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Abstract—To address issues of missed detections and low 

accuracy in existing smoke detection algorithms when dealing 

with variable smoke patterns in small-scale objects and complex 

environments, FAR-YOLO was proposed as an enhanced smoke 

detection model based on YOLOv8. The model adopted Fast-C2f 

structure to optimize and reduce the amount of parameters. 

Adaptive Feature Alignment Module (AFAM) was introduced to 

enhance semantic information retrieval for small targets by 

merging and aligning features across different layers during 

point sampling. Besides, FAR-YOLO designed an 

Attention Guided Head (AG-Head) in which feature guiding 

branch was built to integrate critical information of both 

localization and classification tasks. FAR-YOLO refines key 

features using Dual-Feature Refinement Attention module 

(DFRAM) to provide complementary guidance for the both two 

tasks mentioned above. Experimental results demonstrate that 

FAR-YOLO improves detection accuracy compared to existing. 

There's a 3.5% Precision increase and a 4.0% AP50 increase 

respectively in YOLOv8. Meanwhile, the model reduces number 

of parameters by 0.46M, achieving an FPS of 135, making it 

proper for real-time smoke detection in challenging conditions 

and ensuring reliable performance in various scenarios. 

Keywords—Smoke detection model; adaptive feature 

alignment; two-channel feature refinement; attention mechanism 

I. INTRODUCTION 

Fires pose a major danger to human safety, economies and 
ecosystems. In 2023, there were 550,000 fire incidents reported 
in China within just six months, resulting in 959 deaths, 1,311 
injuries, and property damage amounting to 3.94 billion yuan 
[1]. Between 2019 and 2020, Australia endured a forest fire 
that lasted more than seven months, killing billions of animals 
and destroying over 10 million hectares of land [2]. The best 
way to prevent the spread of fires is to suppress the spread of 
fires quickly and to disperse fire sources in a timely manner. 
However, early flames are small and can easily be obscured, so 
detecting the smoke generated by fires is the optimal approach 
for controlling the occurrence of fire. 

Early smoke detection methods [3] relied on smoke, 
temperature, and light sensors to detect fire particles at close 
range, but had limited range and were prone to environmental 
interference. Traditional fire smoke detection algorithms relied 
on manual feature extraction and machine learning 
classification [4], but depended on domain expertise and 
couldn't effectively capture image features, resulting in poor 
generalization and applicability. 

Object detection approaches based on deep learning can 
automatically learn main features and details in data, offering 

advantages such as high accuracy and strong robustness. 
Convolutional Neural Networks (CNNs) extract hierarchical 
features layer by layer through local connections and parameter 
sharing mechanisms, making them highly effective for image 
recognition. Recently, Transformer-based architectures have 
achieved remarkable advances in the field of image detection. 
Compared to CNNs, Transformers perform well in identifying 
distant relationships and perceiving global information within 
images. However, their computational complexity is higher, 
and they generally require more computing resources. 

Xie et al [5], introduced a forest fire smoke identification 
method developed with the Faster-RCNN model, which 
enhances the receptive field by adding a feature fusion module 
after each level of the feature pyramid structure. However, this 
region extraction-based detection method consists of two 
stages, leading to higher algorithm complexity and slower 
detection speeds. YOLO series algorithms, on the other hand, 
are widely used for their capability to provide precise and 
timely detection. Casas et al [6], has shown that the excellent 
applicability of YOLO algorithms in smoke detection. Zhang et 
al [7] introduced an enhanced YOLOv4 model that combines 
an attention mechanism to boost the capture of smoke feature 
and utilizes the K-means++ algorithm to determine the most 
suitable predicted bounding box scale. Despite these 
improvements, the model suffers from slow detection speeds, 
which are inadequate for the real-time requirements for smoke 
detection. Li et al [8], added the YOLOv5 model with a 
coordinate attention mechanism to strengthen the model's 
concentration on key smoke regions and proposed an RFB 
module to capture global information. However, this model 
still struggles with detecting small smoke targets and exhibits a 
low smoke recognition rate. Ouyang et al [9], introduced a new 
object detection model named fuse-transformer, which 
combines Transformer and YOLOX to use transformer to 
handle global context and boost the model's potential to extract 
feature. However, the model has issues such as excessive size, 
high complexity, and demanding hardware requirements. 

In the past decade, numerous algorithms have been 
developed for fire smoke detection, yielding promising results. 
However, challenges persist. First, the rapid spread of fires 
demands prompt smoke detection. Moreover, complex 
environmental conditions can alter the concentration and shape 
of smoke, making it harder for models to accurately identify it. 
Objects with colors and shapes similar to smoke may also lead 
to false detections. Additionally, the small size of early-stage 
smoke features poses another significant challenge. Prior 
studies used complex models to improve smoke detection 
accuracy. But large-parameter models are complex and slow. 
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To meet real-time demands, some applied one stage detection 
models with specific feature modules. However, single stage 
models struggle with small targets and complex environments. 
We aims to attain a desirable trade-off between speed and 
accuracy. 

This paper presents an enhanced fire smoke detection 
model, which is built upon YOLOv8 [10], named FAR-YOLO 
(Feature Alignment and Refinement-YOLO). This model 
attains a balance between precision and speed by incorporating 
innovative lightweight modules and an attention mechanism-
enhanced head structure. It utilizes an adaptive upsampling 
module to enhance capability of capturing small smoke targets. 
Additionally, we have constructed an outdoor fire smoke 
detection dataset consisting of 3,705 real smoke images. The 
dataset includes images of fire smoke captured at both close 
and distant ranges, as well as samples from complex 
environments with potential interference. 

In this paper, we proceed as follows: Section Ⅱ presents the 
relevant key technologies. Section Ⅲ details the innovative 
methods, including the design philosophy and approach of the 
smoke feature extraction enhancement module. In Section Ⅳ, 
the datasets, experimental environment, ablation experiments 
and comparative experiments with other detection are models 
introduced. Section Ⅴ summarizes the work content and 
contributions of this paper. 

II. RELATED WORK 

A. YOLOv8 

The network design of YOLOv8 is depicted in Fig. 1. The 
C2F module has cross connections between its layers and 
splitting operations, a design that enhances gradient fluidity 
and boosts the model backbone's efficiency in feature 
extraction. By introducing PANet [11] into the neck structure, 
the network can transfer features from bottom to top and from 
top to bottom, thereby effectively fusing multi-level semantic 
information and geometric information. YOLOv8 includes a 
decoupled head structure and incorporates Distribution Focal 
Loss [12] and IOU Loss in the localization branch, improving 
its ability to detect partially occluded objects. Additionally, a 
Task-Aligned Assigner [13] is used for sample matching, 
which evaluates both object localization and classification 
tasks, and then determines whether an instance is a target or 
irrelevant sample based on weighted scores, enhancing the 
model's performance across multiple tasks. 

B. Attention Mechanism 

The attention mechanism dynamically identifies key image 
regions and assigns positional weights. CBAM [14] enhances 
the representational power of the feature map by applying 
weighting to features across channel and spatial dimensions. 
Coordinate Attention (CA) [15] encodes the spatial coordinates 
to generate a coordinate weight map, which is then used to 
adjust the original feature map. Efficient Multi-Scale Attention 
(EMA) [16] addresses the accuracy loss that occur during 
dimensionality reduction in coordinate weight calculation by 
transmitting additional feature information across different 
regions. 

 
Fig. 1. Network architecture of YOLOv8. 

C. Upsampling Methods 

Upsampling methods boost image resolution and restore 
details. Bilinear interpolation is a widely used upsampling 
method that estimates the value of a target point using the 
positional information of neighboring points. CARAFE [17] 
dynamically generates adaptive kernels by perceiving the 
content of the features to reorganize input features. Dysample 
[18] uses a point sampling mechanism, dynamically calculating 
sampling point offsets to adapt to input feature maps. 
Compared to kernel-based methods, Dysample achieves better 
results and higher computational efficiency. 

III. IMPROVEMENT SCHEME 

The architecture of FAR-YOLO is depicted in Fig. 2. Fast-
 C2f is adopted instead of the original C2f structure, so that 
model complexity is reduced and detection speed is increased 
without losing accuracy. The lightweight AFAM module 
performs adaptive sampling during feature map reconstruction 
and is integrated into the upsampling process of the feature 
pyramid to enhance semantic information transfer across 
layers. In the head region, the proposed AG-Head detection 
head includes a feature guidance branch that consolidates key 
features from the two task branches. The DFRAM refines 
feature representations, guiding both classification and 
localization tasks. 

A. Fast-C2f Module 

In smoke detection, the model's inference speed is crucial. 

The calculation formula for Latency is as follows: 



FLOPs
Latency

FLOPS


 

where, FLOPs  is a measure of the total number of float 

computations, and FLOPS  signifies the amount of these 

operations executed each second. Considering the high 
similarity between channels in the feature map, Chen et al [19], 
proposed Partial Convolution (PConv). As shown in Fig. 3(a), 
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PConv convolves only a segment of continuous channel 
images while keeping the other channels unchanged. 
Compared to regular convolution, PConv decreases parameters 
of the model and makes detection faster. 

 
Fig. 2. Network architecture of FAR-YOLO. 

  

(a) (b) 

Fig. 3. Working way of Pconv: (a) Select the first quartile channel (b) Select 

the last quarter channel. 

This paper proposes the Fast-C2f module, whose structure 
is presented in Fig. 4. The first partial convolution in the Fast-
Bottleneck selects the first quarter of the channels for training. 
To avoid incomplete capture of key image information across 

all channels, we implemented an opposite channel selection 
scheme. Specifically, the second partial convolution selects the 
last quarter of the channels for training, as depicted in Fig. 
3(b). Both of these complementary channel selection schemes 
enable Fast-Bottleneck to perform more comprehensive feature 
learning, providing the model with strong feature 
representation capabilities. 

 
Fig. 4. Structure of Fast-C2f. 

B. Adaptive Feature Alignment Module 

Early-stage smoke has a small volume and covers merely a 
little pixel area in the image, resulting in limited appearance 
information. To address this, transferring detailed semantic 
information from deeper layers to shallower layers can enhance 
feature representation for small targets. This paper adopts this 
approach to improve the effectiveness of feature information 
transfer between deep and shallow layers. To avoid 
interference caused by feature mismatches during the 
upsampling process [20], we introduce the lightweight AFAM 
and apply it during the upsampling stage. This module's 
network framework is depicted in Fig. 5. 

 
Fig. 5. Structure of AFAM. 
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AFAM employs point sampling for upsampling. Provided 

with an input feature map of size 2
2c s H W  , the algorithm 

uses a linear layer to capture pixel neighborhood information, 
generating an offset flow O  that reflects semantic variation 

trends between deep and shallow features. After reshaping O

to 2c sH sW  ，it combines with the sampling grid G  to 

produce the sample set S . The following are the formulas for 

the calculation of O  and S : 

  ( )O linear X  

 S G O   

The _grid sample  function is employed to resample the 

sample set, generating the final feature map 'X .The formula 
for calculating 'X  is shown below: 


_ ( , )grid sample X X S

 

AFAM incorporates shallow image features during the 
generation of O , improving feature alignment between 

adjacent layers by fusing features from different levels. The 
geometric details from the shallow layers help guide the deeper 
semantic information, thereby generating a more effective 
offset flow. In terms of implementation, the shallow image has 

dimensions of 2

1c s sH sW  , and we aim to adjust its 

dimensions to match the deep feature map. Inspired by the SPD 
module [21], the specific approach is as follows: AFAM 
divides the shallow feature map into sub-maps of size H W , 

then reorganizes the objects at corresponding positions in each 

sub-map to form a feature map with the size of 2

1c s H W  . 

The calculation formula is as follows: 



(0,0) [0 : : ,0 : : ]

(1,0) [1: : ,0 : : ]

( 1,0) [ 1: : ,0 : : ]

(0, 1) [0 : : , 1: : ]

( 1, 1) [ 1: : , 1: : ]

f H s W s

f H s W s

f s s H s W s

f s H s s W s

f s s s H s s W s







   
   

     

S

S

SP D S

S

S

X

X

X X

X

X
 

where, SX  represents the shallow feature image, s  is the 

scaling factor, and H  and W  are used to signify the 

horizontal and vertical extent of the feature map. This method 
effectively preserve the detailed information in the image. 

To further enhance the effectiveness of feature fusion, 
AFAM applies linear projection and nonlinear transformation 
to the deep feature map to generate a weight map. The weight 
map is used to adaptively balance the feature information 
across different layers. The calculation formula is as follows: 

 1 2' ( ( )) ( ( , )))D D SPDO Sigmoid linear X linear Ct X X 
 

where, DX  represents the deep feature image, 1linear  and 

2linear  represent the linear projection operation on the deep 

feature map and the combined of Depthwise convolution 
(DWConv) and 1×1 convolution, respectively. Ct  denotes the 

feature concatenation operation,   represents matrix 

multiplication. 

C. Attention-Guided Head 

1) The design of AG-HEAD: The decoupled detection 

head uses separate convolutional layers for localization and 

classification tasks. However, constrained by fixed kernel 

sizes, these layers only capture local features. In outdoor 

smoke detection scenarios, the texture features at the edges of 

smoke are often weak. Overemphasizing dense areas while 

neglecting sparse regions may misjudge the true smoke extent, 

reducing detection accuracy. 

This paper designs AG-Head, whose network structure is 
shown in Fig. 6. The feature map extracts spatial feature 
information through DWConv, forming a feature guidance 
branch parallel to the other two branches. The localization and 
classification branches focus on learning different feature [22], 
while the feature-guided branch captures the features shared by 
both tasks during the back propagation process. The DFRAM 
is integrated into the feature guidance branch to fuse different 
types of features, providing complementary spatial information 
guidance for both branches. By enhancing the performance of 
both tasks, the model can comprehensively focus on smoke 
features, accurately capturing both smoke concentration and 
global information. 

 
Fig. 6. Structure of AG-Head. 

2) Dual-feature refinement attention module: To 

effectively fuse feature information and enhance the 

interaction between the two tasks, this paper proposes 

DFRAM, whose structure is shown in Fig. 7. This module 

contains two algorithms: Coordinate Feature Refinement 

(CFR) and Multi-Scale Feature Refinement (MSFR). CFR 

captures directional spatial location information, while MSFR 

extracts rich contextual and local features. DFRAM overlays 

the weight maps generated by both methods to enhance the 

detection head's sensitivity to smoke object concentration and 

spatial location. 

a) Coordinate feature refinement: To get feature 

coordinate info, CFR first globally pools the input feature map 

vertically and horizontally. Then, CFR captures cross-channel 

interaction info in a special way. Since the fully connected 

method can't avoid the bad effects of channel dimensionality 

reduction and 1×1 2D convolutions aren't good enough for 

capturing inter-channel info, multi-kernel 1D convolutions are 

used to share channel info across n consecutive layers. The 
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calculation formulas for the global pooling operations in both 

directions are as follows: 



),
1

(
o j W

HGAP x
W

W i
 

 
 



1
( , )W

o j W

GAP y j H
W

 

 
 

The 1D convolution's kernel size is set based on the amount 
of channels, as the optimal kernel size is associated with the 
amount of channels [23]. The calculation formula is as follows: 



2log ( )
odd

odd

C b
n t

 
  

 

where, C  indicates the count of channels, and oddt  

represents the odd number adjacent to t . 

b) Multi-scale feature refinement: MSFR extracts image 

features through DWConv and Dilated convolution (DConv) 

with progressively increasing dilation rates [24]. The 

architecture processes DWConv outputs in parallel through 

three DConv branches with diverse receptive fields, fuses 

these multi-scale features with the original input, and 

generates spatial attention weights via 1×1 convolution and 

Sigmoid activation. This design captures local details and 

contextual patterns for enhanced feature representation. The 

computation process of MSFR can be described as: 


( )DWConv inputF x

 



2

1 1

=0

( (( ( )) ))output r

i

MSFR Sigmoid Conv DConv F F 


where, inputx  is the original feature map and F denotes the 

intermediate layer's output, outputMSFR  refers to the output 

feature map of MSFR. rDConv  represents dilated 

convolutions with varying rates in the three parallel branches, 
where subscript r  indicates the dilation rate and i  indicates 

the i branch in the multi-scale structure. 

 

Fig. 7. Structure of DFRAM. 

IV. EXPERIMENTS AND RESULT ANALYSIS 

A. Datasets and Annotations 

Since there's a shortage of public fire smoke datasets and 
the lack of calibration, this paper collects smoke images and 
manually annotates the smoke regions to create a self-made fire 
smoke dataset. The smoke images are sourced from the public 
datasets HPWREN [25] and the Fire Detection Research Group 
[26], which contain real smoke objects of various sizes and in 
different scenes. This diverse dataset enables the model to 

develop strong recognition capabilities for various types of 
smoke. Images with low resolution or those not meeting the 
training requirements are excluded. The dataset is made up of 
3,705 smoke images, which are randomly split into training, 
validation and testing sets in a 7:2:1 ratio. The dataset is 
formatted according to the YOLO dataset standard, and the 
LabelImg tool is used to annotate and create a plain text label 
file containing the positions and sizes of smoke targets. Some 
annotated image samples from the self-made dataset are shown 
in Fig. 8. 
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(a) (b) (c) 

   
（d） (e) (f) 

Fig. 8. Different types of labeled image samples from the self-made smoke detection dataset: (a) Large smoke; (b) and (f) show small smoke at different 

distances; (c) and (d) are black smoke; (e) is the smoke object in the environment of interference factors. 

B. Evaluation Metrics 

This paper uses COCO metrics to evaluate the smoke 
detection model. Precision reflects ratio of smoke samples that 
are correctly recognized, while recall is the proportion of actual 
smoke samples detected. Another important metric is Average 
Precision (AP), reflecting the model's overall accuracy in 
smoke identification. AP50 denotes the average precision at a 
threshold of 50. Additionally, Frames Per Second (FPS) 
measures indicates the rate at which a model can process 
consecutive images, and the number of parameters (Params) 
serves as a metric for assessing its complexity. The formulas 
for calculating these four metrics are presented below: 


Pr

TP
ecision

TP FP


  


Re

TP
call

TP FN


  

 1

1
=

r

i

i

AP P
r




 



1
FPS

Time


 

where, TP  indicates the count of smoke samples accurately 
detected, while FP  signifies the amount of irrelevant samples 
mistakenly labeled as smoke objects, FN represents the 

amount of smoke samples that were missed, and Time  

represents the time needed to process one image, which is 
measured in milliseconds. 

C. Experimental Environment and Hyperparameter 

Configuration 

Experiments use Python 3.8 and PyTorch 2.0, accelerated 
by CUDA 11.8. Hardware includes an AMD EPYC-7663X 
CPU and an NVIDIA GeForce RTX 3090 GPU. The optimizer 
is SGD. Input images are 640×640. The model is trained for 

300 iterations, using batches of 16 and with a learning rate 
initially set to 0.001. 

D. Comparative Experiment of Adaptive Feature Alignment 

Module 

The upsampling operator can augment the model's 
proficiency in capturing essential information, but it also 
introduces complexity. Therefore, this section compares the 
AFAM module with the advanced lightweight CARAFE 
module and Nearest Neighbor Interpolation (NNI). The 
comparison results, presented in Fig. 9, demonstrates that the 
AFAM module achieves a Precision of 88.7% and an AP50 of 
89.3% with fewer Params and FPS. Although CARAFE can 
achieve similar accuracy, it costs nearly twice as much in terms 
of Params and FPS compared to AFAM. 

 
Fig. 9. Experimental comparison results of three upsampling methods under 

four different evaluation metrics: AP, AP50, Params, and FPS. 

E. Experimental Analysis of Dual-channel Feature 

Refinement Attention Module 

This section investigates the influence of diverse dilation 
rate combinations of DConv in MSFR on the final results. 
Additionally, to evaluate the impact of the DFRAM, Several 
mainstream attention mechanisms are used for comparison 
with it. 
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1) Comparison experiments of different expansion rates: 

To study the impact of dilation rates on accuracy in MSFR, 

three combinations of dilation rates were tested: [1, 2, 3], [2, 

4, 6], and [4, 8, 12]. These combinations were applied to 

MSFR, and experiments were conducted using the YOLOv8 

network integrated with AG-Head on the self-made dataset. 

The comparison results are presented in Table I, illustrating 

that the [1, 2, 3] combination reaches the superior detection 

performance. While larger dilation rates capture a larger 

receptive field, they also result in losing local details, which 

reduces the model's capacity for recognizing small objects. 

TABLE I.  DETECTION RESULTS BASED ON DIFFERENT DILATION RATE 

COMBINATIONS’ CONFIGURATIONS 

Rates Precision (%) AP50 (%) 

[1,2,3] 89.3 90.5 

[2,4,5] 88.8 90.3 

[4,8,12] 88.6 90.0 

2) Comparative experiments with different attention 

modules: This section compares the performance of DFRAM 

with the CA, CBAM, and EMA. These attention modules are 

separately introduced into the YOLOv8 network integrated 

with AG-Head, and the attention maps generated by them are 

used to assist in task judgment. As shown in Table II, 

DFRAM shows the best performance. 

TABLE II.  DETECTION RESULTS BASED ON DIFFERENT ATTENTION 

MODULES’ CONFIGURATIONS 

Attention module Precision (%) AP50 (%) 

CA 88.1 89.7 

CBAM 88.9 90.1 

EMA 89.2 90.3 

DFRAM 89.3 90.5 

F. Comparative Experiments 

To assess the proposed improvements' effectiveness, this 
section conducts comparative experiments using the self-made 
smoke dataset, along with mainstream object detection 
methods from recent years. These methods include YOLO 
series detection algorithms such as YOLOv3 [27], YOLOv5 
[28], and YOLOv7-tiny [29]. Additionally, the comparison 
includes the two-stage detection method Faster-RCNN [30] 
and cutting-edge algorithms based on the Transformer 
framework, such as Dino [31] and Dab-detr [32]. 

The experimental information is detailed in Table III. The 
YOLO series detection algorithms achieve higher accuracy 
than Faster-RCNN while requiring fewer parameters. Although 
the YOLO algorithms fall short of Transformer-based models 
in performance, their superior detection speed makes them 
more fitting for real-time smoke detection scenarios. Both 
YOLOv7-tiny and YOLOv8 achieved Precision exceeding 
86.0%, with AP50 surpassing 87.6%. However, YOLOv7-tiny 
has parameters in an amount close to twice that of YOLOv8. 
The FAR-YOLO model not only achieves the best accuracy 
among the models tested but also requires fewer parameters 

than YOLOv8, demonstrating that FAR-YOLO offers the best 
overall performance. 

TABLE III.  COMPARATIVE EXPERIMENTS OF DIFFERENT ADVANCED 

MODELS 

Compare Models 
Precision 

(%) 

Recall 

(%) 

AP50 

(%) 

Params 

(M) 
FPS 

Faster-RCNN (ResNet50) 80.2 76.1 81.4 28.55 18 

YOLOv3n 83.0 82.3 84.4 8.67 120 

YOLOv5n 85.8 83.6 87.0 1.89 135 

YOLOv7-tiny 86.1 84.0 87.6 6.20 123 

YOLOv8n 87.0 84.3 87.9 3.15 156 

Dino 89.7 87.3 91.2 47.00 17 

Dab-detr 88.8 87.6 90.0 44.00 27 

FAR-YOLO 90.5 87.9 91.9 2.69 135 

A scatter plot intuitively compares model performance, 
with AP50 on the vertical axis and the number of Params on the 
horizontal axis. In the scatter plot, a model positioned further to 
the left indicates fewer parameters and lower computational 
complexity, while a position further up suggests higher 
precision. As illustrated in Fig. 10, Transformer-based models, 
despite their high precision, are located in the top right position 
due to their large number of parameters. This implies high 
computational resource demands, making them prone to 
deployment difficulties and slow operation on edge devices. In 
contrast, FAR-YOLO achieves a higher AP50 with fewer 
parameters, placing it in the top left region. Among models 
with similar parameter counts, FAR-YOLO is positioned 
higher, indicating superior performance at the same parameter 
level. Thus, FAR-YOLO strikes a good balance between 
precision and computational complexity, suits edge 
deployment, and can deliver ideal detection accuracy on 
resource-constrained edge devices with lower computational 
and storage costs. 

 
Fig. 10. Scatter plot of different models. 

G. Ablation Experiments 

This section presents ablation experiments on the self-made 
fire smoke dataset to assess the effect of the proposed 
improvements on model performance. The ablation experiment 
results are depicted in Table IV. 
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TABLE IV.  ABLATION EXPERIMENTS FOR DIFFERENT MODULES 

Experiment Group 
Improvement Scenarios Evaluation Metric 

Fast-C2f AFAM AG-Head Precision (%) Recall (%) AP50 (%) FPS 

1    87.0 84.3 87.9 156 

2    87.1 84.9 88.4 161 

3    88.7 86.1 89.3 143 

4    89.3 86.2 90.5 137 

5    89.7 87.6 91.3 128 

6    90.5 87.9 91.9 135 
 

In Group 2, the opposing channel allocation scheme of 
Fast-C2f increased the detection speed while maintaining the 
model's precision. The AFAM module enhanced the 
effectiveness of feature information transfer between different 
layers, resulting in a 1.4% increase in AP50 for Group 3. The 
introduction of the AG-Head, which includes the feature 
guidance branch and the DFRAM, resulted in Precision 
increasing by 2.3% and AP50 by 2.6% in Group 4. Group 5 
combined AFAM and AG-Head, achieving a greater 
performance improvement compared to individual modules, 
with an AP50 of 91.3% and Recall of 87.6%, demonstrating that 
combining multiple modules yields better results. Finally, 
Group 6, which combined all three modules, showed a 4.0% 
increase in AP50 compared to Group 1, achieving a Recall of 
87.9% and achieving a Precision of 90.5%. Although the FPS 
slightly decreased, it still reached 135 frames per second, 
reaching real-time detection requirements. Overall, the 
performance of the improved model demonstrated significant 
improvements. 

The precision and recall curve evaluates precision and also 
takes recall into account across different thresholds, offering a 
comprehensive measure of model performance. Fig. 11 
displays the precision and recall (pr) curves for the baseline 
model and various improvements. It is clear that the PR curve 
of the enhanced model largely overlaps with that of the 
baseline model, demonstrating that, at the same recall rate, the 
improved model achieves higher precision. 

H. Detection Performance and Analysis 

1) Visualization of improvement effects: To more 

effectively prove the validity of the proposed improvements, 

we use the YOLOv7tiny, YOLOv8 and FAR-YOLO models 

to detect smoke in fire scenes. As shown in Fig. 12, the 

improved model performs well in detecting large smoke 

plumes. The baseline model struggles to effectively recognize 

the entire smoke in scenarios involving large smoke with 

uneven concentration, often mistakenly dividing it into two 

parts. In contrast, the improved model captures richer 

contextual information, allowing it to accurately enclose the 

entire smoke plume with the detection box. Fig. 13 further 

demonstrates that the enhanced model surpasses the baseline 

in detecting small smoke targets. Additionally, under strong 

external light interference, the improved model can still 

accurately locate the smoke, while the baseline model fails to 

detect it, particularly in conditions of strong lighting and small 

smoke. 

2) Visualization of smoke feature extraction capabilities: 

To better analyze the model's proficiency in smoke feature 

extraction, This paper adopts heatmaps to display the model's 

focus to different regions of the image during detection. The 

attention of a region is related to its color; the warmer the 

color, the higher the attention, indicating that the higher the 

attention, the greater the contribution of the region's features 

to the prediction result. As shown in Fig. 14, group (c) is the 

baseline model YOLOv8, and group (d) is the improved 

model FAR-YOLO. The improved model allocates more 

attention to the smoke region than the baseline model and the 

high-attention areas align with the contours of the complex-

shaped smoke. This indicates that the improved model can 

accurately locate the region of interest, demonstrating superior 

performance. 

 
Fig. 11. Comparison of precision and recall (PR) curves with Different 

modules. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

595 | P a g e  

www.ijacsa.thesai.org 

    

    

    
(a) (b) (c) (d) 

Fig. 12. Medium and large-scale smoke detection performance:(a) Original images;(b) YOLOv7tiny;(c) YOLOv8;(d) FAR-YOLO. 

    

    

    
(a) (b) (c) (d) 

Fig. 13. Early and small-scale smoke detection performance:(a) Original images;(b) YOLOv7tiny;(c) YOLOv8;(d) FAR-YOLO. 
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(a) (b) (c) (d) 

Fig. 14. Heat maps showing the prediction of different models for smoke objects at near and far distances:(a) Original images; (b) YOLOv8; (c) FAR-YOLO. 

V. CONCLUSION 

This paper creates a multi-scene smoke dataset from public 
sources and introduces FAR-YOLO, an enhanced YOLOv8-
based model. The model employs partial convolutions with two 
channel allocation strategies to build the Fast-C2f module, 
reducing complexity and boosting speed. The AFAM module 
is integrated into the upsampling process, uses adaptive 
alignment and resampling to strengthen the correlation between 
deep semantic and shallow positional features, improving small 
object detection. The AG-Head is introduced, featuring a 
feature-guided branch that extracts critical feature information 
from different task branches. The embedded DFRAM in this 
branch captures richer context and localization info, enhancing 
smoke concentration and scale judgment. Experiments show 
the model effectively detects multi-scale smoke in various 
scenes, with Precision and AP50 reaching 90.5% and 91.9%, 
respectively, and Recall achieving 87.9%. Additionally, the 
model reduces the parameter count by 0.46M and achieves a 
FPS rate of 135. The model effectively balances detection 
accuracy and speed, excelling in real-time smoke detection. 
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