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Abstract—Live Memory Forensics deals with acquiring and 

analyzing the volatile memory artefacts to uncover the trace of in-

memory malware or fileless malware. Traditional forensics 

methods operate in a centralized manner leading to a multitude of 

challenges and severely limiting the possibilities of accurate and 

timely analysis. In this work, we propose a decentralized approach 

for conducting live memory forensics across different devices. The 

proposed federated learning-based live memory forensics model 

uses FedAvg algorithm in order to make a lightweight, 

incremental approach to conduct live memory forensics. The 

study demonstrates the performance of federated learning 

algorithms in anomaly detection, achieving a maximum accuracy 

of 92.5% with Clustered Federated Learning (CFL) while 

maintaining a convergence time of approximately 35 

communication rounds. Key features such as CPU usage and 

network activity contributed over 85% to the detection accuracy, 

emphasizing their importance in the predictive process. 
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federated learning; fileless malware; anomaly detection 

I. INTRODUCTION 

With the exponential growth in computational devices 
worldwide, the threat of cyberattacks has greatly threatened the 
digital ecosystem. With the global malware attacks surpassing 
11.5 billion annually, digital forensics faces unprecedented 
challenges towards solving these cybercrime incidents [1]. 
Nearly 59% of the organizations worldwide were affected by 
ransomware attacks in 2024 [2]. The scale, complexity and 
privacy challenges of these crimes makes it harder to solve them 
especially with the rise of memory resident malware. Recent 
advanced cyberattacks are solely operating in the memory 
without leaving any evidence or trace behind in the physical 
memory of the system [3]. These types of crimes are typically 
solved by a specialized branch of digital forensics called as 
volatile memory forensics or live memory forensics (LMF). 
Volatile memory forensics deals with the acquisition and 
analysis of volatile memory of a computational system [4]. 
Traditionally, digital forensic applications rely on a centralized 
approach for data acquisition and analysis. This centralized 
approach is highly insufficient/inadequate considering the 
distributed environments used worldwide across various 
organizations. Forensic investigators mostly compile evidence 
from different sources spanning multiple jurisdiction. These 
constraints regarding data sharing, collaboration lead to further 
delays in timely detection and mitigation of threats. Advanced 
cyberattacks use fileless malware with anti-forensic techniques 

to obfuscate and exploit the target users [5], [6]. Recent studies 
have shown that up to 40% of malwares are now exploiting in-
memory fileless techniques [7]. These attacks can be timely 
detected and mitigated by using robust volatile memory forensic 
frameworks that are aimed at making the systems more secure, 
scalable and lightweight. Federated learning is a transformative 
solution that enables decentralized training of machine learning 
models across a wide variety of datasets [8]. Federated learning 
utilizes different local devices or nodes that train their own 
machine learning models independently while aggregating 
intelligence with centralized aggregator when required [9]. The 
decentralized architecture for federated learning reduces the 
need of data aggregation or raw data sharing thereby addressing 
privacy challenges. In this work, we propose a federated 
learning based lightweight framework that can be efficiently 
deployed across a network of heterogeneous resources. The key 
contributions of this work are listed as follows: 

 The paper introduces a robust federated learning 
framework incorporating techniques such as FedAvg, 
Federated Incremental Learning, and Clustered 
Federated Learning (CFL), enabling accurate and 
efficient training in heterogeneous and resource-
constrained environments. 

 The framework allows clients to incorporate new data 
dynamically without restarting the training process, 
achieving rapid convergence and efficient resource 
utilization while maintaining model accuracy. 

 The study demonstrates the importance of cluster-
specific models for managing client heterogeneity, 
showing that tailored models achieve higher accuracy 
and performance compared to a single global model. 

 Validated through mathematical modeling, dataset 
analysis, and experimental results, the framework is 
designed to optimize resource usage, making it suitable 
for real-world applications. 

The rest of this work is organized as follows: Section II 
discusses the related works in the area where forensic 
frameworks have proven useful along with their limitations. The 
proposed framework i.e. LIFT (Lightweight, Incremental, 
Federated Learning Techniques) is described in detail in 
Section III. The mathematical model for the proposed 
framework is discussed in Section IV. Section V outlines the 
implementation and simulation environment setup along with 
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results of the conducted study. A discussion on the results and 
future work is provided in Section VI followed by the 
conclusion of this work. 

II. LITERATURE REVIEW 

Fileless attacks and in-memory resident and proactive 
malware can only be detected and thwarted by using an effective 
live memory forensics approach. Traditional centralized 
acquisition and analysis processes poses a myriad of challenges 
for forensic investigators including privacy of data, maintaining 
Chain of Custody (CoC), time taken for analysis, scalability, 
privacy issues and most importantly the lack of learning through 
the study of evolving malwares [10] [11], [12]. Federated 
Learning provides a decentralized solution for enabling 
collaborative learning without the need of sharing raw 
unprotected data multiple times. In this section, we explore the 
intersection of Live Memory Forensics with Federated 
Learning. 

Live Memory Forensics is conducted using traditional 
centralized approach where memory dumps are acquired by 
freezing the state of a running system. This acquired memory 
dump is then used for static and dynamic analysis using forensic 
frameworks and tools such as Volatility, Rekall, Belkasoft and 
others. This analysis is post-mortem and thus lacks real-world 
applicability in live environments [13] [14]. Moreover, the 
tendency to collect acquired memory dumps to centralized 
repositories poses privacy concerns by itself [15]. Centralized 
forensics approaches suffer from privacy challenges including 
adhering to compliance requirements (GDPR, HIPAA etc.), 
growing number of heterogeneous endpoints is another 
bottleneck to effective analysis topped by constantly adapting 
malware attacks [16], [17]. 

To support collaborative forensic intelligence without 
compromising privacy, memory dumps were labeled using 
VirusTotal hash-based classification to ensure standardized 
threat identification. Furthermore, clients were split using 
stratified sampling across malware families to preserve 
distribution diversity during training, ensuring that the federated 
learning process reflects a realistic and representative malware 
landscape. 

These limitations and challenges are compared for 
centralized and decentralized forensics in Table I. 

Machine leaning has found applications in volatile memory 
forensics where it is used for faster analysis of data as compared 
to manual reconstruction of system and of entire evidence trace 
[24]. MRm-DLDet used convolutional neural networks for 
detection of malicious activity in memory images with an 
accuracy of 98.34% [25]. MemAPIDet used API sequencing on 
acquired memory dump images, giving an accuracy of 97.78% 
[26]. Federated Learning works on a collaborative model 
training across a varied set of endpoints thereby eliminating the 
need for raw data exchange again and again [27]. The FedAvg 
algorithm serves as a foundational algorithm for aggregating the 
data from different locally trained models towards a central 
global model [28]. Federated Learning works on a privacy 
preserving model and finds numerous applications in healthcare, 
cybersecurity, Internet of Things and other areas [29], [30]. 

TABLE I.  COMPARISION OF CENTRALIZED AND DECENTRALIZED 

FORENSICS 

Challenges 
Centralized 

Forensics 

Decentralized 

Forensics 

Privacy Concerns for 

shared raw data [19] 

Data aggregated to a 
central repository, 

increasing overall risk 

Raw data sharing is 

not required; analysis 

can be performed 
locally 

Scalability with 

respect to live 

environments [20], 

[21] 

Struggles to cope with 
large-scale live 

environments 

Can be easily scaled 
across diverse devices 

or endpoints 

Adaptation to 

Evolving Malware 

[22] 

Slow to learn and 
adapt to evolving 

threats 

Rapid adaptation via 
distributed local 

updates 

Real world 

Processing 

Capability [23] 

Limited to batch 
processing 

Enables real-time 

analysis and 

incremental learning 

Incremental learning allows the local models to aggregate 
learning over time and thereby adapt overtime without the need 
of training from scratch every time thereby making it an integral 
part of Federated Learning frameworks [31]. Clustered 
Federated Learning groups clients using Jaccard similarity on 
API call sequences (threshold>0.7). This ensures clusters 
specialize in detecting malware families with shared behavioral 
patterns, improving detection accuracy by 12% compared to a 
global model as shown in Fig. 16 of Appendix [32]. This ensures 
that Federated Learning frameworks maintain high accuracy 
while reducing resource overhead over a period of time [31], 
[33]. Federated Learning for Live Memory Forensics may suffer 
from few challenges. Frequent updates between nodes can put a 
strain on network resources [34]. 

Model generalization may become difficult with wide 
variability in memory artefacts retrieved from memory dumps. 
In certain cases, the minimal computation power at the end point 
may restrict the model training process [35]. Panker and Nissim 
used machine learning algorithms to extract different features 
from memory for Linux-based cloud environments achieving a 
high detection accuracy for malware [22]. To address privacy 
concerns during model updates, techniques such as Differential 
Privacy (DP) can be integrated into local training pipelines, 
ensuring that sensitive information remains protected while still 
contributing to the global model. 

Wen et al. presented a comprehensive survey for Federated 
Learning’s potential for privacy preserving analysis in 
distributed systems [20] [36]. They also highlighted the 
effectiveness of FedAvg algorithm in reducing the overhead in 
communication rounds while preserving the model’s overall 
detection accuracy [28], [37]. 

Cui et al. introduced lightweight Federated Learning 
framework for IoT devices using compression techniques in 
order to reduce the communication overhead [38]. Advanced 
Federated Learning techniques including personalized 
Federated Learning and differential privacy for secure 
aggregation also enhances the adaptability and robustness of live 
memory forensics frameworks [39], [40]. Synthetic memory 
datasets could accelerate model convergence and improve 
generalization across varied environment [41]. 
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TABLE II.  COMPARISION OF FEDERATED LEARNING ALGORITHMS 

Algorithm Features Challenges 

FedAvg [42], [43] Decentralized Privacy  
More communication 

round overhead 

CFL [31], [43] 

Groups endpoints with 

similar data 

distributions 

Needs accurate 
clustering mechanism 

FedProx [44] 

Mitigates 

heterogeneity within 

endpoints 

Scalability issues 

FedMA [45] 

Model-agnostic, 
supports 

heterogeneous 

endpoints 

Computationally 

expensive 

III. PROPOSED FRAMEWORK: LIFT 

The proposed framework introduces a robust and efficient 
approach to federated learning for real-time malware detection 
and mitigation. It incorporates a central controlling node to 
initialize and distribute a global model to participating agents, 
which include client nodes, forensic agents, and application 
endpoints. Leveraging techniques such as lightweight training 
through FedAvg, resource optimization, and federated 
incremental learning, the framework ensures efficient use of 
resources while maintaining adaptability to evolving threats. 
Through model aggregation, collaborative clustered learning for 
emerging threats, and split federated learning for resource-
constrained environments, the system achieves enhanced 
detection capabilities and prioritization of malicious processes. 
This dynamic and decentralized architecture enables real-time 
anomaly detection, adaptability to incremental updates, and 
effective collaboration, making it a powerful tool for combating 
sophisticated malware attacks in diverse and resource-limited 
scenarios. 

A. Key Components 

This subsection outlines the key components of the proposed 
federated learning framework, designed to enhance malware 
detection and anomaly identification. These components work 
synergistically to optimize resource usage while enabling real-
time detection and prioritization of emerging threats. 

 Initialization: A controlling node is present on the central 
server where a global model is initialized. This global 
model is then distributed to different agents who have 
their own dedicated local memory dump to work on. 
These agents include participating nodes, clients, 
forensic agents, and endpoints of different applications. 

 Local Training: Each node performs the following steps 
as part of the local training module. 

o Lightweight Training (FedAvg): The local models 

are trained and constantly updated using the data 

from their local memory dumps. Resource 

optimization techniques such as sparse updates and 

quantization are applied to minimize the 

computational overhead [43]. 

o Federated Incremental Learning: The clients 

constantly train on locally updated memory dumps 

using incremental data to refine their model without 

the need to restart training. Incremental learning 

enables real-time evolution of the machine learning 

model to detect malware behaviour with real-time 

insights. 

 Model Aggregation: The central node processes the 
information in the form of model updates from different 
client nodes. The central node server aggregates and 
updates this information in the global model. 

 Collaborative Learning for Emerging Threats: Clustered 
Federated Learning brings client nodes with similar data 
distributions together to specialize in the detection of 
specific malware patterns. 

 Real-time Detection and Prioritization: Split federated 
learning allows resource-constrained nodes or 
environments to run the majority of the model globally 
while running only a part of the model locally. 

B. Advantages of the Proposed Framework: 

1) Enhanced resource efficiency: Quantization of results 

and split federated learning mechanisms ensure that the 

resource usage is minimized as compared to other centralized 

analysis mechanisms. 

2) Adaptability to incremental updates: The proposed 

framework supports real time incremental updates to adapt and 

detect obfuscated malwares. 

3) Collaborative learning and feedback: Clustered 

Federated Learning enables the model to learn from 

heterogeneous environments without the need of centralization. 

IV. MATHEMATICAL MODEL 

The following mathematical model outlines a 
comprehensive framework for Federated Learning (FL) for Live 
Memory Forensics (LMF). The Global Objective Function 
minimizes the weighted sum of client-specific objectives, 
ensuring proportional contribution based on data size. The 
FedAvg Algorithm aggregates locally updated models by 
weighting them according to client data contributions. To 
support adaptive updates, Incremental Learning balances the 
influence of old and new data with a weighting factor. Clustered 
Federated Learning (CFL) enhances personalization by 
grouping clients with similar data into clusters, performing both 
cluster-specific and global model updates. The Unified 
Workflow integrates these components into a structured process, 
including global model initialization, local training, client 
clustering, aggregation, and iterative global updates, fostering 
an efficient and adaptive federated learning system. 

A. Global Objective Function for Federated Learning 

min
𝑤

𝐹 (𝑤) = ∑
𝑛𝑘

𝑛

𝐾
𝑘=1 𝐹𝑘(𝑤),  (1) 

where 

𝐹𝑘(𝑤) =
1

𝑛𝑘
∑ ℓ(𝑥𝑖 , 𝑦𝑖 ; 𝑤)𝑖∈𝐷𝑘

,  (2) 

and 

 w: Model parameters (weights). 

 F(w): Global objective function. 
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 ℓ(𝑥𝑖 , 𝑦𝑖;  𝑤): Loss for data point (𝑥𝑖 , 𝑦𝑖) 

 𝑛𝑘: Number of samples at client 𝑘. 

 Total number of samples across all clients: 

𝑛 = ∑ 𝑛𝑘
𝐾
𝑘=1    (3) 

B. FedAvg for Global Model Aggregation 

The global model is updated as: 

𝑤𝑡+1 = ∑
𝑛𝑘

𝑛

𝐾
𝑘=1 𝑤𝑘

𝑡+1,   (4) 

where the locally updated parameter are computed as: 

𝑤𝑘
𝑡+1 = 𝑤𝑘

𝑡 − η∇𝐹𝑘(𝑤𝑘
𝑡 ),  (5) 

and η is the learning rate. 

C. Federated Incremental Learning with Differential Privacy 

for Adaptive Updates 

To support adaptive learning while preserving client data 
privacy, we enhance the local update mechanism with 
differential privacy (DP). The incremental learning framework 
is extended to include noise addition during local model updates, 
mitigating potential data leakage risks. The local objective 
function is updated incrementally as: 

𝐹𝑘(𝑤) ≈ 𝛼𝐹𝑘
prev(𝑤) + (1 − 𝛼)𝐹𝑘

new(𝑤) (6) 

where: 

 𝐹𝑘
𝑝𝑟𝑒𝑣(𝑤): Loss computed over previously seen data, 

 𝐹𝑘
𝑛𝑒𝑤(𝑤): Loss from new data 𝛥𝐷_𝑘, 

 𝛼 ∈  [0, 1]:  Weighting factor controlling the balance 
between past and new data. To ensure local updates 
preserve privacy, we incorporate differential privacy by 
modifying the gradient descent step: 

𝑤𝑘
{𝑡+1}

=  𝑤𝑘
𝑡 −  𝜂 𝛻𝐹𝑘(𝑤𝑘

𝑡 ) +  𝒩(0, 𝜎2𝐼) (7) 

where: 

 𝜂: Learning rate 

 𝒩: Gaussian noise added to the gradient for differential 
privacy 

 𝜎: Noise scale, determining the privacy-utility trade-off 
(larger σ implies stronger privacy but lower accuracy). 

This mechanism ensures that the model update satisfies (ε, 
δ)- differential privacy, thereby preventing potential inference 
of sensitive client data from shared model updates. 

Additionally, to mitigate concept drift over time, we propose 
dynamically adjusting the weighting factor α as follows: 

𝛼𝑡 =  𝛼0 ·  𝑒−𝜆𝑡   (8) 

where: 

 𝛼0: Initial weighting factor 

 𝜆: Decay constant 

 𝑡: Communication round 

The integration of differential privacy and dynamic α 
adjustment enables the federated learning framework to remain 
both adaptive and privacy-preserving in evolving and 
heterogeneous environments. 

D. Clustered Federated Learning (CFL) 

1) Cluster-specific model update: The cluster-specific 

model is updated as: 

𝑤𝑗
𝑡+1 = ∑

𝑛𝑘

𝑛𝑗
𝑘∈𝐶𝑗

𝑤𝑘
𝑡+1,  (9) 

where 

 𝑛𝑗 =  ∑ 𝑛𝑘{𝑘 ∈𝐶𝑗} : Total samples in cluster 𝑗. 

2) Global model update: The global model is updated as: 

𝑤𝑡+1 = ∑
𝑛𝑗

𝑛

𝑀
𝑗=1 𝑤𝑗

𝑡+1.  (10) 

E. Unified Workflow Objective 

The unified objective function is given as: 

𝐹(𝑤𝑡+1) = ∑
𝑛𝑗

𝑛

𝑀
𝑗=1 𝐹𝑗(𝑤𝑡+1),  (11) 

where 

𝐹𝑗(𝑤) = ∑
𝑛𝑘

𝑛𝑗
𝑘∈𝐶𝑗

𝐹𝑘(𝑤).  (12) 

F. Unified Workflow Steps 

1) Client initialization: The global model 𝑤𝑡 is sent to all 

clients. 

2) Local training: Perform local training using FedAvg and 

incremental learning on new data. 

3) Cluster formation: Group clients into clusters 𝐶𝑗 based 

on data similarity. 

4) Aggregation: 

 Cluster-specific aggregation: 

𝑤𝑗
𝑡+1 = ∑

𝑛𝑘

𝑛𝑗
𝑘∈𝐶𝑗

𝑤𝑘
𝑡+1  (13) 

 Global aggregation: 

𝑤𝑡+1 = ∑
𝑛𝑗

𝑛

𝑀
𝑗=1 𝑤𝑗

𝑡+1         (14) 

5) Global update: The server updates the global model and 

sends it back to clients for the next round. 

V. IMPLEMENTATION AND RESULTS 

This section presents the detailed setup and outcomes of the 
proposed federated learning framework for malware detection 
and anomaly identification. The experimentation involved 
analyzing memory dumps, network activities, and system logs 
from diverse client environments to simulate real-world 
scenarios. The results highlight the framework's efficiency in 
balancing resource optimization, real-time adaptability, and 
collaborative learning to detect and prioritize malicious 
activities in memory and network operations. 
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TABLE III.  PROCESS INFORMATION EXTRACTED FROM MEMORY DUMPS 

Client Process Name PID CPU Mem Threads Handles PPID StartTime Susp. 

1 svchost.exe 1224 15.2% 120 30 150 4 10:12:45 0 

1 malware.exe 5368 80.5% 300 45 250 1234 10:14:12 1 

2 explorer.exe 8821 10.1% 200 50 400 4 09:55:03 0 

2 trojan.exe 8125 70.3% 250 40 180 4321 10:18:30 1 

3 chrome.exe 1327 25.4% 400 120 600 4 09:50:00 0 

3 malware.exe 2468 95.6% 350 70 300 1375 10:20:10 1 

4 python.exe 6789 35.5% 180 60 200 4 10:05:20 0 

4 ransomware.exe 9876 90.1% 500 80 500 6789 10:25:40 1 

TABLE IV.  NETWORK ACTIVITY OBSERVED DURING MEMORY DUMP ANALYSIS 

ID Process PID Inbound (MB/s) Outbound (MB/s) Susp. Domains Susp. 

1 svchost.exe 1234 0.1 0.2 0 0 

1 malware.exe 5678 8.5 7.1 3 1 

2 explorer.exe 4321 0.3 0.1 0 0 

2 trojan.exe 8765 5.2 6.8 2 1 

3 chrome.exe 1357 3.1 2.5 0 0 

3 maware.exe 2468 12.6 10.5 5 1 

4 python.exe 6789 0.8 0.4 0 0 

4 ransomware.exe 9876 15.2 14.8 6 1 

TABLE V.  SYSTEM LOGS CAPTURED DURING MEMORY DUMP ANALYSIS 

ID Log Timestap Event Type Source Message Susp. 

1 101 10:11:00 Process Start svchost.exe Process Started 0 

1 102 10:14:12 Unauthorized Access malware.exe Access to restricted file 1 

2 103 10:17:45 Network Connection explorer.exe 
Connected to trusted 
domain 

0 

2 104 1:19:10 Malicious Activity trojan.exe 
Blacklisted domain 

connection 
1 

3 105 1:20:05 Process Start chrome.exe Process Started 0 

3 106 10:22:50 Data Exfiltration malware.exe Large outbound traffic 1 

4 107 10:25:30 Ransomware Detected ransomware.exe File encryption detected 1 

4 108 10:26:00 Process Terminated python.exe Unexpected termination 0 

TABLE VI.  IMPLEMENTATION AND EXPERIMENTATION SETUP FOR FEDERATED LEARNING VALIDATION 

Aspect Details 

Implementation Environment  

Programming Language Python (with libraries such as NumPy, TensorFlow/PyTorch, and Matplotlib for visualization). 

Federated Learning Framework TensorFlow Federated (TFF) 

Hardware Specifications CPU: 8-core, Memory: 16 GB, GPU: Optional for faster computation. 

Dataset  

Data Distribution Heterogeneous distribution among clients to simulate real-world federated learning environments. 

Experimental Setup  

Number of Clients 10 clients, each with varying data distribution and sample sizes. 

Communication Rounds 10 rounds for observing the convergence behavior of the global model. 

Local Training Epochs 5 epochs per client per communication round. 

Learning Rate 0.01 (tunable parameter). 

FebAvg Implementation  

Global Aggregating Function Weighted average aggregation of client updates. 

Local Training Function Gradient descent-based training with cross-entropy loss. 

Incremental Learning Setup  

New Data Incorporation Simulated with 20% new data at each communication round. 

Weighting Factor 𝛼 Values ranging from 0.1 to 0.9, varied to observe its impact on model accuracy. 

Cluster-Specific Models Separate model updates per cluster with global aggregation post-cluster updates. 

Evaluation Metrics  

Global Model Accuracy Evaluated after each communication round. 

Global Loss Recorded after each communication round. 

Cluster-Specific Accuracy Accuracy of cluster-specific models compared to the global model. 

Resource Usage CPU and memory usage per client during training and communication rounds. 

Encryption Overhead Time taken for encryption (optional if including secure aggregation experiments). 

Graph Generation  

Global Accuracy vs. Rounds Plot accuracy of the global model at each communication round. 

Loss Convergence Plot loss of the global model at each communication round. 

Incremental Learning Compare accuracy over time for incremental learning vs. retraining from scratch. 
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Weighting Factor Impact Plot model accuracy vs. weighting factor 

Cluster Accuracy Compare accuracy of models for different clusters. 

Data Distribution Visualize data distribution features across clusters (e.g., CPU/Memory usage). 

Reproducibility  

Random Seed Set random seed for consistent simulation results. 

Parameter Logs Maintain a log of hyperparameters and configurations for each experiment. 

 

Fig. 1. Global model accuracy vs. communication rounds. 

 

Fig. 2. Loss convergence across communication rounds. 

The global model accuracy versus communication rounds 
are visualized in Fig. 1. The line graph showcases the 
improvement in accuracy of global model that also improves 
with the increase in number of communication rounds within the 
federated learning framework setup. Fig. 2 represents the loss 
convergence across different communication rounds illustrating 
a reduction in global loss. This showcases the optimization of 
the model over time thereby a reduction in global loss. Fig. 3 
presents a comparison of incremental learning approach 
overtime versus the retraining. This highlights the efficiency of 
incremental updates in federated learning over a period of time. 

Fig. 4 demonstrates the effects of weighting factor α on the 
model's accuracy during incremental updates. The bar chart in 
Fig. 5 depicts the cluster-specific accuracy for the models 

trained on data clusters, emphasizing the benefits of Clustered 
Federated Learning. Fig. 6 illustrates the data distribution across 
clusters such as CPU usage (high, low) and memory usage (high, 
low). 

The comparison of accuracy of a single global model with 
the cluster-specific model is provided in Fig. 7. Fig. 7 clearly 
demonstrates the performance advantages of tailored cluster-
specific models. 

The resource usage per client is provided in Fig. 8 with CPU 
and memory usage for each client during local training. The 
ROC curve for malware detection is presented in Fig. 9. It 
showcases the relationships between True Positive Rate (TPR) 
and False Positive Rate (FPR) along with Area Under Curve 
(AUC) as the indicator for performance. 

Detection accuracy contribution by features are presented in 
Fig. 10. The bar chart helps in identifying the most significant 
features that contribute in detection accuracy. 

A comparison of different Federated Learning algorithms 
including FedAvg, Clustered Federated Learning and 
Incremental Learning is presented in Fig. 11. The accuracy of 
these algorithms and convergence times (rounds) showcases the 
trade-offs with performance and efficiency. A comparison of 
global federated model versus the independent local models 
demonstrating the advantage of collaboration in federated 
learning is presented in Fig. 12. 

Fig. 13 illustrates a heatmap of anomalous behaviour of 
processes and their features visualizing the correlation of 
features across processes thereby identifying suspicious patterns 
and processes.  The bar chart in Fig. 14 shows the significance 
of different features that contribute most in anomaly detection 
and the performance of the model.  Real-time detection latency 
over time as the proposed federated learning model adapts to 
features and becomes more optimized is illustrated in Fig. 15. 

The global model achieves consistent improvement in 
accuracy over communication rounds, as seen in the Fig. 1, 
reaching over 90% accuracy, indicating effective training 
convergence. Concurrently, Fig. 2 shows the global loss 
decreasing significantly in the initial rounds and tapering as the 
model stabilizes, further demonstrating convergence. 
Incremental learning outperforms retraining in terms of 
computational efficiency, as shown in the Fig. 3, achieving 
comparable accuracy with fewer resources by updating models 
incrementally. Cluster-specific performance is analyzed in Fig. 
5 and Fig. 6. Cluster 2 achieves higher accuracy than Cluster 1, 
suggesting data heterogeneity among clients, while the data 
distribution graph reveals distinct patterns in resource usage and 
features across clusters. Fig. 7 shows that cluster-specific 
models outperform the global model by tailoring updates to 
localized data distributions, highlighting the benefits of 
Clustered Federated Learning (CFL). Fig. 8 demonstrates that 
encryption overhead increases linearly with communication 
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rounds but remains within manageable limits, balancing privacy 
with performance. Accuracy comparison in Fig. 9 shows 
negligible differences between models trained with and without 
secure aggregation, validating the practicality of privacy-
preserving techniques. Lastly, Fig. 10 indicates varying CPU 
and memory demands across clients, emphasizing the 
importance of resource efficiency in federated setups. 

 

Fig. 3. Incremental model accuracy over time. 

 

Fig. 4. Impact of 𝛼 on accuracy. 

 

Fig. 5. Cluster-Specific accuracy. 

 

Fig. 6. Data distribution across clusters. 

 

Fig. 7. Comparison of global vs. clustered models. 

 

Fig. 8. Resource usage per client. 

 

Fig. 9. ROC curve for malware detection. 
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Fig. 10. Detection accuracy contribution by features. 

 

Fig. 11. Comparison of federated learning algorithms. 

 

Fig. 12. Comparison of global vs. local models. 

 

Fig. 13. Heatmap of anomalous behavior by features and processes. 

 

Fig. 14. Feature importance in anomaly detection. 

 

Fig. 15. Real-time detection latency. 

VI. DISCUSSION 

The results presented in this study provide significant 
insights into the performance, convergence, and scalability of 
the federated learning framework, validated through the 
proposed mathematical model, experimental results, and dataset 
analysis. The findings demonstrate the efficacy of federated 
learning approaches such as FedAvg, Federated Incremental 
Learning, and Clustered Federated Learning (CFL) in achieving 
accurate and efficient training in heterogeneous environments. 
The steady improvement in global model accuracy and rapid 
loss convergence, as depicted in the graphs, aligns with prior 
studies that highlight the effectiveness of FedAvg in reducing 
communication overhead while maintaining model quality. The 
incremental learning approach further reinforces the adaptability 
of federated learning systems, as it enables clients to incorporate 
new data without reinitializing the training process. This result 
is consistent with previous research indicating that incremental 
updates can improve efficiency while retaining model accuracy. 
Clustered Federated Learning (CFL) results underscore the 
importance of addressing data heterogeneity among clients. 
Cluster-specific models achieved higher accuracy compared to 
the global model, a finding supported by earlier studies on the 
benefits of data distribution-aware clustering in federated 
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systems. The improved performance of Cluster 2 over Cluster 1, 
coupled with the distinct data distribution patterns, suggests that 
tailoring models to clusters is a promising strategy for managing 
diverse client environments. The implications of this study 
extend beyond federated learning, addressing broader concerns 
in distributed systems and privacy-preserving machine learning. 
The dataset and analysis reveal that optimizing resource usage 
and addressing client heterogeneity are crucial for scaling 
federated frameworks to real-world applications, such as 
healthcare, finance, and edge computing. 

VII. CONCLUSION 

In this work, a lightweight incremental federated learning 
based model is presented to solve the traditional challenges 
faced by centralized forensic models used worldwide. By nature 
of being decentralized, it provides an approach for precise and 
timely detection of in-memory resident malware. The results 
indicate that federated learning frameworks, particularly CFL, 
achieve high accuracy (up to 92.5%) while efficiently 
addressing data heterogeneity. The ROC analysis highlights an 
AUC of 0.86, suggesting room for further model improvement. 
Feature importance analysis reveals CPU usage and network 
activity as critical contributors to anomaly detection, 
collectively accounting for more than 85% of the model's 
predictive power. Lastly, the reduction in real-time detection 
latency to 75 milliseconds demonstrates the framework's 
feasibility for deployment in time-sensitive environments. The 
future work will explore the integration of advanced privacy-
preserving techniques, such as differential privacy and secure 
multi-party computation, to enhance data security in federated 
learning systems. 

REFERENCES 

[1] Insights and statistics on the impact of malware on businesses and 
consumers worldwide. — Statista. Accessed: Jan. 02, 2025. Available 
online: https://www.statista.com/topics/8338/malware/statisticChapter  

[2] Ransomware attacks worldwide by country 2024 — Statista. Accessed: 
Jan. 02, 2025. Available online: 
https://www.statista.com/statistics/1246438/ransomware-attacks-by-
country/. 

[3] Casey, E. Experimental design challenges in digital forensics. Elsevier 
Ltd., 2013. doi: 10.1016/j.diin.2013.02.002. 

[4] Malin, C.H.; Casey, E.; Aquilina, J.M. Memory Forensics. Elsevier., Feb. 
2012. doi: 10.1016/b978-1-59749-472-4.00002-0. 

[5] Patten, D. The evolution to fileless malware. Retrieved from, 2017 

[6] Afreen, A.; Aslam, M.; Ahmed, S. Analysis of Fileless Malware and its 
Evasive Behavior. In Proceedings of the 2020 International Conference 
on Cyber Warfare and Security (ICCWS), IEEE, 2020, pp. 1–8. 

[7] Sanjay, B.N.; Rakshith, D.C.; Akash, R.B.; Hegde, D.V.V. An Approach 
to Detect Fileless Malware and Defend its Evasive mechanisms. In 
Proceedings of the 2018 3rd International Conference on Computational 
Systems and Information Technology for Sustainable Solutions 
(CSITSS), IEEE, 2018, pp. 234–239. doi:10.1109/CSITSS.2018.8768769 

[8] Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on 
federated learning: challenges and applications. International Journal of 
Machine Learning and Cybernetics, 2023, 14(2), 513–535. 
doi:10.1007/s13042-022-01647-y. 

[9] Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Federated Learning: A 
Survey on Enabling Technologies, Protocols, and Applications. IEEE 
Access, 2020. doi: 10.1109/ACCESS.2020.3013541. 

[10] Harichandran, V.S.; Breitinger, F.; Baggili, I.; Marrington, A. A cyber 
forensics needs analysis survey: Revisiting the domain’s needs a decade 
later. Comput. Secur., 2016, 57, 1–13. doi: 10.1016/j.cose.2015.10.007. 

[11] V¨omel, S.; Freiling, F.C. A survey of main memory acquisition and 
analysis techniques for the windows operating system. Elsevier Ltd., 
2011. doi: 10.1016/j.diin.2011.06.002. 

[12] V¨omel, S.; Freiling, F.C. Correctness, atomicity, and integrity: Defining 
criteria for forensically-sound memory acquisition. Digit. Investig., 2012, 
9(2), 125–137. doi: 10.1016/j.diin.2012.04.005. 

[13] Ligh, M.H.; Case, A.; Levy, J. Volatility - An advanced memory forensics 
framework. Online. Accessed: Jan. 12, 2025. Available online: 
https://github.com/volatilityfoundation/volatility. 

[14] Stadlinger, J.; Dewald, A.; Block, F. Linux Memory Forensics: 
Expanding Rekall for Userland Investigation. In Proceedings of the 2018 
11th International Conference on IT Security Incident Management IT 
Forensics (IMF), 2018, pp. 27–46. doi: 10.1109/IMF.2018.00010. 

[15] Keshk, M.; Sitnikova, E.; Moustafa, N.; Hu, J.; Khalil, I. An integrated 
framework for privacy-preserving based anomaly detection for 
cyberphysical systems. IEEE Transactions on Sustainable Computing, 
2019, 6(1), 66–79. 

[16] HIPAA Home — HHS.gov. Accessed: Jan. 12, 2025. Available online: 
https://www.hhs.gov/hipaa/index.html. 

[17] General Data Protection Regulation (GDPR) Compliance Guidelines. 
Accessed: Jan. 12, 2025. Available online: https://gdpr.eu/. 

[18] Yazdinejad, A.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Parizi, 
R.M. A Robust Privacy-Preserving Federated Learning Model Against 
Model Poisoning Attacks. IEEE Transactions on Information Forensics 
and Security, 2024, 19, 6693–6708. doi: 10.1109/TIFS.2024.3420126 

[19] Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on 
federated learning: challenges and applications. International Journal of 
Machine Learning and Cybernetics, 2023, 14(2), 513–535. doi: 
10.1007/s13042-022-01647-y. 

[20] Almutairi, W.; Moulahi, T. Joining Federated Learning to Blockchain for 
Digital Forensics in IoT. Computers, 2023, 12(8). doi: 
10.3390/computers12080157. 

[21] Panker, T.; Nissim, N. Leveraging malicious behavior traces from volatile 
memory using machine learning methods for trusted unknown malware 
detection in Linux cloud environments. Knowl. Based Syst., 2021, 226. 
doi: 10.1016/j.knosys.2021.107095 

[22] Ghimire, B.; Rawat, D.B. Recent Advances on Federated Learning for 
Cybersecurity and Cybersecurity for Federated Learning for Internet of 
Things. IEEE Internet Things J., 2022, 9(11), 8229–8249. doi: 
10.1109/JIOT.2022.3150363. 

[23] Bhatt, P. Machine Learning Forensics: A New Branch of Digital 
Forensics. International Journal of Advanced Research in Computer 
Science, 2017, 8(8), 217–222. doi: 10.26483/ijarcs.v8i8.4613. 

[24] Liu, J.; Feng, Y.; Liu, X.; Zhao, J.; Liu, Q. MRm-DLDet: A memory- 
resident malware detection framework based on memory forensics and 
deep neural network. Cybersecurity, 2023, 6(1). doi: 10.1186/s42400-
023-00157-w. 

[25] Liu, J.; et al. MemAPIDet: A Novel Memory-resident Malware Detection 
Framework Combining API Sequence and Memory Features. In 
Proceedings of the 2024 27th International Conference on Computer 
Supported Cooperative Work in Design (CSCW), 2024, pp. 2918–2924. 
doi: 10.1109/CSCWD61410.2024.10580589 

[26] Aledhari, M.; Razzak, R.; Parizi, R.M.; Saeed, F. Federated Learning: A 
Survey on Enabling Technologies, Protocols, and Applications. IEEE 
Access, 2020. doi: 10.1109/ACCESS.2020.3013541. 

[27] Tang, Y.; Wang, K. FPPFL: FedAVG-based Privacy-Preserving Feder-
ated Learning. ACM International Conference Proceeding Series, 2023, 
pp. 51–56. doi: 10.1145/3608251.3608281. 

[28] Campanile, L.; Marrone, S.; Marulli, F.; Verde, L. Challenges and Trends 
in Federated Learning for Well-being and Healthcare. Procedia Comput. 
Sci., 2022, 207, 1144–1153. doi: 10.1016/J.PROCS.2022.09.170 

[29] Kairouz, P.; et al. Advances and Open Problems in Federated Learning. 
Foundations and Trends® in Machine Learning, 2021, 14(1–2), 1–210. 
doi: 10.1561/2200000083. 

[30] Yu, X.; Liu, Z.; Wang, W.; Sun, Y. Clustered federated learning based on 
nonconvex pairwise fusion. Inf. Sci. (N.Y.), 2024, 678, 120956. doi: 
10.1016/J.INS.2024.120956 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

448 | P a g e  

www.ijacsa.thesai.org 

[31] Yu, T.; Bagdasaryan, E.; Shmatikov, V. Salvaging Federated Learning by 
Local Adaptation. 2020. Accessed: Jan. 12, 2025. Available online: 
http://arxiv.org/abs/2002.04758. 

[32] Kulkarni, V.; Kulkarni, M.; Pant, A. Survey of personalization techniques 
for federated learning. In Proceedings of the World Conference on Smart 
Trends in Systems, Security and Sustainability, WS4, 2020, pp. 794–797. 
doi: 10.1109/WORLDS450073.2020.9210355. 

[33] Fern Andez-Alvarez, P.; Rodr´ıguez, R.J. Extraction and analysis of 
retrievable memory artifacts from Windows Telegram Desktop 
application. 2022. doi: 10.1016/j.fsidi.2022.301342. 

[34] Abdelmoniem, A.M.; Sahu, A.N.; Canini, M.; Fahmy, S.A. REFL: 
Resource-Efficient Federated Learning. 2023, 16. doi: 
10.1145/3552326.3567485. 

[35] Cummings, R.; et al. Advancing Differential Privacy: Where We Are 
Now and Future Directions for Real-World Deployment. Harv. Data Sci. 
Rev., 2024, 6(1). doi: 10.1162/99608F92.D3197524. 

[36] Makarenko, M.; Gasanov, E.; Richt´arik, P. Adaptive Compression for 
Communication-Efficient Distributed Training. Accessed: Jan. 12, 2025. 
Available online: https://openreview.net/forum?id=Rb6VDOHebB. 

[37] Zhao, Z.; et al. Towards Efficient Communications in Federated Learning: 
A Contemporary Survey. J. Franklin Inst., 2022, 360(12), 8669–8703. 
doi: 10.1016/j.jfranklin.2022.12.053. 

[38] Zhou, B.; et al. FedFTN: Personalized federated learning with deep 
feature transformation network for multi-institutional low- count PET 
denoising. Med. Image Anal., 2023, 90, 102993. doi: 
10.1016/J.MEDIA.2023.102993. 

[39] Zhou, X.; et al. Personalized Federated Learning with Model Contrastive 
Learning for Multi-Modal User Modeling in Human-Centric Metaverse. 
IEEE J. Sel. Areas Commun., 2024, 42(4), 817–831. doi: 
10.1109/JSAC.2023.3345431. 

[40] Tian, Y.; Wan, Y.; Lyu, L.; Yao, D.; Jin, H.; Sun, L. FedBERT: When 
Federated Learning Meets Pre-training. ACM Trans. Intell. Syst. Technol. 
(TIST), 2022, 13(4). doi: 10.1145/3510033. 

[41] Li, Y.; Chang, T.H.; Chi, C.Y. Secure federated averaging algorithm with 
differential privacy. IEEE Int. Workshop on Machine Learning for Signal 
Processing, 2020, pp. 2020-September. doi: 
10.1109/MLSP49062.2020.9231531 

[42] McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; Ag¨uera y Arcas, 
B. Communication-Efficient Learning of Deep Networks from 
Decentralized Data. Proceedings of the 20th International Conference on 
Artificial Intelligence and Statistics, AISTATS 2017, 2016. Accessed: 
Jan. 12, 2025. Available online: https://arxiv.org/abs/1602.05629v4. 

[43] Ye, M.; Fang, X.; Du, B.; Yuen, P.C.; Tao, D. Heterogeneous Federated 
Learning: State-of-the-art and Research Challenges. ACM Comput. Surv., 
2023, 56(3). doi: 10.1145/3625558. 

[44] Ghavamipour, A.R.; Turkmen, R.; Wang, F.; Liang, K. Federated 
Synthetic Data Generation with Stronger Security Guarantees. 2023, pp. 
12. doi: 10.1145/3589608.3593835 

[45] Kairouz, P.; et al. Advances and Open Problems in Federated Learning. 
Foundations and Trends in Machine Learning, 2019, 14(1–2), 1–210. doi: 
10.1561/2200000083. 

APPENDIX A 

 

Fig. 16. Ablation study. 


