of mobility. Especially in these situations, the 
recommended strategy results in a better packet delivery ratio 
and less latency. Furthermore, the strategy improves execution 
efficiency without regard to the quantity of sensor nodes in the 
overall setup. 

 

Fig. 12. Bit error rate comparison. 
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Fig. 13. Throughput comparison. 

In WSNs with a significant number of nodes and frequent 
movement, unstable communication may lead to packet losses, 
requiring retransmission. In contrast, the proposed scheme 
ensures stable connections and promotes balanced energy 
consumption throughout the network. Consequently, it can be 
concluded that the suggested scheme suits high-mobility 
environments, enabling the preservation of sensor hub energy, 
prolonging network lifetime, and enhancing system reliability 
while maintaining superior communication quality. 

V. CONCLUSION 

Effectively monitoring large-scale areas using multiple 
sensor nodes has become crucial in time-critical military and 
industrial applications. To address this challenge, the cluster 
tree network management architecture has emerged as a 
proficient method. The primary objective is to optimize 
network performance concerning network lifespan, throughput, 
packet delivery rate, reliable links for mobile sensors, and 
energy efficiency. We proposed an effective multi-cluster data 
collection strategy for WSNs deployed in dense clusters. The 
energy and delay factors were used to select robust cluster 
heads for each cluster. Subsequently, the cluster head chooses 
the data-gathering node based on the link efficiency of 
neighboring nodes, employing the RL-FLE approach. The 
proposed scheme was characterized by several advantages, 
including maximizing link stability and enhancing key 
performance indicators like packet delivery ratio, delay time, 
bit error rate, and throughput. 

Experimental outcomes suggest our approach effectively 
reduces buffer occupancy and network traffic while minimizing 
energy utilization compared to CEDAR, PSO, LEACH, HEED, 
and MBC protocols. Potential areas for future study might focus 
on improving energy efficiency, scalability, and flexibility in 
dynamic contexts. Exploring the incorporation of new 
technologies like edge computing and machine learning 
algorithms can enhance the effectiveness of multi-cluster 
network management architectures for large-scale and time-
sensitive applications. This will help to advance the 
development of WSNs in a rapidly changing environment. 
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