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Abstract—In understanding brain functioning by 

Electroencephalography (EEG), it is essential to be able to not only 

identify more active brain areas but also understand connectivity 

among different areas. The functional and efficient connectivity 

networks of the brain have been examined in this study by 

constructing a connectivity feature map (CFM) with four widely 

used connectivity methods from the Database for Emotion 

Analysis Using Physiological Signals (DEAP) emotional EEG data 

to research how this connectivity's patterns are influenced by 

emotion. According to the investigation results, emotions are 

mainly related to the parietal, central, and frontal regions. The 

parietal region is more responsible for emotion alteration among 

these three regions. Positive emotions are associated with more 

direct correlations and dependencies than negative ones. When 

experiencing negative emotions, the regions of the brain function 

more synchronously as well as there are less flow of information. 

Whether direct or inverse, there is less correlation between brain 

regions in the higher frequency band than in the lower frequency 

band. Higher frequencies are associated with increased 

dependence and directed information transfer between brain 

regions. Generally, the electrodes in the same lobe show stronger 

connectivity than those in different lobes. At a glance, the present 

study is a comprehensive analysis to understand brain network 

stimulation for emotion from EEG, and it significantly differs 

from the existing emotion recognition studies typically focused on 

recognition proficiency. 
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I. INTRODUCTION 

Interaction between brain areas have been recognized as a 
critical ingredient needed to understand brain function. 
Neuroimaging techniques are valuable for studying how the 
brain processes human emotions and activities. Emotion 
research has received increased attention from cognitive 
scientists and neurobiologists in recent decades, owing to its 
importance in decision-making, well-being, mood, personality, 
and psychotic diseases [1]. Electroencephalography (EEG) is a 
neuroimaging method that uses its sensors in the brain to record 
the electrical impulses generated by neural activity (i.e., 
electrodes or channels) affixed to the brain; it captures the 
changes in voltage brought on by ionic current flows in the 
neurons of the brain [2], [3], [4]. Recently, EEG has become 
popular for studying the brain's responses to emotional stimuli 
for its superior temporal resolution, noninvasiveness, 

portability, ease of use, and reasonably affordable speed [4], [5]. 
EEG is a composite signal that is composed of sub-bands such 
as Alpha (8–12 Hz), Beta (13–29 Hz), and Gamma (30–50 Hz) 
[6]. These sub-bands may provide a more accurate 
representation of the constituent neural process activity [7]. 
Connectivity features from the EEG signal can provide valuable 
information regarding brain connectivity behind emotion as 
these features analyze the interaction between different brain 
areas. 

Several methods can measure the connectivity among EEG 
signals from different brain regions. Examples of such methods 
include Pearson correlation coefficient (PCC) [8], cross-
correlation (XCOR) [9], phase locking value (PLV) [10], mutual 
information (MI) [11], normalized MI (NMI) [12], partial 
mutual information (PMI) [13], and transfer entropy (TE) [14]. 
PCC and XCOR are linear functional connectivity methods 
which can only detect linear dependencies between two signals 
or variables; PLV is nonlinear functional connectivity that 
represents the phase synchronization between two signals or 
variables. MI is nonlinear functional connectivity method, 
which measures the amount of shared information, whereas TE 
stands for effective nonlinear connectivity, which measures the 
directional flow of information between two brain regions. MI 
and TE are information-theoretic measures based on Shannon 
entropy [15]. Both NMI and PMI are two variants of MI. Such 
methods can be applied to signals collected through EEG 
electrodes to extract the connectivity features of the signals. The 
extracted features can be mapped into a two-dimensional matrix 
called a connectivity feature map (CFM). Emotion recognition 
(ER) and investigating brain mechanisms from CFM have 
become popular recently in the field of emotion research [16]–
[22]. 

This study aims to analyze and understand brain network 
connectivity stimulation for different emotions through CFM 
from EEG, overcoming the limitations of the existing studies. 
The existing studies mainly focused on ER, and a few studies 
considered to investigate the brain mechanism behind/along ER. 
This study considers diverse connectivity methods for CFM 
construction and analysis to understand brain network 
stimulation emotion. Four frequently used connectivity 
methods, PCC, PLV, MI, and TE, were chosen. This study 
investigates connectivity represented in three sub-frequency 
bands named Alpha, Beta, and Gamma. Extensive studies using 
the developed CFMs have been conducted on the DEAP 
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benchmark EEG dataset. An overview of the primary 
contributions of this work is provided below: 

1) Brain network stimulation outcomes have been 

reviewed from existing studies. 

2) Using four diverse, widely used connectivity methods, 

PCC, PLV, MI, and TE, CFMs are constructed for the DEAP 

dataset. 

3) Distinctive and rigorous analysis of CFMs has been 

conducted to unveil discerning remarks on brain network 

connectivity levels (weak/strong) concerning stimulation for 

emotions with the frequency bands and brain lobes. 

4) This study's findings are contrasted with those of 

comparable state-of-the-art research and identified novelty of 

the study. 

The rest of this study is structured as follows. Section II 
briefly reviews prominent ER studies emphasizing brain 
network connectivity stimulation. The methodology to 
investigate brain mechanisms from CFM is described in Section 
III. Section IV presents the findings by analyzing CFM using the 
DEAP dataset. Section V presents a comparative discussion of 
the findings of the present study with related existing studies. At 
last, Section VI concludes the paper with a few remarks. 

II. LITERATURE REVIEW 

Emotion is the basic characteristic of human beings, and the 
brain is the root of emotion exposure. Emotion recognition (ER) 
analyzing EEG signals is well-studied in a number of existing 
studies. Proficiency of ER from EEG is the common main goal 
of those studies; however, several studies slightly focused on 
understanding brain network connectivity stimulation for 
different emotions and emotional states through CFM from 
EEG. The existing studies may be categorized under findings 
with respect to (w.r.t.) emotional states, brain regions, and 
frequency bands. The ensuing subsections provide a concise 
overview of notable ER research categorically. 

A. Investigation Concerning Frequency Bands 

The effect of different frequency bands on brain connectivity 
was investigated in a few studies [23], [24]. Li et al. [23], 
extracted the PLV feature and fused it with several other 
individual channel features; the fused feature was then classified 
by stacking an ensemble learning framework for ER. Brain 
function was also investigated with PLV feature under Theta, 
Alpha, Beta, and Gamma sub-frequency bands, from where it 
was identified that the PLV of the lower frequency bands (i.e., 
Theta and Alpha) is greater than those of higher frequency bands 
(i.e., Beta and Gamma). The same sub-frequency bands and 
PLV feature were also used by Cui et al. [24], to classify emotion 
and to analyze brain connectivity; they drew some conclusions 
that the Beta band has the lowest PLV, whereas the Theta band's 
PLV is significantly higher than other bands'. 

B. Investigation Concerning Emotional States 

Brain mechanisms concerning different emotions, such as 
positive and negative, have been investigated in several studies 
[12], [20], [21], [22], [17], [25]. Wang et al. [12], used NMI as 
a connectivity method to construct CFM. The aim of the study 
[12] was channel selection, where emotion classification was 

done with a support vector machine (SVM); the study also drew 
some conclusions on brain function behind emotion from where 
it was identified that the high Arousal low Valence state was 
found to have a wider  active brain areas. Khosrowabadi et al. 
[20], used MI and another functional connectivity feature named 
magnitude MI and squared coherence estimate (MMSCE) to 
recognize emotion with SVM and K-nearest neighbor (KNN) 
classifier; they identified that various emotional states are 
accompanied by various types of functional brain connectivity. 
Liu et al. [21], performed emotion classification with the 
Xception network where brain mechanism also investigated 
with connectivity feature named coherence; the study found that 
the functional network made by low Valence-Arousal emotion 
revealed more active (i.e., higher coherence) functional 
connectivity than the one made by high Valence-Arousal 
emotion. When using the phase slope index (PSI) approach to 
study brain connectivity, Costa et al. [22], discovered a 
phenomenon whereby multi-channel EEG signals for sad 
emotions are more synchronized than those for happy emotions. 
Wang et al. [17], classified emotion with the PLV feature by 
Graph CNN; the PLV feature was also used to investigate brain 
connectivity. According to the study [17], the phase-locking 
value in the pleasant condition is lower than in the sad condition, 
which indicates that the pleasant mood is less active in the brain 
area. Recently, Wang et al. [25], identified from PLV feature 
that PLV values in positive emotions are generally smaller than 
in negative emotions; they also analyzed CFM concerning time 
periods and identified that there are little differences in 
connection patterns for the same emotions in different time 
periods. 

C. Investigation Concerning Different Brain Regions 

Several studies investigated responses of specific brain 
regions on different mental states by analyzing the CFMs with 
individual connectivity methods. Gao et al. [5], employed two 
effective connectivity features named TE and Granger causality 
(GC) for classifying stress and calm state with three classifiers 
(i.e., SVM, random forest, and decision tree); they highlighted 
from the GC that the parietal and frontal lobes show stronger 
connectivity during the stress state; and they also discovered 
from TE that there was a greater information exchange between 
the C4 and Fp1 channels under pressure. Chen et al. [8], used 
PCC, PLV, and TE feature methods to recognize emotion with 
domain adaptive residual convolutional neural network (CNN) 
as a classifier. Along with ER using the three feature methods, 
they investigated brain mechanisms through PCC and PLV 
features; it was found from CFM constructed with PCC that the 
brain’s emotional activity is more perceptible in the occipital 
and parietal regions, and the CFM with PLV revealed that the 
phase consistency is relatively strong in the occipital, frontal and 
parietal regions, while the phase consistency is poor in other 
regions. For emotion recognition, Kong et al. [16], used sparse 
representation-based classification with connectivity feature 
PSI; the PSI method was also used for brain connectivity 
analysis from where it was found that, in sad emotion, the right 
prefrontal cortex (PFC) has stronger nodal connections than the 
left PFC, whereas, in happy emotion, the left PFC's nodal 
connection strength is stronger than the right PFC's. Graph CNN 
was used with the PLV feature by Wang et al. [15], to classify 
emotion under five sub-frequency bands (i.e., Delta, Theta, 
Alpha, Beta, and Gamma), but a single frequency band was used 
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to investigate brain network and drew conclusions that emotions 
are related to mainly the temporal lobe. The study also showed 
that, during positive and negative emotions, the left and right 
forebrain generates strong EEG activity, respectively; the study 
shows that emotions are greatly correlated with the forebrain. 
Zhu et al. [18], used CNN to classify emotion with the phase lag 
index (PLI) feature and also explored phase synchronization of 
brain signals with that feature and found that, generally, the 
connectivity between the channels of the right frontal region was 
stronger than those of the left frontal region. 

III. METHODOLOGY 

In this study, connectivity is measured using different 
popular methods on the benchmark EEG dataset to understand 
brain network connectivity stimulation for emotion. Fig. 1 
illustrates the framework of the proposed study; the EEG data 
preprocessing, CFMs construction using different connectivity 
methods, and analysis of the CFMs are the major steps of the 
study. The following subsections describe the EEG dataset and 
the connectivity methods to construct CFM. 

A. Dataset Selection and Data Preprocessing 

This study utilizes one of the most popular and well-studied 
EEG datasets for emotion detection, the Database for Emotion 
Analysis Using Physiological Signals (DEAP) [26]. In DEAP 
dataset development, 40 emotive music videos were utilized as 
stimuli on 32 individuals (i.e., subjects), and EEG and other 
peripheral physiological signals of individual subjects were 
collected as responses against individual videos. The database 
also includes subjective scores that describe the levels of 
Valence, Arousal, Liking, and Dominance of the emotional 
states produced by watching the videos. The preprocessed EEG 
signals from the database are used in this study, where the signal 
frequency range is 4.0 to 45.0 Hz. Of the 40 channels, 32 are 
used for EEG signals, and the remaining channels are used for 
peripheral physiological inputs. The ordering of the electrodes 
in the preprocessed version of the database is as follows: Fp1, 
AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, 
Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, 
P4, P8, PO4, O2. 

In the DEAP dataset, an EEG signal is 63 seconds long, and 
the first 3 seconds of data are the pre-trial baseline. By removing 
3 seconds of pre-trial data, the remaining 60 seconds of data are 
processed for this study. For this investigation, a sliding time 
window of 8-second with a 4-second overlap is used to segment 
EEG data. Thus, there are 14 segments totaling 60 seconds. The 
total number of segments for each participant is 14 × 40 (video) 
× 32 (channel). EEGLAB [27] is used to filter the signal to 
extract Alpha, Beta, and Gamma sub-bands. 

Among the four quality levels available in the DEAP dataset, 
Valence and Arousal are chosen in this study as they are well-
studied scales for classifying emotions. In the dataset, the ratings 
for Valence and Arousal range from 1 (low) to 9 (high). Similar 
to the work in [28], Valence and Arousal are considered as high 
Valence (HV) and high Arousal (HA) for values above 4.5 and 
low Valence (LV) and low Arousal (LA) for less than or equal 
to 4.5. At a glance, HV indicates positive emotion, LV indicates 
negative emotion, HA indicates active emotion, and LA 

indicates passive emotion [29]. The positive and negative 
emotions or active and passive emotions can be represented in 
2D space according to Russell’s model [29], as shown in Fig. 2. 

B. Connectivity Feature Map (CFM) Construction 

Feature extraction has recently emerged in new dimensions 
through CFM construction using different connectivity 
measures [6]. This work takes into account several connectivity 
measures (linear, nonlinear, directed, etc.) for feature extraction 
as well as CFM creation. In a single experiment, the level of 
connectivity between two electrodes indicates the interaction 
between two brain areas. Depending on emotional or cognitive 
activities, this interaction could be a direct correlation, an 
inverse correlation, or synchronization. Four popular candidate 
connectivity methods were chosen from linear functional, 
nonlinear functional connectivity and nonlinear effective 
connectivity categories. The selected methods are PCC, PLV, 
MI, and TE. 

The linear correlation between two signals, X and Y, is 
measured by PCC and is calculated as 

𝑃𝐶𝐶𝑋𝑌 =
𝒏 ∑ 𝑿𝒊𝒀𝒊−∑ 𝑿𝒊 ∑ 𝒀𝒊

√𝒏 ∑ 𝑿𝒊
𝟐−(∑ 𝑿𝒊)𝟐√𝒏 ∑ 𝒀𝒊

𝟐−(∑ 𝒀𝒊)𝟐
 , (1) 

where,  n denotes sample size, and Xi or Yi is the individual 
sample points indexed with i. PCC's value varies from -1 to 1. (-
1): complete linear inverse correlation, (0): no linear 
interdependence, (1): complete linear direct correlation between 
the two signals. 

PLV defines the phase synchronization between two signals, 
which is measured by the rules as follows- 

𝑃𝐿𝑉(𝑋, 𝑌) =
1

𝑇
|∑ 𝑒𝑥𝑝{𝑗(𝜑𝑋

𝑡 − 𝜑𝑌
𝑡 )}

𝑇

𝑡=1
|,     (2) 

where, φt denotes the phase of the signal at time t, X, and Y 
are two electrodes, and T is the length (time) of the signal. PLV 
has a value between 0 and 1, denoting perfect independence and 
perfect synchronization, respectively. 

MI is an information theoretic approach to measuring shared 
information between two variables. The following is the 
definition of MI between two random variables, X and Y: 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) −  𝐻(𝑋, 𝑌),  (3) 

where, H denotes Shannon entropy [15]. Entropy is 
measured by calculating the probability using the fixed bin 
histogram approach. There are 10 bins utilized in the 
computation. The marginal entropies of the two variables X and 
Y are H(X) and H(Y), respectively, and their combined Entropy 
is H(X, Y). The range of MI's value is: 0 ≤ MI(X, Y) < ∞. If 
MI(X, Y) is equal to 0, then X and Y are independent. If MI(X, Y) 
is greater than 0, then X and Y are dependent. 

The directed information flow from a signal or time series Y 
to another signal X is measured by TE. 

𝑇𝐸𝑌→𝑋 = 𝐻(𝑋𝑡 , 𝑌𝑡) − 𝐻(𝑋𝑡+ℎ, 𝑋𝑡 , 𝑌𝑡) + 𝐻(𝑋𝑡+ℎ, 𝑌𝑡) − 𝐻(𝑋𝑡)  

(4) 

If the future of X, i.e., Xt+h is denoted by w, then transfer 
Entropy TEY→X can be computed as: 
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Fig. 1. The framework of the proposed study to observe brain network stimulation from EEG for emotion. 

𝑇𝐸(𝑤, 𝑋, 𝑌) = 𝐻(𝑤, 𝑋, ) + 𝐻(𝑋, 𝑌) − 𝐻(𝑋) − 𝐻(𝑤, 𝑋, 𝑌) 
 (5) 

 

Fig. 2. Russell’s emotion model. 

The ranges of TE value are 0 ≤ TEY→X < ∞. If the TE = 0, 
then there is no directed flow of information, i.e., no causal 
relationship between the signals. TE > 0 means that there is a 
causal relationship between them. 

When it comes to CFM, these variables are signals from 
particular EEG channels. Connectivity features are extracted for 
each pair (X, Y) of EEG electrodes. The connectivity features 
extracted from all electrode pairs can be mapped into a matrix 
(i.e., CFM). The matrix element at (X, Y) describes the 
connectivity strength between the signals collected from the Xth 
and Yth electrodes. As the data are segmented in the 
preprocessing stage, a total of 17,920 CFMs are constructed 
under each frequency band for each connectivity method from 
all 32 participants, each with 40 trials. 

IV. RESULTS OF CFM ANALYSIS ON BRAIN NETWORK 

STIMULATION FOR EMOTION 

CFM analysis for brain networks is the main contribution of 
this study to observe the connectivity depiction of emotion. The 

following subsections briefly describe brain network stimulation 
for emotion-analyzing CFM in different dimensions/directions. 
CFMs representation as heat maps is commonly available in the 
existing studies [6] that are followed in this study. 

A. Effect of Sub-Bands on Emotion Analysis 

The CFM created from the three frequency bands (i.e., 
Alpha, Beta, and Gamma) with the four connectivity methods 
(i.e., PCC, PLV, MI, and TE) under positive and negative 
emotions are displayed in Fig. 3. The response of the brain of a 
person to an emotion may be different from another person. 
Therefore, the constructed CFMs are presented for two 
individual participants (participant 1 and participant 32) as well 
as the average CFM of the total 32 participants. 

It can be observed for PCC in Fig. 3(a) that, for participant 
1, red and blue colors are lighter in the Gamma band, and the 
colors are darker in the Alpha band. The Beta band CFM colors 
remain in the middle of the two. In the case of Participant 2, the 
CFMs in the Beta band contain the lowest PCC value than that 
of the Alpha and Gamma bands. When the average CFM is 
considered, it can be observed that the correlation between brain 
regions, either a direct correlation or inverse correlation, is 
higher in the lower frequency band than in the higher frequency 
band, which is similar to Participant 1. As shown in Fig. 3(b), 
CFMs for both participants and the average CFMs, the Gamma 
band has a considerably larger PLV than the other bands, while 
the Beta band has the lowest. This implies that the Gamma 
frequency band had higher synchrony. In the case of MI in Fig. 
3(c), the Beta band holds the highest MI value for Participant 1, 
and the Gamma band holds the highest MI value for Participant 
32. When the CFMs from all participants are averaged, it is 
found that the mutual dependency between brain regions 
increases with higher frequency. Fig. 3(d) shows the CFMs 
constructed with TE, where it can be seen that with increased 
frequency, information flows more often between different parts 
of the brain. 

Among the three frequency bands, the positive and the 
negative CFMs are more easily distinguishable in the Gamma 
frequency band. A number of studies have also identified that 
the Gamma band exhibits better emotional observation than the 
Alpha and Beta bands [19], [30]. So, further discussions in the 
next sections are presented with the average CFMs from the 
Gamma band only for concise observation. 
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Fig. 3. CFM with different connectivity methods in alpha, beta, and gamma frequency bands for the positive and negative emotion. 
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B. Connectivity Strength in Positive and Negative Emotions 

Connectivity methods offer useful information about brain 
connectivity behind emotions. As discussed in the previous 
section, high Valence emotions are regarded as positive 
emotions and low Valence emotions are regarded as negative 
emotions. Fig. 4 illustrates how changes in emotions affect two 
brain regions' correlation, phase synchronization, mutual 
dependence, as well as causal relationship. The linear correlation 
between two brain areas is measured by PCC. The PCC-
constructed CFM for positive and negative emotions in the 
gamma band is displayed in Fig. 4(a). Negative PCC values 
(blue pixels of the figure) denote an inverse linear correlation 
between two areas of the brain, and positive PCC values (red 
pixels of the figure) denote a direct linear correlation. As can be 
shown from Fig. 4(a), there are more locations with a strongly 
inverse correlation for negative emotion than for positive 
emotion. As compared to the CFM of positive emotion, the blue 
pixels in Fig. 4(a) are darker when representing negative 
emotion. For better visualization, a few areas are marked with 
blue rectangles. It implies that during unpleasant emotions, there 
is a greater inverse correlation between brain regions. Positive 
CFM shows darker red pixels than negative CFM, indicating a 
more direct linear correlation between brain regions during 
positive emotion than during negative emotion. Such few areas 
are marked with red rectangles. 

Phase synchronization between two brain areas is described 
by PLV. Two signals are totally independent when the PLV 
value is 0; synchronization between the signals is indicated 
when the PLV value is greater than 0, and perfect 
synchronization is indicated when the PLV value is equal to 1. 

The CFM built for both positive and negative emotions utilizing 
PLV in the gamma frequency range is displayed in Fig. 4(b). In 
the CFM, a large phase-locking value is represented by red 
pixels, and a lesser phase-locking value is represented by blue 
pixels. Positive emotions have a phase-locking value that is 
comparatively lower than negative emotions, as seen in Fig. 
4(b). Such few areas are marked with red rectangles. Therefore, 
in the negative state, the phase synchronization of distinct brain 
areas is greater. The higher values show that the synergy 
between various brain regions is increased during negative 
emotions, which results in synchronous oscillations. It is thus 
considered that the human brain pays greater attention to details 
in negative emotions than in happy emotions. 

Fig. 4(c) and Fig. 4(d) displays the CFMs created for positive 
and negative emotions employing MI and TE, respectively. The 
MI calculates how dependent the two areas of the brain are. The 
more dependent two brain regions are on one another, the higher 
the value of MI. Fig. 4(c) shows that when an individual 
experiences negative emotions, there is an increase in the 
dependency between different brain regions and this 
phenomenon can be easily observed through the red-marked 
area. TE quantifies the directed transfer of information across 
different regions of the brain. More information transfer 
between two different parts of the brain results in a higher score 
for TE. It is evident from Fig. 4(d) that the negative CFM pixels 
are lighter than the positive CFM pixels, which can be easily 
seen through the white rectangular area, suggesting that positive 
emotions have a greater directed information flow than negative 
emotions. 

Positive Negative Positive                      Negative 

  
(a) PCC                                                                                                                                  (b) PLV 

 

   
(c) MI                                                                                                                                             (d) TE 

 

Fig. 4. CFM with different connectivity methods in Gamma band for the Positive (high Valence) and Negative (low Valence) emotions. 
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C. Brain Region Distinctiveness on Emotion 

Observing the effects of stimulation in brain regions on 
emotional consequences by analyzing the CFMs with individual 
connectivity methods is interesting. Fig. 5 illustrates higher and 
lower brain connectivity regions based on the analysis 
performed in the previous section with Fig. 4. From the PCC 
connectivity matrix in Fig. 4(a), it is seen that signals from 
nearly placed electrodes are highly correlated both in positive 
and negative emotions. For example, electrodes 17 and 18 (i.e., 
Fp2, AF4), electrodes 13 and 14 (i.e., PO3 and O1), electrodes 
23 and 24 (i.e., FC2 and Cz), and electrodes 10 and 24 (i.e., CP1 
and Cz) are placed nearly in the scalp and the PCC value for 
each pair of the electrode are high. Similarly, from the PCC 
matrix, it is also observed that inversely correlated electrodes are 
located far away (e.g., AF4 and P4). The highly correlated 
electrodes are marked in Fig. 5(a), where red lines indicate 
higher direct correlations and the blue line indicates higher 
inverse correlation. 

Fig. 4(b) (for PLV) shows that the degree of some electrodes 
is noticeably higher than that of other electrodes. This means 
that some brain regions with higher degree electrodes may be in 
charge of producing specific emotions since they are more 
involved and synchronized with other brain regions. After 
summing all the PLV values for individual electrodes, it is found 
that both Positive and Negative CFM in Fig. 4(b), electrode 16 
(i.e., Pz) holds the highest PLV value in the matrix, and the 
second highest value contains electrode 10 (i.e., CP1). Visual 
inspection of the figure also proves this. The third highest value 
contains electrodes 28 and 11 (i.e., CP2 and P3) in Positive and 
Negative CFM, respectively. The fourth highest value contains 
electrodes 11 and 28 (i.e., P3 and CP2) in Positive and Negative 
CFM, respectively. As mentioned, all the electrodes are in the 
parietal lobe; from here, it can be concluded that emotions are 
mainly related to the parietal lobe. The overall less 
synchronization can be seen with the electrodes 1, 8, 12, 13, 17, 
18, 21, 26, and 30 (i.e., Fp1, T7, O1, P7, Fp2, AF4, F8, T8, and 
P8), which are located far from the electrode Cz or the center of 
the scalp. The distinction between positive and negative emotion 
can be easily seen through electrodes 10, 11, 16, and 27 (i.e., 
CP1, P3, Pz, and CP6), which means the parietal lobe is more 
sensitive to emotion alteration. The electrodes having higher and 
lower PLV values are marked in Fig. 5(b), where red highlights 
indicate higher PLV value and blue highlights indicate lower 
PLV value.  

Similarly, from the MI connectivity matrix in Fig. 4(c), it can 
be observed that electrodes in parietal, central, and frontal 
regions such as C3, CP1, Pz, Fz, CP2, P4, and PO4 (i.e., 7, 10, 

16, 19, 28, 29 and 31) hold higher MI values. The electrodes are 
marked in Fig. 5(c). The color variances between positive and 
negative CFM can also be easily seen through these electrodes, 
which indicates these brain regions are more sensitive to 
emotion alteration. Most of the electrodes, as mentioned above, 
are from the parietal lobe, i.e., among these three regions, the 
parietal region is more responsible for altering emotion. 

Section III(B) discusses that variation in CFM values of 
positive and negative emotion are opposite for MI and TE; 
positive CFM contains lower MI values and higher TE values. 
This phenomenon can be easily observed through the parietal, 
central, and frontal region’s electrodes CP2, P4, Fz, PO4, and 
CP1 (i.e., electrodes 28, 29, 19, 31, and 10) in Fig. 4(d), which 
contain lower TE values. The electrodes are also marked in Fig. 
5(d). 

The findings from the CFM of the Gamma band discussed 
in Sections III(B) and III(C) are also satisfied by the Alpha and 
Beta band’s CFM in Fig. 3, although the Gamma band’s CFMs 
are easily observable. From all the CFM, it is also identified that, 
in general, the electrodes located in the same lobe show stronger 
connectivity than the electrodes located in different lobes. 

D. Connectivity Strength in Active and Passive Emotions 

As discussed in the previous section, high Arousal (HA) 
emotions are regarded as active emotions and low Arousal (LA) 
emotions are regarded as passive emotions. Fig. 6 shows how 
correlation [Fig. 6(a)], phase synchronization [Fig. 6(b)], mutual 
dependency [Fig. 6(c)], and causal relationship [Fig. 6(d)] 
between two brain regions change with the changes in intensity 
(levels of Arousal) of emotions. These are the average CFMs 
created from the Gamma frequency band under active and 
passive emotions. From Fig. 6(a), it can be seen that the red 
pixels are darker in passive emotions, i.e., a more direct 
correlation exists in passive emotions. The blue pixels are darker 
in active emotions, i.e., a more inverse correlation exists in 
active emotion. The phase synchronization between brain 
regions under active and passive emotions can be observed in 
Fig. 6(b). Lower PLV values exist in active emotions. The red 
pixels are darker, and the blue pixels are lighter in passive 
emotion, i.e., the higher phase synchronization can be seen in 
passive emotion. The higher MI values and lower TE values are 
observed in active emotions than in passive emotions. 

Similar to the Fig. 4, Fig. 6 also revealed that the emotions 
are mainly related to the parietal, central, and frontal regions, 
among which the parietal region is more responsible for emotion 
alteration. 

 
(a) PCC                   (b) PLV          (c) MI                          (d) TE 

Fig. 5. Visualizing higher and lower brain connectivity regions. 
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High Arousal           Low Arousal      High Arousal             Low Arousal 

 
(a) PCC                                                                                                                   (b) PLV 

 

 
(c) MI                                                                                                                             (d) TE 

 

Fig. 6. CFM with different connectivity methods in Gamma bands for the Active (high Arousal) and Passive (low Arousal) Emotions. 

V. COMPARISON WITH OTHER STUDIES 

This section briefly compares different findings with 
different connectivity methods achieved in different studies with 
respect to the findings of this study. Table I summarizes the 
specific findings from different existing studies under three 
major categories: findings with respect to (w.r.t.) frequency 
bands, emotional states, and brain regions. It is observed from 
the table that all the existing methods, except [5], [8], and [20], 
considered a single connectivity method (e.g., PCC, PLV) in 
their studies. Moreover, an existing method is limited to 
performing findings in a particular category, such as brain 
regions. On the other hand, present studies considered four 
connectivity methods for all three categories. Therefore, the 
findings of this study are much more pervasive than existing 
studies. 

The present study and the study [23] and [24] investigated 
CFM constructed with PLV under different frequency bands. 
All three studies found that the Beta band has the lowest 
synchrony, i.e., the lowest PLV value. Between the Alpha and 
Gamma bands, the study [22] found that the PLV value of the 
Gamma band is higher than the PLV value of the Alpha band, 

but according to the study [21], the PLV value of the Alpha band 
is higher than the PLV value of Gamma band. The result of the 
present study is similar to the study [24]. Apart from the existing 
research, this study has also found that a higher correlation (i.e., 
PCC value) between brain regions exists in the lower frequency 
band than in the higher frequency band. The mutual dependency 
(i.e., MI value) between brain regions and the flow of 
information (i.e., TE value) from one brain region to another 
brain region increases with higher frequency. Several studies 
investigated CFM for positive vs. negative emotion and active 
vs. passive emotion with PLV [23], PSI [20], MI [18], etc. In 
addition to their findings, few new findings appeared from the 
current study. This study has found that a more direct correlation 
between brain regions exists in passive emotion, and a more 
inverse correlation exists in active emotion. The amount of 
directional flow of information is lower in active emotion than 
that of passive emotion. The present study has found that the 
parietal region is more responsible for emotion alteration than 
the other regions, while the study [17] found the temporal region 
as more responsible for emotion alteration, and the study [8] 
found that parietal as well as occipital regions are more 
responsive to the brain’s emotional activity. 
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TABLE I COMPARISON FINDINGS WITH OTHER STUDIES 

Ref. 
Connection 

Method 

Major 

Category 
Specific Findings 

[23] PLV 
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.t
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n
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y
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n
d

s 

The PLV of the lower frequency bands (i.e., Theta and Alpha) is greater than those of higher frequency bands (i.e., Beta 

and Gamma). 

[24] PLV 
1. Compared to other bands, the PLV of the Theta band is significantly higher. 

2. The lowest PLV is seen in the Beta band. 

[24] PLV 
F

in
d
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g

s 
w

.r
.t

. 
E

m
o

ti
o

n
a

l 

S
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1. In the HA state, each frequency band has a higher PLV than in the LA state.  

2. In the HV state, the PLV is lower than in the LV state in all frequency bands. 

[25] PLV 
1. PLV values in positive emotions are generally smaller than in the negative emotions 

2. There are little differences in connection pattern for same emotion in different time periods. 

[17] PLV PLV value in the pleasant mood is lower than in the sad mood, i.e., pleasant mood is less active in the brain area. 

[20] 
MMSCE, 
MI 

There are distinct types of functional brain connections associated with various emotional states. 

[21] Coherence Higher Coherence induced by low Valence-Arousal emotion. 

[22] PSI Signals in sad emotion are highly synchronized than those in happy emotion. 

[12] NMI A broader range of activated brain regions exists in the high Arousal low Valence state. 

[5] GC, TE 

F
in

d
in

g
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w
.r

.t
. 
B
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n
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1. The parietal and frontal lobes show stronger connectivity during the stress state. 
2. Higher TE value between Fp1 and C4 channels is found under pressure. 

[8] PCC, PLV 

1. There are stronger correlations between the left and right frontal areas of the brain. 

2. Frontal lobe area’s connectivity is supportive for emotion recognition. 
3. Parietal as well as occipital regions are more responsive to the emotional activity. 

4. There is enhanced synergy between the brain’s occipital and left frontal regions. 

5. Phase consistency in the parietal, frontal and occipital regions is relatively stronger than in the other regions. 

[16] PSI 
1. In sad state, nodal connection strength in right PFC is higher than that in left PFC. 

2. In happy state, nodal connection strength in left PFC is higher than that in right PFC. 

[17] PLV 
1. Positive and negative moods produce strong connectivity in the left and right forebrain, respectively. 

2. Emotions are related mainly to the temporal lobe of the human brain. 

[18] PLI Generally, the right frontal region's channels often have stronger connective strengths than the left frontal region's. 

This 
Study 

PCC, PLV, 
MI, TE 

F
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d
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g
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w
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.t
. 
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q
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c
y
 

B
a

n
d

s 1. Gamma bands have higher synchrony whereas the Beta band has the lowest synchrony.  
2. Higher correlation between brain regions exists in lower frequency band than that of higher frequency band.  
3. The mutual dependency between brain regions and flow of information from one brain area to another brain area 

increase with higher frequency.  
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1. The inverse correlation between various brain regions is stronger during negative emotion than it is during happy 
emotion, and similarly for active and passive emotion. 

2. In negative mental state the brain regions operates more synchronously than in positive emotion, and similarly for 
passive and active emotion. 

3. When experiencing negative emotion as opposed to positive emotion, there is greater interregional information 
sharing between brain areas, and similarly for active and passive emotion. 

4. The amount of directional flow of information is lower in negative emotion than that of positive emotion, and 
similarly for active and passive emotion.  

5. There are only slight variations in the brain network connections of the same emotion in different time periods.  

F
in

d
in

g
s 

w
.r

.t
. 

B
ra

in
 

R
e
g
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n
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1. Electrodes located in same lobe show strong connectivity than the electrodes located in different lobe.  
2. Emotions are mainly related to the parietal, central and frontal regions; among which, the parietal region is more 

responsible for emotion alteration. 

HV: High Valence, LV: Low Valence, HA: High Arousal, LA: Low Arousal, PFC: Prefrontal Cortex

VI. CONCLUSION 

In this study, the brain area connectivity for different 
emotions has been illustrated with four features under three sub-
frequency bands to investigate how correlation, 
synchronization, dependence, and information transfer between 
brain areas change with the changes in emotions. The 
connectivity feature maps (CFMs) have been constructed with 
four diverse methods (i.e., PCC, PLV, MI, and TE), and rigorous 
analysis has been performed, which exposed different remarks 
to understand brain network connectivity stimulation for 
emotions, specifically the frequency band: emotions are easily 
distinguishable in the Gamma frequency band; the strong 
connectivity is observed in the same brain lobe than different 
lobes; the parietal region is more responsible for emotion 
alteration. It is observed that during negative mental state, higher 
inverse correlation exists between different brain regions than 
that of positive emotion, and similarly for active and passive 
emotion. The brain regions operate more synchronously in a 

negative mental state than a positive one, similarly for passive 
and active emotion. The higher amount of shared information 
between brain regions is seen during negative emotion as 
opposed to positive emotion. The amount of directed flow of 
information is lower during negative emotion than during 
positive emotion, and it is similar for active and passive emotion. 

Further, the scope remains to investigate brain network 
connectivity stimulation for emotion through CFMs from EEG. 
In this study, CFMs are constructed using the most popular 
DEAP EEG dataset, and the Beta band has the lowest PLV, i.e., 
the lowest synchrony. According to PLV value, Gamma > Alpha 
> Beta. This information is consistent with other studies with the 
DEAP dataset [24]. On the contrary, the study [23] on the SEED 
[31] dataset found that the overall synchronization (i.e., PLV) of 
the brain network in lower frequency bands (e.g., Alpha) is 
greater than the overall synchronization of the brain network in 
the higher frequency band (e.g., Gamma); although Alpha > 
Gamma > Beta on PLV value. Therefore, inclusive analyses 
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might be interesting to find out the aspects of different datasets 
on brain network stimulation. 
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