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Abstract—Traditional English as a Secondary Language (ESL) 

learning platform rely on static content delivery, often failing to 

adapt to individual learners’ cognitive capacities, leading to 

inefficient comprehension and increased cognitive load. A novel 

hybrid Feedforward Neural Network and Bidirectional Encoder 

Representation Transformer (FNN-BERT) framework stands as 

our solution because it performs dynamic content personalization 

through predictions of real-time cognitive load. The proposed 

approach incorporates Feedforward Neural Networks (FNN) 

alongside Bidirectional Encoder Representations from 

Transformers (BERT) to process behavioral analytics for 

optimized content complexity adjustment and adaptive and 

scalable learning delivery. Real-time adaptability, scalability and 

high computational needs of current models reduce their 

effectiveness in personalized learning environments. Through the 

application of Test of English for International Communication 

(TOEIC), International English Language Testing System 

(IELTS) and Test of English as a Foreign Language (TOEFL) 

datasets, our methodology uses Feedforward Neural Network 

(FNN) to forecast cognitive load based on student engagement 

behaviors and application errors then Bidirectional Encoders 

Representations from Transformer (BERT) processes content 

difficulty adjustments automatically. The proposed model delivers 

a 95.3% accuracy rate, 96.22% precision level, 96.1% recall 

capability and 97.2% F1-score which surpasses conventional 

Artificial Intelligence-based English as a Secondary Language 

(ESL) learning systems. The system makes use of Python for its 

implementation to improve understanding as well as student focus 

and mental processing speed. Personalized content presentation 

methods lead to lower cognitive strain which simultaneously 

advances student achievement numbers. The research adds value 

to smart educational frameworks through its introduction of a 

scalable framework that allows adaptable learning systems for 

English as a second language (ESL). The following research steps 

include simplifying system complexity while adding multimodal 

learning signals including eye monitoring and speech recognition 

and further developing the model across various educational 

subject areas. The research works as a promising foundation 

which propels AI real-time adaptive education systems for 

students from various backgrounds. 

Keywords—Cognitive load management; artificial intelligence-

based English as a secondary language learning; adaptive content 

personalization 

I. INTRODUCTION 

English as a Secondary Language (ESL) education serves 
an important purpose in developing the language proficiency of 
foreign speakers to communicate effectively with specific goals 
in pursuing academia, working life, or personal interest [1], [2]. 
Many ESL programs are traditional and use the static content 
delivery method based on a rule-following approach that does 
not consider the actual cognitive needs of individual 
learners[3]. Cognitive load is a key element that determines a 
student's success in learning ESL [4]. When cognitive load 
exceeds a learner's capacity, frustration, disengagement, and 
reduced comprehension can result. On the contrary, when 
managed optimally, learners are then able to pay attention to 
tasks of importance within the language while avoiding being 
occupied by its demands [5]. Here, the process of optimizing 
ESL learning through effective management of cognitive load 
is central to developing learning experiences that will be more 
efficient and effective [6]. Therefore, ESL sites should not use 
a normal approach but instead use adaptive and personalized 
systems that can determine and change learning material to fit 
the learner's cognitive ability, thereby enhancing understanding 
and remembering [7]. 

Several studies have investigated techniques to minimize 
cognitive load in ESL learning, but many approaches that have 
been developed have limitations. Rule-based simplification of 
content for traditional methods are useful in specific contexts 
but ignore the complexity of the language learning process and 
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the various cognitive needs of different learners [8]. Moreover, 
static adaptive systems do not offer flexibility in changing the 
content dynamically according to the learner's behavior, 
progress, and changing cognitive load [9]. These systems have 
inherent difficulties in providing adaptive learning experiences 
where the experience is continually evolving with a changing 
learner [10]. Although these methods are adept at temporarily 
enhancing comprehension [11], they miss the sense of 
continuous, individualized nature of the learning experience. 
This study addresses these problems by using BERT as a more 
complex, data-centric approach to learning experience 
generation. Moreover, the study utilizes a FNN in order to 
predict cognitive load through the analysis of behavioral data 
such as task duration, error patterns, and engagement metrics. 

The research has contributed by optimizing the cognitive 
load during ESL learning with the help of BERT and 
Feedforward Neural Networks. Bidirectional architecture by 
BERT aids in the increase of contextual understanding, hence 
it leads to proper representations of processes involving 
language such as reading comprehension, vocabulary 
acquisition, and sentence structure. Through application of 
BERT to analyze learner interaction data including quiz 
performance, time taken for the completion of the task, and 
engagement metrics, the framework analyzes cognitive load 
and modifies learning content based on such load. 
Simultaneously, the FNN analyzes behavioral data like duration 
and error patterns due to the multi-layered architecture that 
enables prediction of cognitive load. BERT and FNN thus 
modify content difficulty dynamically to align with learner 
capacity without either overloading or under loading. This is 
contrary to the conventional methods because the bidirectional 
understanding of the context of BERT and the predictive power 
of FNN makes for a more efficient system in processing and 
interpreting learner data. Combining BERT with auxiliary 
neural networks such as FNNs in this personalized, scalable, 
and adaptive ESL learning framework will ensure effective 
comprehension, retention, and reduced cognitive overload. The 
proposed system advances existing AI-based ESL learning 
models since it employs deep learning approaches to process 
real-time behavioral information. Real-time cognitive 
fluctuations become the centerpiece of personalized and 
scalable learning through the BERT model for contextual 
content adaptation and FNN model for cognitive load 
prediction. This surpasses previous ESL tutoring models 
because they lack real-time cognitive fluctuation analytics. 

The key contribution of the research is as follows: 

 Implemented a hybrid FNN-BERT framework that 
dynamically adjusts content complexity based on real-
time cognitive load predictions, enhancing personalized 
learning experiences for ESL learners. 

 Developed a cognitive load estimation model using 
FNN, analyzing behavioral metrics like task completion 
time, engagement levels, and error patterns for adaptive 
content delivery. 

 Integrated BERT-based content personalization, 
enabling context-aware adjustments to learning materials 
based on learner comprehension, improving adaptability 
over rule-based and static models. 

 Enhanced ESL learning through real-time cognitive load 
management, reducing cognitive overload while 
maintaining an optimal balance between content 
complexity and learner capacity. 

 Validated the proposed framework using standard ESL 
datasets, demonstrating improved learning efficiency, 
comprehension, and engagement compared to traditional 
and AI-based adaptive learning models. 

The remaining of the section is structured as follows: 
Section II delves into existing research on enhancing English 
Learning skills through mobile application interventions. 
Section III outlines the specific challenges addressed by the 
proposed framework. Section IV provides a detailed 
explanation of the components and methodology of the 
proposed framework. Following this, Section V presents the 
results obtained from implementing the framework and 
includes a comprehensive discussion of the findings. Finally, 
Section VI concludes the study. 

II. RELATED WORKS 

Feng [12], focuses on the application of AI-based language 
learning strategies, which emphasize personalized feedback, 
adaptive learning systems, and speech recognition technology 
with interactive exercises. The core innovation of this study is 
the combination of these strategies to optimize the process of 
language acquisition by reducing cognitive load. AI-supported 
methods are focused on delivering personalized learning with 
respect to different students, where content is drawn upon 
accordingly to personalize it and set it up to their proficiency. 
Overall, the students engaging in AI-assisted language learning 
showed considerably enhanced language skills, especially in 
cases of English as a Foreign Language (EFL) students. The 
readers showed improved cognitive loads since the items were 
placed in a way that suits the reader's actual understanding. 
However, the limitation of this study is that it is based on a 
single cohort of 484 EFL students, which might limit the 
generalization of the findings to other student populations or to 
language learners from various cultural or educational 
backgrounds. It also didn't consider the hypothetical 
technological challenges that may come into play in varying 
learning contexts, such as limits on resources or inequality in 
access to AI-driven tools. 

Ding et al. [13], proposed the Gaze Reader method that uses 
a webcam and transformer-based machine learning models to 
detect unknown words in ESL learners. The innovation of this 
method is accessibility, as it does not require expensive and 
specialized eye-tracking devices. Instead of using an expensive 
high-end camera, the system utilizes a standard webcam to 
track the learners' gaze while detecting the attention towards 
unfamiliar or challenging words. Utilizing transformer-based 
models, the method allows for real-time feedback and enables 
learners to identify the unfamiliar vocabulary on which they 
should focus more. Results from the study shows that, the Gaze 
Reader method measured an impressive accuracy of 98.09% 
while recording an F1-score of 75.73%, showing its 
effectiveness towards ESL learners. This is particularly 
valuable for language learners because the system is able to 
identify unknown words as they appear in context, which tends 
to help language learners build their vocabulary in a way that's 
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organic and contextual. A limitation of this study, however, is 
the sole use of one dataset from which this method will be 
applied, which might limit generalization of ESL learners' 
range. The applicability of the method can be verified and 
proved only after being used in various contexts, dialects, and 
language settings. 

Vasu et al. [14], investigate how self-assessment and 
indirect teacher feedback promote the use of self-regulated 
learning (SRL) strategies for ESL students. The study's 
uniqueness is that it focuses on the practice of self-assessment 
as well as indirect teacher feedback to encourage more 
responsibility in the ESL learner's process. One of the most 
important parts of language learning is self-regulation, allowing 
students to self-monitor their performance, set personal goals 
for learning, and modify their learning strategies. The results 
revealed that students with self-assessment were able to 
develop their self-regulation abilities better and enhanced their 
language performance. Indirect teacher feedback was also 
observed to improve student motivation and overall 
performance as it gives students a chance to reflect on their own 
learning without explicit instructions from teachers. The 
strategies combined apparently, significantly contribute to 
SRL, but the study is limited due to its narrow scope that 
concentrates only on a particular group of students. This group 
may not represent the diversity of ESL learners across different 
educational contexts, cultures, and language backgrounds. In 
this regard, findings may not totally capture the effectiveness of 
self-regulation strategies for a more heterogeneous student 
population. 

Brown et al. [15], explore the few-shot learning capabilities 
of GPT-3, which is a state-of-the-art autoregressive language 
model. The main innovation in GPT-3 is that it can accomplish 
a wide variety of NLP tasks without requiring any task-specific 
fine-tuning. Unlike other predecessors, GPT-3 can adapt to 
different NLP tasks by providing just a few minimal examples 
or prompts, and thereby it performs excellently across an 
extremely wide spectrum of applications that include 
translation, question answering, summarization, etc. The work 
demonstrated that Generative Pre-Trained Transformer (GPT)-
3 performed competitively on several benchmark Natural 
Language Processing (NLPs) that are extensively used. This 
reduces the task-specific model training, which, in general, has 
to be undertaken for traditional NLP models. While it 
impressively performs its tasks, this study acknowledges a 
limitation in the capabilities of GPT-3 towards specialized or 
domain-specific tasks, where performance cannot reach the 
threshold of models undergoing task-specific fine-tuning. More 
critically, large size and high computation requirements may 
severely limit scalability and accessibility of the GPT-3 model, 
further restricting its adoption in resource-poor environments. 
Future work would focus on those problems and the enhanced 
performance of the model on particular tasks. 

Yang et al. [16], introduces the novel autoregressive 
pretraining method known as Extra Long Network (XLNet). It 
extends from the constraints through enabling bidirectional 
context learning. What makes XLNet unique is that it bases 
training on permutation instead of random masking, and its 
model is trained to learn contexts from every possible direction 
rather than only through BERT's masked language modeling 

approach. XLNet learns from all permutations in the sequence 
for more robust and comprehensive contextual understanding. 
In the experiment, the authors had shown that XLNet performed 
better in all kinds of NLP tasks such as question answering, 
sentiment analysis, and text classification, with an average 
improvement across twenty different benchmarks. These 
improvements were said to be a result of the dependency and 
nuances that XLNet captures better than the other models. 
However, this study also presents a significant limitation of 
XLNet: its computational complexity. Permutation-based 
training is computationally intensive, meaning XLNet would 
require more computing power than most models designed for 
real-time or large-scale applications. This problem might limit 
XLNet's applicability in practical, resource-limited, or time-
sensitive settings. Future work may focus on improving the 
efficiency of the model while preserving its enhanced 
contextual learning ability. 

Šola, Qureshi, and Khawaja [17], discussed using AI-driven 
eye-tracking technology for the evaluation of cognitive load 
within online learning settings. This innovative approach 
introduced eye-tracking technology into the assessment using 
AI-powered prediction software, enabling real-time 
observations of the level of students' attention and 
concentration during a task. This is a novel research in the 
monitoring and analysis of cognitive load where students are 
focused on where to and for how long on certain parts of a 
learning material. Moreover, with integration into AI, this 
process improves prediction and interpretation of cognitive 
loads in the direction of enhancing the ability of instructors 
towards better understanding their students' mental states as 
they go through different tasks. The study reveals that eye-
tracking systems powered by AI significantly enhance the 
learning experience. These systems help to identify the level of 
cognitive load and generate actionable data that improve 
instructional design. According to the findings, knowledge of 
cognitive load may help in optimizing the pace of content as 
well as methods of instruction. The main limitation of this study 
is its dependency on one type of eye-tracking software, which 
might not represent the complete gamut of cognitive load. Other 
technologies or methods might provide more subtle data, which 
may make this approach too simplistic for complex learning 
tasks. The findings may also not be generalizable because of the 
specific software used. 

Sujatha and Rajasekaran [18], investigate the blended 
model to teach listening in language learning which is based on 
Cognitive Load Theory (CLT). The primary objective of the 
study is the improvement of processing efficiency of the 
auditory information by making use of the top-down approach, 
which can help students use contextual background knowledge 
to process the information. What the study does in fact is 
combine CLT with a structured approach where it focuses more 
on reducing extraneous cognitive load while promoting deep 
learning. The experimental results showed the comparison of 
listening comprehension and information prediction from the 
control group to the experimental group exposed to the blended 
model. Student improvement was, therefore, seen in the 
listening skills of the language learners. However, this study 
will be limited in that it has only a small sample size, so it is not 
generalizable toward other larger population ranges with 
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various learning needs. The findings may not be generalizable 
to all learner groups, particularly in diverse educational settings 
or when the proficiency level is different. Future studies should 
include a more extensive and heterogeneous sample to establish 
the validity of the results across different contexts and 
understand the effectiveness of the model better. 

The current research on adaptive ESL learning faces three 
main limitations because, the studies employ limited scalability 
and depend on small datasets as well as struggle to update 
learning in real time. Gaze Reader and self-regulated learning 
methods have improved learning engagement but they do not 
track dynamic cognitive changes. Researchers developed a 
hybrid BERT-FNN framework to provide both real-time 
personalization capabilities and increase scalability in the 
system. 

III. PROBLEM STATEMENT 

Existing method based on AI-based ESL learning methods 
face scalability and applicability issues. Most of the existing 
approaches focus on personalized feedback and adaptive 
learning systems however, their findings are usually limited 
only to small cohorts and fail to generalize [19]. Moreover, 
some of the techniques depend on a single dataset, while they 
don't take into consideration different dialects or language 
setups, and self-reporting [20] and implicit feedback-based 
strategies often do not consider the complexity of ESL. GPT-3 
and XLNet have computationally intensive costs, thus unable 
to be applied in real time especially in resource-limited settings. 
Using BERT-the transformer-based model, with a Feedforward 
Neural Network, the proposed approach builds up scalar and 
adaptive scalability with respect to overcoming these kinds of 
limitations. BERT utilizes bidirectional learning. It enhances 
the ability of a learner to be more contextually aware in 
processing language. FNN then analyzes behavioral data, such 
as task duration, error patterns, engagement metrics, etc., in 
order to accurately predict cognitive load. This framework is 
dynamic in real-time, balancing the complexity of content with 
cognitive capacity, ensuring learners manage mental effort 
effectively while doing tasks. The use of these models ensures 
scalability, adaptability, and efficiency with a personalized, 
optimized learning experience for ESL learners. 

IV. PROPOSED HYBRID FNN- BERT FOR COGNITIVE LOAD 

MANAGEMENT FOR ENHANCING ESL LEARNERS 

The proposed framework starts with data collection that 
involves collecting learner interaction data in all its forms, 
including quiz performance, task completion time, and 
engagement metrics from the English Test Prep Data: Test of 
English for International Communication (TOEIC), 
International English Language Testing System (IELTS), Test 
of English as a Foreign Language (TOEFL) dataset. This data 
is cleaned, handled for missing values, and transformed into a 
numerical format for model compatibility in the Data 
Preprocessing block. The subsequent block is Cognitive Load 
Estimation, where FNN analyze behavioral data like time spent 
on tasks and error patterns to predict the learner's cognitive 
load. This estimation is used to determine instances where the 
learner is overloaded, which is critical for the framework's next 
step: content adaptation. The BERT Model Integration block is 
then followed, in which the pre-trained BERT model assesses 

the learner's understanding based on quiz responses. This 
adaptive system takes into account the learner's performance, 
and with an assessment of the comprehension gaps, it will either 
simplify or rephrase the content dynamically in line with the 
learner's cognitive capacity, avoid making the material either 
too complex or too simplistic. 

The Adaptive Feedback Generation block takes over, 
generating real-time personalized feedback in relation to the 
learner's needs based on their cognitive load and 
comprehension analysis. This is intended to channel the learner 
into important learning objectives with deeper learning, aimed 
at filling specific gaps. Dynamic Content Delivery dynamically 
adjusts material complexity in a real-time and performance-
based-cognitive load dependent manner. It will present 
relatively easier vocabulary words or examples, for example, if 
the learner makes mistakes, it will introduce difficult content 
once more for accurate comprehension results. The Evaluation 
and Outcome Measurement block entails measuring 
performance using various comprehension scores, assessments 
of cognitive loads, and indications of learner engagement for 
effective evaluation and outcomes. Subsequently, based on 
these indicators, the optimized system approach towards 
delivering content in such a way as to allow it to progressively 
get better regarding maximized outcomes from learning results 
is ensured. The whole system was implemented in Python and 
utilizes the deep learning libraries, TensorFlow, and Keras. 
This helps to train and deploy the model effectively. The last 
Optimization block allows the system to adjust based on the 
feedbacks it receives from learners and also from the learners' 
performance as they learn to deliver content that reduces 
cognitive loads with optimal performance as shown in Fig. 1. 

 
Fig. 1. Overall workflow. 
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A. Dataset Description 

The proposed framework uses a dataset [21] of TOEIC, 
IELTS and TOEFL practice exams with detailed reports of 
learner test achievements and interactions. A variety of learner 
performance data points appear in the dataset to support 
cognitive load research and optimization efforts for ESL 
learners. The key attributes of the dataset are shown in Table I. 

TABLE I. ATTRIBUTES OF THE DATASET 

Attribute Description 

Learner ID A unique identifier for each learner. 

Quiz 

Performance 

Data on the learner's performance in different quizzes, 

including correct answers, incorrect answers, and time 
spent on each quiz. 

Task Completion 

Times 

The time taken by the learner to complete various tasks 

or exercises within the platform. 

Engagement 

Metrics 

Metrics such as the frequency of interactions with the 
platform, time spent on learning materials, and 

response time during quizzes. 

Content 

Interaction Data 

Information about how learners interact with different 

types of content, such as vocabulary, grammar 
exercises, or reading comprehension passages. 

Behavioral Data 

Data on how learners respond to specific tasks, 

including error patterns, patterns of skipped questions, 
and engagement with different content types. 

These data points will allow for a personalized learning 
experience by analyzing how individual learners engage with 

the platform and adjusting the content accordingly. 

B. Data Preprocessing 

The implementation of data preprocessing methods proves 
essential to ready learner interaction data for use in ML 
applications. The following reflects the essential procedures 
inside the data preprocessing framework as shown in Fig. 2. 

 
Fig. 2. Steps in data preprocessing. 

1) Data cleaning 

2) Handling missing values: It arises from incomplete 

learner interaction or system malfunction, through methods 

such as imputation or dropping rows/columns which have high 

significant missing values. 

3) Outlier detection: Task completion time outliers and 

quiz performance data outliers are detected and then corrected. 

When the outliers were extreme, there was removal of such 

outliers for ensuring that there is no decrease in model's 

performance. 

4) Data transformation 

a) Encoding categorical data: One-hot encoding and 

label encoding is used to change categorical data into numerical 

format-for example, one-hot encoding on learner IDs, and the 

same for the content types. 

b) Feature scaling: Continuous data such as the time 

taken to complete tasks or engagement metrics are normalized 

or standardized so that the features are in the same scale and do 

not influence the model disproportionately. 

c) Processing of time series data: To capture time 

dependency between interactions in time spent on tasks, the 

preprocessing is applied as sequence-based. 

5) Data transformation for model input: After the data 

cleaning process, organize the data in a machine learning 

format for the BERT model. This typically includes learning 

interaction sequences along with corresponding performance 

measures, ensuring that all input points contain relevant 

features such as quiz scores, task time, and cognitive load. 

6) Data splitting: Divide the pre-processed data into the 

train, validation, and test sets to measure the performance of the 

model and overall generalization. Training dataset is provided 

for training the model; on the other hand, validation and test 

datasets are kept for performance estimation of the model and 

its generalization. 
These preprocessing steps ensure that the dataset is clean, 

well-structured, and ready for use in the proposed machine 
learning model, which will drive the dynamic content 
adjustment and cognitive load optimization for ESL learners. 

C. Task Completion and Engagement Using Feedforward 

Neural Network 

First, gather behavioral data about learners. Such metrics 
are: time to complete tasks, patterns of errors, and completion 
or engagement with the tasks. These give an indication when a 
learner is undergoing high cognitive load and tell one how to 
adapt the learning content. Greater duration might be 
symptomatic of it being a cognitively taxing activity or for that 
matter difficult or the content the learner might not be absorbing 
very well leading to cognitive overload. The task time as an 
analytical function in terms of learner’s characteristics and task 
difficulties is given in Eq. (1): 

𝑇𝑡𝑎𝑠𝑘 = 𝑓(𝐿𝑒𝑎𝑟𝑛𝑒𝑟 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦, 𝑇𝑎𝑠𝑘 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)   (1) 

where, 𝑇𝑡𝑎𝑠𝑘  is the time spent completing a task; Learner 
Difficulty can be inferred from past performance; Task 
Complexity can be quantified through the task’s intrinsic 
difficulty. The signal to adjust the content may be provided 
through a higher 𝑇𝑡𝑎𝑠𝑘 . For example, if {task} surpasses the 
{threshold}, then the system will sometimes intervene using 
hints or task simplifications as in Eq. (2): 

𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 =
𝐻𝑖𝑛𝑡𝑠/𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑓 𝑇𝑡𝑎𝑠𝑘 > 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑁𝑜 𝐴𝑐𝑡𝑖𝑜𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2) 

Frequent errors might indicate that the learner has not 
mastered the content properly, thus experiencing high cognitive 
load. Let {errors} be the number of errors committed by a 
learner while performing a certain task as defined in Eq. (3): 

𝐸𝑒𝑟𝑟𝑜𝑟𝑠 = ∑ 𝐸𝑟𝑟𝑜𝑟𝑖
𝑛
𝑖=1                            (3) 
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Fig. 3. FNN Architecture. 

where, n is the number of steps or sub-tasks involved in a 
task, and 𝐸𝑟𝑟𝑜𝑟𝑖  is the binary indicator set at 1 in case of a 
learner's mistake and 0 otherwise. Errors repeated multiple 
times indicate cognitive overload by the learner, prompting a 
response from the system in simplifying instructions or other 
support. 

Task Completion and Engagement:  Students who abandon 
tasks or spend a long time to complete high cognitive loads. Let 
completion be a dummy variable indicating if the task has been 
completed; it is set to 1 if the task was completed and to 0 
otherwise. The engagement measure engage could be defined 
as the time used on the task divided by expected time to finish 
as in Eq. (4), 

𝐸𝑒𝑛𝑔𝑎𝑔𝑒 =
𝑇𝑡𝑎𝑠𝑘

𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
                             (4) 

where, 𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  is the time that a learner should ideally 

take to complete a task. If 𝐸𝑒𝑛𝑔𝑎𝑔𝑒  is too low or 𝑇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  = 0, 

it suggests the learner is disengaged, and the system should 
intervene by providing support or simplifying content. Once the 
behavioral data is collected, we use FNNs to predict cognitive 
load. FNNs are very appropriate for this purpose because they 
can learn non-linear relationships between input features such 
as time on task, errors, and engagement, and the output variable, 
which is cognitive load. 

Input Features: The FNN will take various behavioral 
metrics as input as in Eq. (5), including: 

 Time on Task 𝑇𝑡𝑎𝑠𝑘 

 Number of Errors {errors} 

 Number of Hints Requested {hints} 

These features are transformed into numerical vectors, 
which are input into the FNN for cognitive load prediction. Let 
the input vector be denoted as {x}: 

𝑥 = [𝑇𝑡𝑎𝑠𝑘 , 𝐸𝑒𝑟𝑟𝑜𝑟𝑠 , 𝐻ℎ𝑖𝑛𝑡𝑠]                        5) 

Feedforward Neural Network: The FNN consists of 
multiple layers, with each layer performing linear 
transformations followed by a non-linear activation function σ 
as in Eq. (6): 

ℎ(𝑙) = 𝜎(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙))                    (6) 

where, ℎ(𝑙) is the output of the l th hidden layer, ℎ(𝑙−1) is 

the weight matrix for the l th layer; 𝑏(𝑙) is the bias term; 𝜎  is a 
non-linear activation function, typically ReLU or Sigmoid as 
shown in the Fig. 3. The final layer produces a cognitive load 
score {load}, which predicts whether a learner is experiencing 
a low, a medium, or high cognitive load. Where L is the total 
number of layers. The predicted level of cognitive load {load} 
can then be forced into discrete categories, for example, low, 
medium, and high. To train the FNN, we leverage historical 
data collected from previous learners. The loss that guides the 
training aims to minimize the difference between what the 
model is predicting for the cognitive load and the true values 
labeled {true} for the labels. The above model is optimized 
using a mean squared error as in Eq. (7): 

𝐿 =
1

𝑁
∑ (𝑦^𝑙𝑜𝑎𝑑(𝑖) − 𝑦𝑡𝑟𝑢𝑒(𝑖))2𝑁

𝐼=1             (7) 

where, N is the number of training samples. After training, 
the FNN will predict cognitive load in real time as learners are 
interacting with the system, hence guiding adjustments to task 
complexity and content delivery. Combining all these 
techniques will ensure that the system continuously analyses 
learner behavior and predicts cognitive load to personalize 
learning. The model adapts in real time to adjust the difficulty 
of tasks based on the predicted cognitive load, such that learners 
neither feel overwhelmed nor under-challenged. 

D. Personalization Using BERT Model in the Proposed 

Frameworks 

The core idea of personalization in this framework revolves 
to fine-tune the pre-trained model of BERT on dynamic 
adjustments, according to changing levels of a learner's 
cognitive load, performance, and task type. Ensuring BERT 
Fine-Tuning adapts it to the specifics of ESL learning, so as to 
process different learner inputs with the model able to provide 
recommendations accordingly. The input features relevant for 
BERT include learner performance (such as quiz scores and 
task completion), type of task (easy vs. difficult), and the 
cognitive load prediction by the auxiliary neural network. Other 
behavioral measures such as time on task, engagement, and 
errors can be encoded as in Eq. (8): 

𝑋𝑖𝑛𝑝𝑢𝑡 = [𝑃𝑙𝑒𝑎𝑟𝑛𝑒𝑟 , 𝑇𝑡𝑎𝑠𝑘 , 𝑦̂𝑙𝑜𝑎𝑑 , 𝐸𝑒𝑛𝑔𝑎𝑔𝑒 , 𝐸𝑒𝑟𝑟𝑜𝑟𝑠]        (8) 
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where, 𝑃𝑙𝑒𝑎𝑟𝑛𝑒𝑟  represents the learner’s performance data; 
𝑇𝑡𝑎𝑠𝑘  represents the difficulty level of the task; 𝑦̂𝑙𝑜𝑎𝑑  is the 
predicted cognitive load from the auxiliary neural network; 
𝐸𝑒𝑛𝑔𝑎𝑔𝑒  represents the engagement level (calculated as 

discussed earlier); 𝐸𝑒𝑟𝑟𝑜𝑟𝑠  captures the number of errors made 
during the task. BERT inputs are then transformed through the 
multi-layer attention mechanisms of BERT into context-aware 
representations of the learner's current state, upon which 
personalized recommendations are generated or predictions of 
what is next in terms of action, for example, what content best 
serves the learner or if reinforcement is needed in weaker areas 
or new challenging material is best presented as in Fig. 4. 

Task Complexity Adjustment Based on Cognitive Load 
BERT has processed the learner's input and made its 
predictions, the system uses its cognitive load predictions to 
dynamically adapt the task difficulty {load} predicted cognitive 
load is low, it presents more difficult content to engage the 
learner. Let's call the action it takes when its cognitive load is 
low as in Eq. (9): 

𝐴𝑐𝑡𝑖𝑜𝑛𝑙𝑜𝑤_𝑙𝑜𝑎𝑑 =

{
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑖𝑓 𝑦̂𝑙𝑜𝑎𝑑 < 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   

𝑁𝑜 𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (9) 

 
Fig. 4. BERT Architecture. 

where, {threshold} is a pre-defined threshold below which 
the learner is considered to have low cognitive load. For 
example, if a learner successfully completes multiple tasks with 
a low cognitive load, the system might increase the complexity 
of subsequent tasks or introduce new challenges, such as 
advanced exercises or new content that builds on previously 
learned concepts. This ensures that the learner is constantly 
engaged and not under-challenged, which helps to maintain 
motivation. 

Conversely, if cognitive {load} is high, the system reduces 
task complexity or offers support to prevent learner frustration 
and cognitive overload as in Eq. (10): 

𝐴𝑐𝑡𝑖𝑜𝑛ℎ𝑖𝑔ℎ_𝑙𝑜𝑎𝑑 =

{
𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑖𝑓 𝑦̂𝑙𝑜𝑎𝑑 < 𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   

𝑃𝑟𝑜𝑣𝑖𝑑𝑒 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (ℎ𝑖𝑛𝑡𝑠) 𝑖𝑓 𝑦̂𝑙𝑜𝑎𝑑 < 𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

  (10) 

where, 𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is a pre-defined threshold above which 
the learner is considered to be in a high cognitive load state. In 
this case, the system would make complex tasks ahead less 
effective, give hints, provide simpler exercises, or simplify the 
overall task by breaking it into simpler smaller-sized sub-tasks. 
This scaffolding approach ensures that a learner is not 
overwhelmed and can move on to mastering major concepts in 
an acceptable manner. 

Dynamic Content Delivery Based on Real-Time Cognitive 
Load: The dynamic content delivery mechanism is at the heart 
of the proposed framework, which dynamically adjusts the 
learning path based on real-time predictions of cognitive load. 
After every task or interaction, the system evaluates the 
learner's cognitive load using the auxiliary neural network. To 
finally predict the corresponding cognitive load given the 
learner performance data P and engagement metrics feeds into 
the learned BERT which processes this in order to dynamically 
update the LC and task difficulty aa in Eq. (11): 

𝑋𝑖𝑛𝑝𝑢𝑡
𝑛𝑒𝑤 = [𝑃𝑙𝑒𝑎𝑟𝑛𝑒𝑟 , 𝑇𝑡𝑎𝑠𝑘 , 𝑦̂𝑙𝑜𝑎𝑑 𝑙𝑜𝑎𝑑

𝑛𝑒𝑤 , 𝐸𝑒𝑛𝑔𝑎𝑔𝑒
𝑛𝑒𝑤 , 𝐸𝑒𝑟𝑟𝑜𝑟𝑠

𝑛𝑒𝑤 ]   (11) 

Based on this revised input, BERT can come up with 
another set of tasks or suggestions. If a learner is unable to get 
a right answer several times {errors}, the system might provide 
them with easier forms of the same content or supplement (such 
as hints or examples). If, on the other hand, a learner is 
successful, BERT might challenge a learner to higher-order 
content by gradually making tasks harder or by giving a learner 
some new challenges, depending on a learner's background. 

For instance, if a learner has successfully completed a set of 
tasks with a low cognitive load and the system predicts that they 
are capable of handling more complex content, the system 
might offer a more challenging exercise as in Eq. (12): 

𝑁𝑒𝑥𝑡 𝑇𝑎𝑠𝑘 = 𝑓(𝑦̂𝑙𝑜𝑎𝑑 ,  𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡) =

{
𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑓 𝑦̂𝑙𝑜𝑎𝑑 < 𝐿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑓 𝑦̂𝑙𝑜𝑎𝑑] > 𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  
      (12) 

This ensures continuous challenge in the correct degree, 
neither overburdened nor under-stimulated for maximum 
engagement and learning. A personalized learning framework 
builds individual optimal learning trajectories for learners. The 
system controls assignment difficulty according to accurate 
ongoing mental workload predictions which protects learners 
from information overload while sustaining their peak ability 
level. Using this method produces maximum student 
involvement and motivation together with overload prevention. 
Through a continuous learning performance and cognitive load 
prediction cycle the system maintains active adaptation. 
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V. RESULT AND DISCUSSION 

The results section of this study evaluates the effectiveness 
of the proposed deep learning-based framework for optimizing 
cognitive load in ESL learning environments by implementing 
it on a python software tool. The performance of the framework 
is assessed through a variety of metrics, such as learner 
comprehension scores, cognitive load assessments, and 
engagement indicators. These metrics demonstrate the ability 
of the system to dynamically adapt to the needs of individual 
learners, thereby improving their learning experience. The 
results are compared with traditional, static content delivery 
methods to determine the potential of the framework in 
enhancing learning efficiency, learner engagement, and overall 
comprehension. The following subsections provide a detailed 
analysis of the results obtained from the implementation of the 
Feedforward Neural Network (FNN) and Transformer-based 
BERT model, along with a discussion of the implications for 
future ESL learning platforms. 

A. Analysis of the English Test Prep Dataset 

The result section displays the comprehensive analysis of 
the data set by visualizing the key trends and distributions 
across competency categories and test levels through graphical 
representation. The findings are highlighted based on these 
visual representations, indicating the prevalence of certain 
language skills such as listening, speaking, reading, and writing 
skills across various testing frameworks such as Test of English 
for International Communication (TOEIC), International 
English Language Testing System (IELTS), and Test of English 
as a Foreign Language (TOEFL). Furthermore, an examination 
of how the different competency categories and corresponding 
test difficulties were aligned may inform about the process of 
design and organization that occurred. In doing so, it becomes 
not only the constitution of this dataset but may even shed more 
light on shortcomings or potential points for improving on 
methods used within the process of assessing languages. The 
next parts shows what such figures might elucidate. 

1) Language competency distribution analysis: Fig. 5 

shows the percentage distribution of language competency 

categories: Listening, Speaking, Reading, and Writing, based 

on the attributes of the dataset. The graph shows that the 

"Other" category is the most dominant, making up 51% of the 

total competencies. This probably includes tests that cover 

more than one competency or are not classified. There is a 

parity observed between Listening and Speaking, each at 24% 

of the dataset. Both are crucially necessary in language 

understanding and communication. These skills are given 

balanced attention. Reading and Writing are put separately in a 

category labeled "Other," which indicates that they appear to 

constitute a reduced portion or less of the listed tests in the 

dataset. This visualization highlights oral skills (Listening and 

Speaking) as being underlined in assessments of language 

competence, reflecting a strong presence of these skills in real-

world language usage. It further underlines potential 

underrepresentation in Writing and Reading as separate 

competencies, which therefore deserve further elaboration. The 

chart provides an overview of the organization of the data set, 

depicting the major focus areas in language testing, along with 

relative proportions. 

 
Fig. 5. Competency category distribution. 

2) Comparison of test designs at different levels of 

competency: Fig. 6 illustrates the distribution of tests in terms 

of proficiency levels that range from A1 to B2 on the Common 

European Framework of Reference for Languages (CEFR) and 

standardized exams like TOEIC, IELTS, and TOEFL. The chart 

shows that assessments based on grammar are prominent in A1 

to B2 levels as it is a starting point for learning language. For 

Listening and Reading competencies, TOEIC and IELTS tests 

are spread across well-defined score ranges, such as 110 to 495 

for TOEIC and 4.0 to 9.0 for IELTS, offering clear gradations 

of proficiency. Speaking and Writing tests follow similar trends 

but feature fewer levels, reflecting their emphasis on qualitative 

assessment. TOEFL tests, on the other hand, have fewer but 

highly focused levels, with Listening ranging from scores of 9 

to 30. This distribution shows the diversity of testing 

frameworks and their different focus areas. It also shows the 

ability of the dataset to meet the needs of learners with different 

levels of proficiency and test requirements, providing insight 

into the balance of grammar, listening, speaking, reading, and 

writing tests across different proficiency frameworks. 

B. Evaluation of Cognitive Load Prediction 

Behavioral data is fed to the FNN, which predicts the 
cognitive load. The FNN processes time on task, error patterns, 
and engagement metrics and generates a score for cognitive 
load. This score is used to classify the cognitive state of the 
learner as either high or low. 

This bar chart in the Fig. 7 represents the cognitive load 
scores calculated for ten different tasks in terms of time spent, 
error patterns, and engagement levels. Each task is plotted 
along the x-axis, and the score on the y-axis represents the 
cognitive load. A red dashed line is drawn at a score of twenty 
to signify crossing over from high to low cognitive loads. All 
tasks in this dataset score below this limit, which classifies them 
as "Low Cognitive Load". Scores are highly variable between 
tasks, with a peak of around 13.84 for Task 9, and troughs 
around 7.06 for Task 7. Score variation describes these 
differences in the difficulty and user performance across the 
tasks under study. The color gradient of the bars, being based 
on the "viridis" palette, emphasizes these differences visually. 
This Fig. 7 is all-inclusive and gives an overview of the 
cognitive demands in respect to the task, thereby providing a 
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comparison tool and indicating which areas could possibly be 
improved on for performance. The chart further helps visually 
distinguish outliers or anomalous cases within cognitive 
performance by representing scores graphically. Generally, low 
scores across all tasks indicate that these are manageable 

cognitive demands, thereby fitting the target group or setting 
for the activity. However, these results might further be 
influenced by other factors, such as user fatigue or task 
sequencing. 

 
Fig. 6. Distribution of tests across levels of competence.

 

Fig. 7. Cognitive load scores across tasks. 

The Table II below illustrates how task complexity should 
be modified for different language proficiency tests depending 
on the cognitive load of various skill levels. Each competency 
listed in the table is associated with a specific skill, such as 
listening or reading, and the corresponding cognitive load level: 
Low, Moderate, or High. For tasks with a Low Cognitive Load, 
the recommendation is to increase the task complexity. This 
could be the presentation of more complex tasks or increased 
speed to push the learner even further to his or her full potential. 
For instance, in the "Listening Test in TOEIC for Level 110 to 
270," task complexity is introduced by the use of more 
challenging listening tasks or content with faster speed. 
Similarly, in the "Reading Test in TOEIC for Level 115 to 270," 
the increase in task complexity is through the introduction of 
more complex texts or comprehension questions. 

For Moderate Cognitive Load, the task complexity is 
adjusted in order to keep the challenge balanced. Rather than 
increasing the difficulty of the task, the solution would instead 
be to provide the learner with more practice materials or 
exercises with the same level of difficulty. For example, the 
"Listening Test in TOEIC for Level 400 to 485" adjusts task 
complexity through providing extra practice content that 
matches the difficulty level against which the learner currently 
operates. Similarly, in the "Reading Test in TOEIC for Level 
385 to 450," complexity is maintained by introducing additional 
exercises of similar difficulty. 

For tasks characterized by High Cognitive Load, the system 
simplifies tasks to help the learner from getting overwhelmed 
by the task itself. Simplification may include: breaking down 
big tasks into tiny components, hinting, adjusting the structure 
of the task itself to reduce its mental effort to be executed by 
the learner. For instance, in "Listening Test in TOEIC for Level 
490 to 495, it is advisable to simplify tasks by giving out hints 
or making tasks smaller or more divided portions. For instance, 
for "Reading Test in TOEIC for Level 385 to 450", a task 
reduction approach guarantees not to let the learning student 
overwhelmed due to complexity about the subject itself. 

C. Analysis of Content Personalization with BERT 

The fine-tuned BERT model takes in the prediction of 
cognitive load of the learner, the task performance, and 
engagement data and then uses that information to customize 
the delivery of content. Thus, based on the predicted cognitive 
capacity, the system provides appropriate content. Using real-
time cognitive load prediction, the BERT model adjusts content 
complexity in a dynamic way, thereby making the challenge for 
the learner appropriate at each step. 
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TABLE II. TASK COMPLEXITY ADJUSTMENT FOR LANGUAGE SKILLS BASED ON COGNITIVE LOAD 

Competency Name Skill Cognitive Load Task Complexity Adjustment 

Listening Test in TOEIC for Level 

110-270 
Listening Low 

Increase task complexity (e.g., add more difficult listening tasks or faster-paced 

content). 

Listening Test in TOEIC for Level 

275-395 
Listening Low 

Increase task complexity (e.g., add more difficult listening tasks or faster-paced 

content). 

Listening Test in TOEIC for Level 

400-485 
Listening Moderate 

Adjust task complexity (e.g., provide additional practice content of similar 

difficulty). 

Listening Test in TOEIC for Level 

490-495 
Listening High 

Simplify tasks, provide hints, or break tasks into smaller components to reduce 

mental effort. 

Reading Test in TOEIC for Level 

115-270 
Reading Low 

Increase task complexity (e.g., introduce more complex texts or comprehension 

questions). 

Reading Test in TOEIC for Level 

275-380 
Reading Low 

Increase task complexity (e.g., introduce more complex texts or comprehension 

questions). 

Reading Test in TOEIC for Level 

385-450 
Reading Moderate 

Adjust task complexity (e.g., provide additional exercises with the same 

complexity). 
 

 
Fig. 8. Dynamic content delivery based on cognitive load performance 

evaluation. 

This Fig. 8 looks at the way dynamic adjustments to task 
complexity depend on changing levels of cognitive load. The x-
axis classifies the cognitive load as Low, Moderate, and High, 
while the y-axis expresses the changes in task complexity, in 
both increments and decrements. There are two sets of bars for 
each level of cognitive load. The light blue represents the 
increase in task complexity, and the light coral represents the 
corresponding decrease. 

For "Low Cognitive Load," task complexity increases with 
a large effect size (0.8), while decreasing minimally (0.2). This 
means that when the user's cognitive demand is low, he can 
withstand a huge rise in content complexity without a bad 
effect. The increase in task complexity drops to 0.6 and the 
decrease to 0.4 when the cognitive load moves to "Moderate." 
It means that, when the cognitive load becomes moderate, there 
will be a better balance in presenting the content. For "High 
Cognitive Load," the trend reverses, with a small increase in 
complexity (0.4) and a substantial decrease (0.6). This reflects 
the need to reduce task difficulty significantly to accommodate 
users experiencing high cognitive demands. 

The chart makes the principle of adaptive content delivery 
visually clear. It does neither overwhelm nor underchallenge 
the users. The adaptive model of varying task complexity and 

cognitive load would ensure optimal learning and performance. 
The width of the bars along with the distinction in color enables 
better readability, and the overlapping positioning of the bars 
for each of the cognitive loads allows for immediate 
comparison. Overall, this Fig. 8 provides for an intuitive 
representation of how content complexity adjustments align 
with the user cognitive states, and it forms a valuable tool for 
educators, designers, and researchers seeking to optimize task 
performance and engagement. 

D. Performance Metrices 

1) Accuracy: Accuracy gives the ratio of the correctly 

classified instances to the total instances. Here from, the 

proposed framework achieved a collective training accuracy. 

Accuracy is computed by the following Eq. (11). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑃𝑁 + 𝑃𝑃

 𝐼𝑃 + 𝑃𝑁 + 𝐼𝑁
                            (11) 

2) Precision: It measures the ratio of correctly identified 

positive cases by the model out of all the cases which the model 

predicted to be positive. Indeed, the proposed framework 

achieved impressive precision in the accuracy across various 

segments including; High spenders and young professionals. 

Precision is calculated by the help of the Eq. (12). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑃                      (12) 

This shows that in Practice segments, the model is able to 
minimize these false positives, and correctly identify the 
positive cases to ensure that most cases that are classified as 
positive are indeed positive. 

3) Recall: Recall measures the ratio of true positive 

instances with reference to the total actual positive instances. 

This is a testament of this proposed frameworks good recall 

which would imply its ability to recollect or recognize most of 

the ‘real’ outputs such as the Low Spenders and the Value 

Seekers. The F1-score for each gene set is computed on the 

basis of the following Eq. (13). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃/𝑇𝑃 + 𝐹𝑁                      (13) 

This high recall ensures that the true positives were 
identified by the model without omitting many of them, as it 
established an all-round understanding of each customer 
segment. 
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4) F1 Score: The F1 score is defined as the harmonic mean 

of precision and recall therefore is balanced between the two 

measures. The proposed framework closely attained forefront 

F1 vector, confirming its good precision-recall balance for 

different sorts of customer. The F1-score is given by Eq. (14). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                 (14) 

This metric therefore validates the effectiveness of the 
framework to classify the different customers as described 
earlier of achieving a trade-off between false positive and false 
negative detection. 

TABLE III. PERFORMANCE METRICS OF FNN-BERT MODEL 

Metrics Values (%) 

Accuracy 95.3 

Precision 96.22 

Recall 96.1 

F1 score 97.2 

Table III presents the performance metrics of the proposed 
FNN-BERT model, evaluating its effectiveness in cognitive 
load-based ESL learning. The model achieves 95.3% accuracy, 
ensuring reliable classification. It records 96.22% precision, 
minimizing false positives, while 96.1% recall indicates strong 
sensitivity to relevant cases. The 97.2 F1-score confirms a 
balanced precision-recall tradeoff, highlighting its robust 
performance. 

TABLE IV. PERFORMANCE COMPARISON OF  OF FNN-BERT MODEL WITH 

EXISTING MODEL 

Methods Accuracy Precision Recall F1 score 

PT-GRU [22] 78.85 75.90 77.33 76.71 

SVC (R) [23] 94.8 92.56 95.87 96.3 

Logistic 

Regression[24] 
89 88 90 93 

FNN-BERT 

(proposed) 
95.3 96.22 96.1 97.2 

Table IV compares the proposed FNN-BERT model with 
PT-GRU and SVC (R). FNN-BERT surpasses PT-GRU 
(78.85% accuracy) and SVC (R) (94.8% accuracy), achieving 
95.3% accuracy. It also leads in precision (96.22%), recall 
(96.1%), and F1-score (97.2%), demonstrating superior 
effectiveness in cognitive load-based ESL learning. 

Fig. 9 illustrates the four models—PT-GRU, SVC (R), 
Logistic Regression, and the proposed FNN-BERT—are 
compared on the basis of four significant performance 
indicators: F1 Score, Accuracy, Precision, and Recall.  In online 
ESL learning systems, the FNN-BERT model consistently 
outperforms the others in all categories, illustrating its 
remarkable ability for adaptive content personalization.  
Logistic Regression shows decent efficiency, though SVC (R) 
is competitive, particularly in Recall and F1 Score. With the 
poorest performance on every criterion, PT-GRU shows how 
optimally the hybrid FNN-BERT approach maximizes 
cognitive load. 

 

Fig. 9. ESL Model performance comparison. 

E. Discussion 

The FNN-BERT framework achieves effective content 
adaptation by demonstrating superior performance with 95.3% 
accuracy and precision of 96.22% and recall of 96.1% and an 
F1-score of 97.2%. This system serves digital ESL learning 
platforms where it uses cognitive load measurements to adjust 
content difficulty levels for each learner. The system can apply 
to language tutoring platforms and e-learning tools and 
educational AI assistants to enhance both student understanding 

and involvement. The educational benefits provided by this 
technology include live adjustments, ability to scale and better 
learning effectiveness through personalized content distribution 
that reduces mental stress without losing student focus. FNN 
and BERT together boost behavioral data analysis and 
contextual understanding thus delivering superior outcomes 
than rule-based static AI models. High computational needs 
stand as a major disadvantage for deployment since low-
resource environments struggle with these requirements. The 
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optimal fine-tuning process requires numerous labeled datasets 
which represent an obstacle. Future advancements in this model 
should prioritize minimalizing its complexity while adding 
various learning indicators including eye tracking alongside 
speech analysis and expanding its useable applications to 
benefit educational processes beyond ESL education. 

With 95.3% accuracy and an F1-score of 97.2%, the 
proposed FNN-BERT model works well; however, these results 
are based on a specific dataset and controlled conditions. 
Verifying the effectiveness of the model across various student 
populations, language proficiency levels, and online learning 
environments is essential to ensuring its strength, usability, and 
applicability. To truly assess the model's scalability and 
flexibility, future studies will focus on applying the evaluation 
to larger and more varied datasets and real-world ESL learning 
contexts. 

The extensive computational requirements and availability 
of AI models pose serious challenges, particularly in contexts 
with limited resources such as schools.  In fact, these factors 
can render it even more challenging for AI systems to be 
utilized broadly in some contexts. It will be important to 
investigate further alternate remedies, such as the design of 
lighter weight, more efficient models and strategies for 
optimizing computational processes, to solve this issue.  In an 
effort to make the proposed systems more easily deployable 
within resource-limited environments and facilitate greater 
practical application and use in schools, there will need to be an 
exploration of methods like model compression, quantization, 
and other resource-conserving tactics. 

VI. CONCLUSION AND FUTURE WORKS 

The proposed FNN-BERT framework successfully 
improves ESL learning by modeling content adjustment 
according to cognitive load which demonstrates 95.3% 
accuracy and 96.22% precision and 96.1% recall as well as 
97.2% F1-score. Through the integration of FNN for behavioral 
analysis with BERT for contextual adaptation the model 
delivers superior results to existing methods which guarantees 
both personal learning experiences and higher student 
engagement. The presented research introduces advancements 
to adaptive learning systems powered by AI which both 
enhance student understanding and diminish cognitive stress 
factors. The system requires additional attention to meet two 
main barriers including heavy computational needs with 
substantial data labeling requirements. The future research 
direction emphasizes model speed improvement and combines 
eye-tracking and speech analysis data alongside the 
development of new applications between the proposed 
framework and STEM education and vocational training fields. 
This research will test the deployment of this system within 
digital education platforms to determine practical 
implementations that promote widespread accessibility and 
effect within intelligent educational systems. 
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