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Abstract—Sign language recognition (SLR) plays a crucial role 

in bridging communication gaps for individuals with hearing and 

speech impairments. This study proposes a hybrid deep CNN-

BiLSTM neural network with an attention mechanism for real-

time and lightweight sign language recognition. The CNN module 

extracts spatial features from individual gesture frames, while the 

BiLSTM module captures temporal dependencies, enhancing 

classification accuracy. The attention mechanism further refines 

feature selection by focusing on the most relevant time steps in a 

sign sequence. The proposed model was evaluated on the Sign 

Language MNIST dataset, achieving state-of-the-art performance 

with high accuracy, precision, recall, and F1-score. Experimental 

results indicate that the model converges rapidly, maintains low 

misclassification rates, and effectively distinguishes between 

visually similar signs. Confusion matrix analysis and feature map 

visualizations provide deeper insights into the hierarchical feature 

extraction process. The results demonstrate that integrating 

spatial, temporal, and attention-based learning significantly 

improves recognition performance while maintaining 

computational efficiency. Despite its effectiveness, challenges such 

as misclassification in ambiguous gestures and real-time 

computational constraints remain, suggesting future 

improvements in multi-modal fusion, transformer-based 

architectures, and lightweight model optimizations. The proposed 

approach offers a scalable and efficient solution for real-time sign 

language recognition, contributing to the development of assistive 

technologies for individuals with communication disabilities. 
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I. INTRODUCTION 

Sign language serves as a primary mode of communication 
for individuals with hearing and speech impairments, enabling 
them to interact effectively within society. However, barriers 
still exist due to the lack of widespread understanding and 
adoption of sign language by the general public. In this context, 
sign language recognition (SLR) plays a crucial role in bridging 
the communication gap between individuals with hearing 
disabilities and those who rely on spoken language [1]. The 
recent advancements in deep learning have paved the way for 

robust and efficient SLR systems, enhancing real-time 
communication through gesture-based interaction [2]. 

Traditional approaches to SLR have relied heavily on 
handcrafted feature extraction techniques, such as histogram of 
oriented gradients (HOG), scale-invariant feature transform 
(SIFT), and local binary patterns (LBP). While these methods 
have shown promise in controlled environments, their 
performance is often hindered by variations in lighting, 
occlusions, and user-specific differences in sign execution [3]. 
The emergence of deep learning techniques, particularly 
convolutional neural networks (CNNs), has revolutionized the 
field by enabling automatic feature extraction and classification 
with remarkable accuracy [4]. 

Recent research has demonstrated the effectiveness of CNN-
based architectures for visual gesture recognition tasks, 
including sign language translation. However, CNNs alone lack 
the ability to capture temporal dependencies in sequential 
gesture data, which is essential for accurate recognition of 
continuous sign language sequences [5]. To address this 
limitation, hybrid deep learning models combining CNNs with 
recurrent neural networks (RNNs) or bidirectional long short-
term memory (BiLSTM) networks have been proposed, 
allowing the extraction of both spatial and temporal features 
from sign language gestures [6]. The CNN component focuses 
on spatial feature extraction, while the BiLSTM module 
captures temporal dependencies in both forward and backward 
directions, thereby improving recognition accuracy [7]. 

Despite the promising results achieved through CNN-
BiLSTM models, challenges remain in real-time SLR 
applications due to the computational complexity of deep 
learning networks. High processing requirements hinder their 
deployment on resource-constrained devices, such as mobile 
phones and embedded systems, which are essential for practical, 
real-world applications [8]. As a solution, lightweight neural 
network architectures have been explored, incorporating model 
compression techniques such as depthwise separable 
convolutions, pruning, and quantization to reduce computational 
overhead while maintaining high classification accuracy [9]. 
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In addition to model efficiency, attention mechanisms have 
emerged as a powerful tool for enhancing performance in 
sequential data processing. The attention mechanism allows the 
model to selectively focus on relevant features within a 
sequence, improving temporal coherence in gesture recognition 
tasks [10]. When integrated into CNN-BiLSTM architectures, 
attention mechanisms enhance feature selection by emphasizing 
the most informative frames, thereby mitigating the impact of 
redundant or irrelevant information [11]. 

This study proposes a real-time, lightweight SLR system 
based on a hybrid deep CNN-BiLSTM architecture enhanced 
with an attention mechanism. The proposed framework is 
designed to achieve high recognition accuracy while minimizing 
computational costs, making it suitable for deployment on edge 
devices and mobile platforms [12]. The model leverages CNNs 
for extracting spatial features, BiLSTM networks for capturing 
bidirectional temporal dependencies, and an attention 
mechanism for focusing on salient information within sign 
sequences. By optimizing both accuracy and efficiency, this 
approach addresses the practical limitations of existing SLR 
systems [13], [14]. 

II. RELATED WORKS 

A. Sign Language Recognition 

Sign Language Recognition (SLR) has gained significant 
attention in recent years due to the increasing demand for 
assistive technologies aimed at bridging communication gaps 
between individuals with hearing disabilities and the wider 
community [15]. Various methods have been explored to 
achieve effective SLR, ranging from rule-based approaches to 
deep learning models [16]. Early approaches relied on 
handcrafted features extracted from gesture sequences, while 
modern techniques emphasize end-to-end learning using neural 
networks [17]. 

B. Traditional Methods 

Before the advent of deep learning, traditional methods for 
SLR primarily relied on handcrafted feature extraction 
techniques such as HOG, SIFT, and LBP [18]. These methods 
extracted low-level features from hand gestures and used 
classification techniques such as Support Vector Machines 
(SVMs) and Hidden Markov Models (HMMs) to recognize 
signs [19]. While these approaches provided reasonable 
accuracy in controlled environments, they struggled with real-
world variations such as occlusions, background noise, and 
different sign execution speeds [20]. 

C. Machine Learning Approaches 

With the rise of machine learning, researchers began to 
explore data-driven approaches for SLR. Machine learning 
models, such as Random Forests and SVMs, demonstrated 
improved accuracy compared to traditional rule-based methods 
[21]. The introduction of artificial neural networks (ANNs) 
further enhanced recognition capabilities, allowing for 
automatic feature extraction and improved generalization to 
unseen sign variations [22]. However, these methods were still 
limited by their inability to effectively capture both spatial and 
temporal dependencies in sign language sequences [23]. 

D. Deep Learning for Sign Language Recognition 

Deep learning has revolutionized SLR by providing 
powerful feature extraction and classification capabilities. 
Convolutional Neural Networks (CNNs) have been widely used 
for spatial feature extraction, achieving state-of-the-art 
performance in static sign recognition [24]. However, 
recognizing continuous sign language requires capturing 
temporal dependencies, which led to the integration of Recurrent 
Neural Networks (RNNs) and Long Short-Term Memory 
(LSTM) networks into SLR frameworks [25]. More recently, 
BiLSTM networks have been employed to improve sequence 
modeling by considering both forward and backward temporal 
dependencies, leading to enhanced recognition accuracy [26]. 
Additionally, attention mechanisms have been incorporated into 
CNN-BiLSTM architectures to enhance feature selection and 
improve classification performance [27]. 

E. Challenges in Sign Language Recognition 

Despite significant progress, several challenges remain in 
developing real-time and robust SLR systems. One major 
challenge is the variability in sign execution, including 
differences in speed, hand position, and occlusions [28]. 
Another challenge is the high computational cost of deep 
learning models, making it difficult to deploy them on edge 
devices and mobile platforms [29]. Addressing these challenges 
requires optimizing model architectures for efficiency while 
maintaining high recognition accuracy. 

F. Research Gaps 

While deep learning-based SLR systems have achieved 
remarkable success, there are still research gaps that need to be 
addressed. Existing models often require large labeled datasets, 
which are expensive and time-consuming to create [30]. 
Additionally, real-time processing remains a challenge due to 
the complexity of CNN-BiLSTM architectures [31]. Further 
research is needed to develop lightweight models that can 
operate efficiently on low-power devices without compromising 
recognition performance [32]. Moreover, integrating multi-
modal inputs, such as depth and motion data, could enhance 
recognition robustness in real-world scenarios [33]. 

By addressing these gaps, future sign language recognition 
systems can be made more efficient, accurate, and accessible, 
ultimately improving communication for individuals with 
hearing impairments. 

III. PROBLEM STATEMENT 

The fundamental challenge in Sign Language Recognition 
(SLR) is achieving high-accuracy, real-time classification of 
gestures while maintaining computational efficiency. Given an 
input sequence of image frames 

 TxxxX ,...,, 21 , the goal is to predict the 

corresponding sequence of sign language labels 

 TyyyY ,...,, 21  such that: 

   ,|maxarg| tt xyPXYP                 (1) 

where,   represents the learned parameters of the model. 
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Traditional deep learning approaches rely on CNNs for 
spatial feature extraction and LSTMs for temporal 
dependencies. However, existing methods struggle with 
balancing recognition accuracy and real-time efficiency, 
especially in low-resource environments. Thus, a hybrid CNN-
BiLSTM model with an attention mechanism is needed to 
enhance spatial-temporal feature extraction while maintaining 
lightweight computational costs. 

IV. MATERIALS AND METHODS 

Developing an accurate and efficient Sign Language 
Recognition (SLR) system requires a well-structured 
methodology that encompasses dataset selection, preprocessing, 
model architecture, and training strategies. This section provides 
a comprehensive overview of the materials and methods 
employed in this study. First, the dataset used for training and 
evaluation is described, including its structure, distribution, and 
preprocessing techniques. Next, the proposed hybrid 
CNN- BiLSTM model with an attention mechanism is 
introduced, detailing its ability to extract spatial and temporal 
features from sign language gestures. The section further 
elaborates on the training process, including the optimization 
strategies, loss functions, and performance evaluation metrics 
utilized. Finally, implementation details, including 
computational resources and hyperparameter settings, are 
presented to ensure the reproducibility of the study. 

A. Dataset 

The Sign Language MNIST dataset is a widely used 
benchmark for static sign language recognition. It was designed 
as an adaptation of the MNIST dataset to facilitate research in 
sign language gesture classification [34]. The dataset consists of 
27,455 grayscale images, each of size 28×28 pixels, representing 
24 different hand gestures corresponding to the American Sign 
Language (ASL) alphabet. The dataset excludes the letters J and 
Z since these signs involve dynamic motion that cannot be 
effectively captured in static images. 

The dataset is divided into two subsets: a training set of 
27,455 images and a test set of 7,172 images, ensuring a 
structured approach to evaluating model performance. Each 
image represents a single hand gesture and is labeled with one 
of the 24 classes. The data is well-balanced across the different 
sign categories, enabling efficient training of deep learning 
models. 

The simplicity of the dataset, coupled with its structured 
grayscale format, makes it an ideal benchmark for evaluating 
convolutional neural networks (CNNs) and hybrid deep learning 
architectures for sign language recognition. Fig. 1 provides a 
visual representation of sample images from the dataset, 
illustrating the variation in hand gestures and their 
corresponding labels. 

Fig. 2 presents a visualization of the class distribution within 
the Sign Language MNIST dataset. The dataset comprises 24 
distinct hand gesture classes, each representing a different letter 
in the American Sign Language (ASL) alphabet, excluding J and 
Z, which require motion. The histogram illustrates the number 
of samples per class, providing insight into the dataset's balance. 

 
Fig. 1. Sample images of the applied dataset. 

 
Fig. 2. Distribution of classes. 

From Fig. 2, it can be observed that the dataset is relatively 
balanced, with each class containing approximately 1,000 to 
1,250 samples. This balanced distribution is crucial for training 
deep learning models, as it minimizes the risk of class bias and 
ensures that all gestures receive equal representation during 
training. A well-distributed dataset allows for better 
generalization, reducing the likelihood of models overfitting to 
more frequent classes while underperforming on less 
represented signs. 

This visualization highlights the adequacy of the dataset for 
training sign language recognition models, as it ensures that the 
learning process is not skewed toward particular gesture classes. 
Additionally, understanding the dataset distribution aids in the 
design of appropriate preprocessing techniques and data 
augmentation strategies to enhance model robustness in real-
world applications. 
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Fig. 3. Dataset balance and normalization. 

Fig. 3 illustrates a subset of grayscale images from the Sign 
Language MNIST dataset, showcasing the variation in hand 
gestures used for sign recognition. To enhance model 
performance and improve generalization, we apply grayscale 
normalization, a crucial preprocessing step in image-based deep 
learning models. The primary objective of grayscale 
normalization is to reduce the effects of illumination differences, 
which can introduce unwanted variability in pixel intensity 
across images. 

Mathematically, grayscale normalization transforms pixel 
values from the original range [0,255] to a normalized range of 
[0,1] using the following equation : 

255

orig

norm

I
I                                     (2) 

where, origI  represents the original pixel, normI  is the 

normalized intensity. 

This transformation ensures a more stable numerical range, 
preventing large gradients and facilitating smoother 
optimization during training. Additionally, CNNs exhibit faster 
convergence when operating on normalized input data, reducing 
training time while maintaining robust feature extraction 
capabilities. 

By applying grayscale normalization, we standardize input 
data, ensuring consistent image contrast and reducing the impact 
of environmental variations. This step plays a vital role in 
enhancing model robustness, particularly when the trained 
system is deployed in real-world sign language recognition 
applications. 

B. Proposed Model 

The proposed real-time lightweight sign language 
recognition model is based on a hybrid deep CNN-BiLSTM 
neural network with an attention mechanism, as illustrated in 
Fig. 4. This architecture is designed to efficiently capture both 
spatial and temporal dependencies in sign language gestures 
while maintaining computational efficiency. The CNN module 
extracts spatial features from individual frames, while the 
BiLSTM module captures the temporal relationships between 
sequential frames. The attention mechanism further enhances 
performance by prioritizing the most relevant time steps in the 
sequence, ensuring robust recognition of sign gestures even in 
challenging environments.

 
Fig. 4. The Proposed hybrid CNN-BiLSTM network with attention mechanism. 
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Convolutional Neural Network (CNN) for Spatial Feature 
Extraction. The first stage of the model is a Convolutional 
Neural Network (CNN), which extracts low-level and high-level 
spatial features from each frame. Given an input image 𝑋 of 
dimensions 𝐻×𝑊×𝐶, where 𝐻 and 𝑊 denote height and width, 
and 𝐶 represents the number of channels, the output feature map 
is computed as: 
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where, 
)(lW  represents the convolutional filter weights, 

)(lb  is the bias term, and   is the activation function (ReLU 

in this case). 

The CNN module includes multiple convolutional layers, 
followed by max-pooling layers to reduce the spatial dimensions 
and retain the most salient features: 
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,
,
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, max l

njmi
nm

l

ji FP                           (4) 

)(lP  represents the output of the pooling layer. 

Fig. 5 illustrates the convolution operation, a fundamental 
component of Convolutional Neural Networks (CNNs) used for 
spatial feature extraction. The figure depicts the application of a 
convolution filter (Sobel Gx) to an input image matrix, where a 
3×3 kernel slides over the input feature map, computing the 
weighted sum of pixel values within the receptive field. 
Mathematically, the convolution operation at a given location 
(𝑖,) is defined as: 

    
 


k

km

k

kn

njmiXnmWjiF ,,),(       (5) 

 
Fig. 5. Convolution operation in CNN for spatial feature extraction. 

where,  jiX ,   represents the pixel intensity values of the 

input feature map,  nmW ,  denotes the filter weights, and k  

is the kernel size offset. In this figure, the convolution filter 
extracts edge features, highlighting intensity changes in the 

spatial domain. The output destination pixel stores the computed 
value, forming a new feature map that enhances object 
boundaries and structural details. This operation is critical for 
hierarchical feature extraction, enabling CNNs to learn 
meaningful representations from raw image inputs. Through 
successive convolutional layers, deep CNN models 
progressively capture low-level features (edges, textures) and 
high-level features (shapes, patterns), facilitating robust sign 
language recognition. 

Bidirectional Long Short-Term Memory (BiLSTM) for 
Temporal Dependency Learning: To capture temporal 
dependencies in sequential gestures, the extracted feature maps 
are fed into a Bidirectional Long Short-Term Memory 
(BiLSTM) network. The BiLSTM consists of two LSTMs, one 
processing the sequence in the forward direction and the other 
in the backward direction: 
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bhWXWfh thtxt 1                   (7) 

where, 



th  and 



th  represent the hidden states of the 

forward and backward LSTMs, respectively. The final output is 
the concatenation of both hidden states: 



 ttt hhh                                (8) 

This bidirectional processing ensures that the network 
captures long-range dependencies from both past and future 
frames, improving recognition accuracy. 

Attention Mechanism for Feature Enhancement: The 
attention mechanism enhances feature selection by assigning 
different importance scores to different time steps in the 

sequence. The attention weight t
 for each time step is 

computed using the softmax function: 
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where, te  is computed as: 

 sWhWe sth

T

t  tanh                   (10) 

where,  , hW , sW  are learnable parameters, and 𝑠 

represents the context vector. The final context vector used for 
classification is: 


t

tt hc                 (11) 
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This mechanism ensures that the model focuses on the most 
relevant time steps in the sign sequence, improving robustness 
against variations in gesture execution. 

Fully Connected Layers and Classification. The final feature 
representation 𝑐 is passed through fully connected (dense) 
layers, followed by a softmax activation function for 
classification: 

 cc bcWsofty  max                       (12) 

where, cW  and cb  are learnable parameters. The softmax 

function ensures that the output represents a probability 
distribution over the possible sign language classes: 
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Loss Function and Optimization. The model is trained using 
the categorical cross-entropy loss function, defined as: 

 



N

i

ii yyL
1

ˆlog                            (14) 

where, iy  is the true label, and iŷ  is the predicted 

probability of class i . The parameters are optimized using the 

Adam optimizer, which updates weights based on the gradient: 




t

t

tt

m


 1

                         (15) 

where,   is the learning rate, tm  is the first moment 

estimate, and t  is the second moment estimate. 

Summary of the Model: The proposed model integrates 
CNN for spatial feature extraction, BiLSTM for temporal 
sequence learning, and an attention mechanism for feature 
enhancement, ensuring accurate and efficient sign language 
recognition. Fig. 4 illustrates the detailed architecture of the 
model. The combination of spatial and temporal learning, along 
with attention-based feature refinement, results in a robust and 
computationally efficient system suitable for real-time 
applications. 

C. Evaluation Parameters 

To assess the performance of the proposed hybrid CNN-
BiLSTM model with an attention mechanism for sign language 
recognition, multiple evaluation metrics are employed. These 
metrics provide a comprehensive analysis of the model’s 
classification accuracy, robustness, and generalization ability 
[35]. 

Accuracy is the most fundamental metric used to evaluate 
classification models, representing the proportion of correctly 
predicted instances over the total number of instances. It is 
mathematically defined as: 

FNFPTNTP

TNTP
Accuracy




                (16) 

where, TP (True Positives) and TN (True Negatives) 
represent correctly classified instances, while FP (False 
Positives) and FN (False Negatives) denote misclassified 
instances. High accuracy indicates strong overall performance, 
but it may be misleading in imbalanced datasets. 

Precision quantifies the proportion of correctly predicted 
positive instances out of all predicted positive instances. It is 
particularly important in applications where false positives must 
be minimized. The precision score is computed as: 

FPTP

TP
ecision


Pr                         (17) 

A high precision value implies that the model has a low false 
positive rate, making it suitable for scenarios requiring reliable 
positive predictions. 

Recall, also known as sensitivity or true positive rate, 
measures the proportion of actual positive instances that were 
correctly predicted. It is essential for applications where missing 
a positive instance (false negative) is critical. Recall is defined 
as: 

FNTP

TP
call


Re                         (18) 

A higher recall score indicates that the model effectively 
identifies most positive instances, reducing false negatives. 

F1-Score provides a balanced measure of precision and 
recall, ensuring that both false positives and false negatives are 
considered. It is the harmonic mean of precision and recall, 
computed as: 

recallprecision

recallprecision
scoreF




 21                (19) 

A high F1-score indicates a model with both strong precision 
and recall, making it a crucial metric when dealing with class 
imbalances. 

These evaluation parameters collectively offer a holistic 
assessment of the proposed model’s performance, ensuring that 
it not only achieves high accuracy but also maintains robustness 
in correctly identifying sign language gestures. 

V. RESULTS 

The results obtained from the experiments provide an in-
depth evaluation of the proposed CNN-BiLSTM model with an 
attention mechanism for sign language recognition. This section 
presents the model's training and testing performance, 
classification accuracy, loss convergence trends, confusion 
matrix analysis, and feature map visualizations. The 
effectiveness of the model is assessed using standard evaluation 
metrics, including accuracy, precision, recall, and F1-score, 
ensuring a comprehensive performance comparison. 
Additionally, visualizations of correct and misclassified 
predictions provide insights into the model’s strengths and areas 
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for potential improvement. The results further highlight the 
significance of integrating CNN for spatial feature extraction, 
BiLSTM for temporal pattern learning, and the attention 
mechanism for enhanced feature selection, demonstrating the 
model's capability to generalize effectively for real-time sign 
language recognition applications. 

Fig. 6 illustrates the feature maps generated by the 
convolutional layers of the proposed CNN-BiLSTM model with 
an attention mechanism during the spatial feature extraction 
process. Each sub-image within the figure represents an 
activation map corresponding to different convolutional filters 
applied to the input sign language images. These feature maps 

capture essential structural patterns such as edges, textures, and 
contours, which are critical for recognizing hand gestures in sign 
language. 

At the initial layers, the convolutional filters primarily detect 
low-level features such as simple edges and gradient transitions. 
As the network progresses deeper, the extracted features become 
more complex, encoding high-level semantic patterns that 
distinguish different hand gestures. The highlighted regions in 
the feature maps indicate areas where the network has strong 
activations, meaning those parts contribute significantly to 
classification. 

 

Fig. 6. Feature maps generated by convolutional layers in the proposed CNN-BiLSTM model. 
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This visualization helps in understanding how the 
convolutional layers automatically learn hierarchical 
representations, enabling robust recognition of sign language 
gestures. The effective extraction of spatial features in these 
layers plays a fundamental role in enhancing the model’s 
accuracy and generalization capability in real-world 
applications. 

Fig. 7 illustrates the feature maps generated by deeper 
convolutional layers of the proposed CNN-BiLSTM model with 
an attention mechanism. These feature maps represent the 
activation patterns learned at later stages of the convolutional 
network, capturing more complex and abstract spatial 

representations of sign language gestures. Unlike earlier 
convolutional layers that detect low-level features such as edges 
and textures, deeper layers focus on higher-level representations 
such as geometric structures and gesture-specific patterns. 

Each sub-image in Fig. 7 corresponds to an activation map 
produced by different convolutional filters. The variation in 
feature maps demonstrates how different filters focus on distinct 
regions of the input image, allowing the model to build a 
hierarchical understanding of hand gestures. The presence of 
strong activations in specific areas indicates regions of high 
relevance for classification, enhancing the model’s ability to 
differentiate between visually similar gestures. 

 

Fig. 7. Feature maps from deeper convolutional layers in the proposed CNN-BiLSTM model. 
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This visualization highlights the effectiveness of the 
hierarchical feature learning process in CNNs, where successive 
convolutional layers refine the extracted features to improve 
recognition accuracy. The ability to capture abstract spatial 
patterns ensures that the model generalizes well across different 
users, hand orientations, and lighting conditions, making it 
robust for real-time sign language recognition applications. 

Fig. 8 presents the training and validation accuracy (left) and 
training and testing loss (right) over multiple epochs for the 
proposed CNN-BiLSTM model with an attention mechanism. 
The left graph illustrates the progression of training accuracy 
(green) and testing accuracy (red) across 20 epochs. Initially, 
both training and testing accuracy exhibit a sharp increase, with 
the testing accuracy rapidly converging toward the training 

accuracy, demonstrating effective learning. By approximately 
the fifth epoch, the model reaches over 90% accuracy, and after 
10 epochs, the accuracy stabilizes near 100%, indicating that the 
model generalizes well to unseen test data. 

The right graph in Fig. 8 shows the training loss (green) and 
testing loss (red) as a function of epochs. A significant decrease 
in loss is observed within the first few epochs, with the testing 
loss reducing sharply from over 5.0 to below 1.0 by epoch 5, 
suggesting rapid convergence. After 10 epochs, both training 
and testing loss values stabilize at a minimal level, confirming 
that the model has effectively minimized classification errors. 
The negligible difference between training and testing curves 
further suggests that the model exhibits minimal overfitting and 
maintains robust generalization performance. 

 

Fig. 8. Training and testing accuracy and loss curves for the proposed CNN-BiLSTM model. 

Fig. 9 presents the confusion matrix for the proposed CNN-
BiLSTM model with an attention mechanism, illustrating the 
model’s classification performance across the 24 sign language 
gesture classes. Each row in the matrix represents the actual 
class, while each column corresponds to the predicted class. The 
diagonal elements indicate correctly classified instances, 
whereas off-diagonal elements denote misclassifications. 

From Fig. 9, it is evident that the model demonstrates high 
classification accuracy, as most of the predictions are 
concentrated along the diagonal with minimal misclassification 
errors. The intensity of the blue color represents the frequency 

of correct predictions, with darker shades indicating a higher 
number of correctly classified instances. The sparse distribution 
of misclassified samples in non-diagonal positions suggests that 
the model effectively learns distinct sign language features, 
resulting in robust recognition performance. 

The confusion matrix also highlights minor misclassification 
instances, which may occur due to similar hand gestures, 
occlusions, or variations in user execution. Despite these 
challenges, the model maintains high precision and recall across 
all classes, validating its effectiveness in real-time sign language 
recognition applications.
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Fig. 9. Confusion matrix of the proposed CNN-BiLSTM model for sign language recognition. 

Fig. 10 presents a visualization of correctly and incorrectly 
classified sign language gestures by the proposed 
CNN- BiLSTM model with an attention mechanism. The top 
row displays images where, the model correctly predicted the 
sign, while the bottom row showcases misclassified instances. 
Each image is annotated with the predicted class (Pred) and the 
actual ground truth class (True), allowing for a comparative 
evaluation of classification performance. 

From Fig. 10, it is evident that the model performs well on 
clear and well-defined gestures, as seen in the correctly 
classified instances. However, some misclassifications occur in 
the bottom row, primarily due to visual similarities between 
certain signs, occlusions, or variations in hand positioning. 
These errors highlight the challenges of distinguishing between 
similar sign gestures, reinforcing the need for advanced feature 
extraction techniques and attention mechanisms to enhance 
model robustness. 
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Fig. 10. Correct and misclassified predictions of the proposed CNN-BiLSTM model for sign language recognition. 

The visualization provides valuable insights into common 
misclassification patterns, which can be used to refine the model 
by incorporating data augmentation, additional training samples, 
or improved temporal modeling. Despite minor classification 
errors, the model maintains high accuracy across different sign 
classes, demonstrating its effectiveness in real-time sign 
language recognition. 

The experimental results demonstrate the effectiveness of 
the proposed CNN-BiLSTM model with an attention 
mechanism in sign language recognition, achieving high 
accuracy, precision, recall, and F1-score across all evaluated 
classes. The training and testing performance curves indicate 
fast convergence and minimal overfitting, validating the 
efficiency of the model in learning spatial and temporal 
dependencies. The confusion matrix analysis further confirms 
strong classification capabilities, with the majority of 
predictions aligning with ground truth labels. Additionally, the 
visualization of correctly and incorrectly classified instances 
highlights the model’s robustness, while also identifying 
challenging cases where gestures exhibit high visual similarity. 
Feature map visualizations provide insights into the hierarchical 
feature extraction process, demonstrating how the convolutional 
layers effectively capture both low-level and high-level patterns 
in sign language gestures. These findings collectively affirm the 
potential of the proposed approach for real-time sign language 
recognition applications, offering a reliable and computationally 
efficient solution for assistive communication technologies. 

VI. DISCUSSION 

The findings of this study demonstrate the effectiveness of 
the hybrid CNN-BiLSTM model with an attention mechanism 
in sign language recognition. Compared to traditional machine 
learning approaches, deep learning-based models exhibit 
superior performance due to their ability to extract spatial and 
temporal features automatically [35]. The integration of CNN 
for spatial feature extraction ensures that the model captures 
intricate details of hand gestures, while BiLSTM improves 
sequential learning by processing temporal dependencies in 
gesture movements [36]. This combination enhances 
classification accuracy, particularly in distinguishing between 
visually similar signs. 

One of the key advantages of the proposed model is its 
attention mechanism, which selectively emphasizes relevant 
frames within a sign language sequence. This mechanism 
mitigates the impact of redundant or ambiguous frames, 

resulting in improved recognition efficiency [37]. The 
experimental results confirm that attention-based feature 
refinement significantly reduces misclassification rates, as seen 
in the confusion matrix analysis. Furthermore, the feature map 
visualizations illustrate how the convolutional layers extract 
low- and high-level spatial patterns, contributing to enhanced 
model interpretability. 

Despite these improvements, some challenges remain. The 
misclassified instances in the results indicate that certain sign 
gestures with similar hand shapes and orientations are more 
prone to confusion. These errors can be attributed to inter-class 
similarities and variations in user execution, which may require 
additional training data or more robust augmentation techniques 
to address [38]. Moreover, real-time implementation 
necessitates computational efficiency, making it crucial to 
balance model complexity and inference speed. Future work 
should focus on optimizing network architectures to reduce 
latency while maintaining high classification accuracy. 

Additionally, while the proposed model achieves high 
precision and recall, further enhancements can be made by 
incorporating multi-modal inputs, such as depth information and 
hand movement trajectories. Recent studies suggest that fusing 
multiple input modalities significantly enhances sign 
recognition performance, especially in dynamic sign languages 
that require motion tracking [39]. Exploring the integration of 
transformer-based models could also be beneficial in improving 
long-range temporal dependencies in sign sequences. 

Overall, this study demonstrates that deep learning-based 
approaches offer promising advancements in sign language 
recognition. By leveraging spatial, temporal, and attention-
based feature extraction techniques, the proposed model 
achieves state-of-the-art performance while maintaining 
computational efficiency. These findings contribute to the 
ongoing development of real-time sign language translation 
systems, ultimately fostering more inclusive communication 
technologies. 

VII. CONCLUSION 

The study presented a hybrid CNN-BiLSTM model with an 
attention mechanism for real-time sign language recognition, 
demonstrating high accuracy and computational efficiency. By 
leveraging CNN layers for spatial feature extraction and 
BiLSTM networks for temporal pattern learning, the model 
effectively captures intricate hand gesture variations. The 
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integration of attention mechanisms further enhances feature 
selection, reducing misclassification and improving overall 
robustness. Experimental results confirm that the model 
achieves superior performance across accuracy, precision, 
recall, and F1-score, validating its effectiveness in sign language 
classification. Additionally, confusion matrix analysis and 
feature map visualizations provide insights into how the model 
distinguishes between different signs, highlighting areas where 
future refinements can be made. Despite achieving high 
recognition rates, challenges such as misclassifications of 
visually similar signs and computational constraints in real-time 
applications remain. Future research should explore multi-
modal data integration, lightweight architectures, and 
transformer-based models to further enhance recognition 
capabilities. Overall, the proposed approach provides a scalable 
and efficient solution for real-time sign language recognition, 
contributing to the development of inclusive assistive 
technologies for individuals with hearing and speech 
impairments. 
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