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Abstract—Graph Neural Networks (GNNs) represent a class of 

deep machine learning algorithms for analyzing or processing 

data in graph structure. Most software development activities, 

such as fault localization, code analysis, and measures of software 

quality, are inherently graph-like. This survey assesses GNN 

applications in different subfields of software engineering with 

special attention to defect identification and other quality 

assurance processes. A summary of the current state-of-the-art is 

presented, highlighting important advances in GNN 

methodologies and their application in software engineering. 

Further, the factors that limit the current solutions in terms of 

their use for a wider range of tasks are also considered, including 

scalability, interpretability, and compatibility with other tools. 

Some suggestions for future work are presented, including the 

enhancement of new architectures of GNNs, the enhancement of 

the interpretability of GNNs, and the design of a large-scale 

dataset of GNNs. The survey will, therefore, provide detailed 

insight into how the application of GNNs offers the possibility of 

enhancing software development processes and the quality of the 

final product. 
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I. INTRODUCTION 

A. Context 

Graph Neural Networks (GNNs) form branches of neural 
networks that generate inferences from data in a graph form. 
These graphs comprise nodes and edges and facilitate 
comprehension of intricate data dependencies and connections 
[1]. GNNs have recently proven to be effective in several real-
world applications, including social networks, chemistry, and 
natural language processing [2]. Because of these 
characteristics, deep graphs can be applied to modeling and 
learning structures with complex interdependencies between 
them [3]. 

In software development, a lot of processes are inherently 
associated with data that can be naturally modeled using graphs. 
These include control flow diagrams, dependency diagrams, 
and an abstract syntax tree where software programs’ structure 
and relationships are analyzed [4]. These representations are 
rather complex, and the traditional paradigm of machine 
learning often fails to identify all the necessary features and 
relationships within the graphs, which leads to poor results in 
fault localization, code analysis, and software quality 
evaluation [5]. However, the appearance of GNNs provides a 
more suitable opportunity to explore the areas of modern 

software development, as they can make use of the structural 
information encoded in these diagrams [6]. 

B. Motivation 

Fault location, a key component of software debugging and 
maintenance, is one area where GNNs have shown considerable 
promise [7]. Through program graphs, where programs are 
modeled, GNNs can identify patterns related to faulty code 
snippets, guiding developers to locate the precise location of the 
bug more effectively [8]. Similarly, GNNs can be used in code 
analysis for functions including code synthesis, clone detection, 
and refactoring by understanding the structural similarities and 
differences between code segments. These capabilities can 
significantly reduce the time and effort required to maintain and 
improve software systems [9]. 

In addition to fault location and code analysis, software 
quality assurance also utilizes GNNs to prioritize test cases by 
identifying the potential effects of each test case on the 
software, to predict error-prone regions based on historical data, 
and to enhance the overall reliability of software systems [10]. 
Developing applications with the help of GNNs is not without 
challenges, although. Scalability, interpretability, data 
availability, and integration with existing tools are some of the 
areas that need to be addressed to leverage the benefits of GNNs 
in this field fully. 

C. Problem Statement 

Despite recent growth in the adoption of GNNs in software 
development, there remains a lack of complete knowledge 
about their proper usage within various software development 
processes, such as fault localization, code analysis, and quality 
assurance. Some of the unanswered questions include the 
scalability issues of GNNs, the interpretability of the results, 
and the integration of GNNs with traditional software tools. 

D. Research Objectives 

The paper provides an exhaustive survey of recent 
advancements, outlines the various applications of GNNs in 
software development, and presents challenges and directions 
for this emerging field. Applications of GNNs to fault 
localization, code analysis, and quality assurance will be 
discussed, and the methods and results will be assessed. We will 
also analyze the practical issues faced by researchers, including 
those related to scalability, the need for easy-to-understand 
models, and the integration of GNNs with current software 
development tools and processes. This survey aims to identify 
the revolutionary promise of GNNs in software development 
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and to encourage more research and development in this field. 
The research attempts to answer the following research 
questions. 

 What are the current applications of GNNs to essential 

software engineering activities like fault detection and 

code analysis? 

 What are the comparative advantages of GNN-based 

approaches over traditional static and dynamic 

analyses? 

 What are the limitations and challenges of deploying 

GNNs at scale in real-world software development 

processes? 

 What are hybrid approaches that integrate classic 

methods with GNNs? 

The paper is organized as follows. In Section II, a general 
overview of GNNs and their fundamental concepts and 
essential techniques is presented. In Section III, the targeted 
applications of GNNs in software development are presented, 
and their influence on fault localization, code analysis, and 

quality assurance is highlighted. In Section IV, directions and 
potential advancements are explored, and contemporary 
challenges to applying GNNs to software development are 
discussed. The paper concludes with a general discussion of its 
findings and contributions in Section V. 

II. GRAPH NEURAL NETWORKS: AN OVERVIEW 

A. Definition and Background 

GNNs are a class of neural networks designed to perform 
inference on data represented as graphs. A graph G is defined 
as 𝐺 = (𝑉, 𝐸), where V is a set of vertices (or nodes) and E is a 
set of edges connecting the nodes. Each node 𝑣 ∈ 𝑉 and edge 
𝑒 ∈ 𝐸  can have associated features, which are essential for 
capturing the properties and relationships within the data. 

GNNs are inspired by Convolutional Neural Networks 
(CNNs). Before delving into GNNs, it is essential to understand 
why CNNs and Recurrent Neural Networks (RNNs) cannot 
handle graph data effectively. As depicted in Fig. 1, CNNs 
operate on data with a grid structure, such as images. As an 
alternative, RNNs are adapted to sequences, like text. 

 
Fig. 1. CNN vs. GNN. 

Text data is usually stored within arrays. Similarly, matrices 
are optimal to store image data. But, as also depicted in Fig. 1, 
arrays and matrices are incapable of handling graph data. 
Graphs employ a special process called graph convolution. This 
technique enables deep neural networks to process graph-
structured data and yield a GNN directly. It can be seen that 
masking techniques and filtering operations are employed to 
convert images to vectors. However, classical masking 
techniques are not suitable for graph data input, as depicted in 
the rightmost image. 

In contrast to classical static and dynamic analyses that act 
based on pre-declared rules or symbolic rationale, GNNs use 
data-driven learning to extract patterns from graph-structured 
program representations. This learning feature enables GNNs 
to generalize across codebases, identify patterns that are not 
easily specified by human-created rules, and evolve to respond 
to new domains without requiring human intervention. Some 
static analyses incorporate feedback loops (e.g., via CEGAR) 
but fail to include the ongoing, end-to-end learning process that 
allows GNNs to fine-tune with additional data. 

B. GNN Evolution 

Significant development has occurred in applying neural 
networks to graph-structured data over the years. Early 
approaches, like the use of recursive neural networks, laid the 

foundation by leveraging the same set of parameters repeatedly 
over the graph structure [11]. Nonetheless, this was limited by 
the fact that the approaches were unable to efficiently adopt 
arbitrary graph structures. 

The advent of Graph Convolutional Networks (GCNs) was 
a groundbreaking development. GCNs generalize the concept 
of convolution to graph-structured data, rather than grid-like 
data (like images). By operationalizing convolution over the 
neighborhood of every node, GCNs are especially useful for 
node classification and link prediction tasks [12]. Following the 
success of GCNs, several different classes of GNNs have 
emerged: 

 Graph Attention Networks (GATs): These networks 
utilize an attention mechanism that weighs the 
importance of various node features [13]. This will 
enable the model to emphasize the most significant 
components of the graph and improve performance in 
cases where some nodes have greater influence. 

 Graph Recurrent Networks (GRNs): Utilize recurrent 
network architectures to process graph data. Such 
networks are ideally suited to sequential graph data, 
where the ordering of the node or edge is considered 
significant [14]. 
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 Graph Autoencoders (GAEs): Used in unsupervised 
learning from graph data. GAEs encode graph data into 
a latent space and reconstruct the graph, finding 
applications in graph generation and detecting anomalies 
[15]. 

C. GNN Training 

Training a GNN involves learning parameters to identify 
patterns and relationships within the graph data. Training can 
be supervised, unsupervised, or semi-supervised based on the 
availability of labeled data. 

 Supervised learning: Trains the GNN based on labeled 
graph data, and the labels are associated with the node, 
edge, or graph level [16]. The model is trained to make 
predictions of labels based on input features and graph 
topology. 

 Unsupervised learning: The GNN is trained to embed the 
graph data without labels. Techniques such as graph 
autoencoders and contrastive learning are typically 

employed to obtain informative representations of the 
graph [17]. 

 Semi-supervised learning: It combines labeled and 
unlabeled data to improve the learning process [18]. In 
cases where labeled data is limited, and many real-world 
applications face this issue, this is especially helpful. 

III. GNN APPLICATIONS IN SOFTWARE ENGINEERING 

GNNs have become a universal tool in software 
development, leveraging the inherent graph-like characteristics 
of a wide variety of software artifacts. As shown in Table I, 
various GNN architectures possess distinct strengths and 
applications, making them suitable for a wide range of software 
development activities. Varying from code analysis and fault 
location to software quality assurance, numerous paths can be 
modeled, analyzed, and optimized using GNNs to enhance 
software systems. This section focuses on the application of 
GNNs in software development, with a particular emphasis on 
the various architectures employed to address complex issues 
and enhance the effectiveness and efficiency of software 
development. 

TABLE I.  SUMMARY OF GNN ARCHITECTURES 

GNN architecture Key features Strengths 
Typical applications in software 

engineering 

GCN 
Applies convolution operations to graph data and 

aggregates information from neighboring nodes. 

Efficient in collecting local 

neighborhood information. 

Node classification, fault localization, 

code analysis. 

GAT 
Utilizes attention mechanisms to weigh the 

importance of neighboring nodes' features. 

Allows the model to focus on the most 

relevant parts of the graph. 

Code summarization, bug prediction, 

and test case prioritization. 

GRN 
Incorporates recurrent neural network architectures 
for processing graph data over time. 

Effective for sequential graph data, 
capturing temporal dependencies. 

Analyzing execution traces, dynamic 
analysis. 

GAE 
Encodes graph structures into a latent space and 

reconstructs the graph for unsupervised learning. 

Useful for graph generation and 

anomaly detection. 

Detecting code clones unsupervised 

code analysis. 

Message Passing 

Neural Network 

(MPNN) 

Generalizes GNNs with a message passing 

framework where nodes iteratively exchange 

messages. 

Flexible in handling different types of 

graph structures and tasks. 

Program dependency analysis bug 

prediction. 

Spatial-Temporal 

GNN (ST-GNN) 

Models both spatial and temporal aspects of graph 

data, handling dynamic changes in the graph. 

Captures both structural and temporal 

evolution of graphs. 

Real-time monitoring of software 

systems and dynamic code analysis. 
 

A. Fault Localization 

Fault location is a critical part of software maintenance and 
debugging, aiming to identify the precise fault locations within 
a software program [19]. Fault location strategies are typically 
based on static or dynamic analysis techniques, which can be 
time-consuming and may not always yield accurate results. The 
capability of modeling and learning with graph-structured data 
offers a promising solution for enhancing fault location by 
leveraging the intrinsic software program structure. As 
demonstrated in geotechnical engineering, domain-specific 
modeling in the field of geotechnical engineering [20] shows 
that adapting models to consider material heterogeneity and 
structural anisotropy enhances prediction capability. Similarly, 
task-specific tuning of the GNN architecture may be necessary 
for code analysis and fault localization. 

Trained static analysis approaches, such as data flow 
analysis, control flow analysis, and abstraction-based analysis, 
have long supported software fault detection and code 
understanding. However, they are typically based on predefined 
rules and cannot handle dynamic software behaviors or loosely 
formatted source code. By contrast, GNN-based analysis learns 

to operate directly from the graph structure of code and 
execution traces. This can guide the model to detect subtle, non-
local relations and semantic structures that are not detectable 
with earlier analyses. Additionally, various program 
representations, such as Abstract Syntax Trees (ASTs), 
Program Dependency Graphs (PDGs), and runtime traces, can 
be combined by GNNs within a single learning framework, 
providing a richer and more dynamic understanding of software 
systems. 

1) Program dependency graphs: PDGs are a popular 

format adopted in fault localization [21]. PDGs encode the 

interdependencies between various components of a program, 

in the form of data dependencies (which variables depend on) 

and control dependencies (which statements cause others to 

execute). In encoding a program in a PDG, GNNs can examine 

the interrelations between various facets of the code. 

The GNNs can be trained with the PDGs to identify patterns 
related to defective code snippets. For example, a GNN can be 
trained to identify nodes within the PDG that are likely to have 
faults by learning from historical fault data. This requires 
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encoding node and edge features within the PDG and applying 
a message-passing function to consolidate information passed 
by the neighboring nodes. The node representations generated 
can be used to make predictions about the presence of a fault at 
each node. 

2) Abstract syntax trees: ASTs embody the program's 

syntax structure. Each node within an AST denotes a construct 

in the source code, e.g., a variable, an operator, or a control-

flow statement [22]. ASTs give a hierarchical representation of 

a program, reflecting the nested relationships between program 

components. 

ASTs are amenable to GNN applications that aid in fault 
localization by leveraging code semantics and structure. By 
applying GNNs to processed ASTs, faults can be identified 
based on syntactic patterns, effectively learning to recognize 
error-prone code patterns or patterns or combinations of 
patterns. This can be especially useful for identifying faults that 
result from intricate relationships between various code 
components. 

GNNs capture and leverage the hierarchies and control 
flows embedded in code, such as nested loops, conditional 
statements, and recursion. Such patterns of code are common to 
frequent bugs, including infinite loops, misbounds in loops (i.e., 
off-by-one errors), faulty exception handling, and misuse of 
break and continue statements. Through examination of ASTs 
and control flow graphs, GNNs can identify recurring structural 
patterns that relate to such bugs. For instance, GNNs can 
identify anomalies in nesting within loops that suggest missing 
base cases or faulty exit conditions within recursive routines, 
enabling early detection of runtime faults and logical errors. 

3) Dynamic analysis with execution traces: Most software 

defects have their roots in faulty state initialization or incorrect 

state transitions, and not all of them are explicitly programmed 

in the static code structure [23]. To overcome this, execution 

traces, runtime event representations in graph format, can be 

fed to GNNs to capture variable updates, function call 

sequences, and conditional jumps. Traces embed time-

dependent relationships and implicit transitions between states, 

enabling GNNs to capture patterns related to erroneous 

program execution. In cases where more implicit information is 

lacking, hybrid GNNs can take both static data (e.g., ASTs or 

PDGs) and dynamic data (e.g., memory dumps, execution 

traces) to create a more holistic fault detection system. 

4) Empirical studies and results: Numerous empirical 

studies have demonstrated the effectiveness of GNNs in fault 

localization. The investigations typically involve training the 

GNNs with known faulty programs and subsequently with 

unknown programs. Precision, F1-score, and recall are metrics 

used to measure a model's capability to identify faulty portions 

of code correctly. 

For instance, one experiment may involve training a GNN 
using a database of Java programs based on their PDGs and 
ASTs to make predictions about fault locations. The outcome 
can demonstrate that a GNN outperforms conventional fault 
localization methods, such as SBFL, by yielding more accurate 
and precise fault predictions. Such experiments highlight the 
tremendous potential of GNNs to enhance the efficiency and 
efficacy of fault localization processes within software 
development. 

Fig. 2 illustrates a novel fault-localization technique that 
utilizes a graph-based representation of faulty feeders. Fault 
detection accuracy is improved by integrating data from 
different data sources, like geographic information system 
(GIS) databases and supervisory control and data acquisition 
(SCADA) systems. GIS databases provide important 
information about network topology, protection device 
locations, and electrical characteristics. SCADA systems 
provide real-time operational data such as protection device 
activations, fault currents and voltage measurements. To further 
increase the intelligence of the system, data from customer 
information systems (CIS) and station oscillographs can be 
integrated. 

 
Fig. 2. A novel fault localization technique using graph-based representation. 
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Fig. 3. Neural network model processing graph. 

The graph-based representation is then fed to a neural 
network model, as shown in Fig. 3. The input to this model is 
the adjacency matrix A and the attribute matrix X of the graph. 
The first stage employs a linear combination with a rectified 
linear unit (ReLU) activation function, which projects the input 
features into a new space of representations. The size of the 
hidden states and the number of input attributes are 
hyperparameters that influence the model's capacity and 
generalization capability. 

�̂� = 𝑅𝑒𝐿𝑈(𝑊𝑖𝑛𝑋 + 𝑏𝑖𝑛) (1) 

In the subsequent layers, a GNN is employed to extract the 
dense relationships between the nodes in the graph. A GNN 
propagates information over the graph sequentially, allowing 
the model to capture relationships between non-immediately 
adjacent nodes. The number of propagation steps is a 
hyperparameter that controls how much the model supports 
long-term dependencies. But more steps of propagation 
correspond to increased computational cost and memory 
demand. 

The network computes a score for every node via a linear 
combination and passes this to a softmax function, where the 
scores are normalized to a probability distribution. This is to 
calculate the probability that a node is the location of the fault. 

B. Code Analysis 

Code analysis involves a set of activities to comprehend and 
enhance the quality of software [24]. Some of the activities 
involved include code summarization, clone detection, and 
refactoring, among others. Given that GNNs can capture the 
structural and relational aspects of code, they provide 
substantial benefits in accomplishing the above activities by 
generating more precise and informative findings compared to 
the conventional methods. 

1) Code summarization: Code summarization necessitates 

the creation of compact, natural language descriptions of code 

functionality [25]. This is a fundamental requirement of 

documentation and codebase browsing over large and intricate 

codebases. GNNs can leverage the structural information 

contained in ASTs and other code graphs to enhance code 

summarization. 

By representing code in a graph format, GNNs can capture 
the structural and relational information that is crucial to the 
functionality of code snippets. As a case in point, a GNN can 
be trained to embed the AST of a code snippet and create a 
summary by translating the learned representation back into 
natural language. This enables the model to comprehend the 
relationships and contexts within the code, providing more 
accurate and relevant summaries. 

2) Clone detection: Code clone detection aims to identify 

similar or duplicated code sequences within a codebase. Clones 

are a source of maintenance issues and potential errors and are 

therefore especially essential to detect for software quality [26]. 

Clone detection can be greatly aided by the use of GNNs that 

focus on structural similarities in the graph representations of 

code. 

Clone detection can be performed by representing code 
snippets as graphs (e.g., PDGs, ASTs) and applying GNNs to 
extract their structural representations. A comparison of the 
structural representations will enable the identification of 
similar code fragments, despite their syntactic differences. This 
feature is especially helpful in Type-3 clone detection, where 
the code snippets are syntactically different but semantically the 
same. 

3) Code refactoring: Code refactoring rearranges 

previously written code without altering its external 

functionality, making the code more readable, maintainable, 

and efficient [27]. Identifying refactoring areas and 

recommending suitable transformations are the two 

fundamental challenges of refactoring. GNNs can help 

refactoring by inspecting the code structure and extracting 

patterns that suggest that refactoring is warranted. 

The GNNs are trained over refactoring histories and can 
detect code smells and anti-patterns that are usually amenable 
to refactoring. By encoding code graphs and applying a GNN 
to operate over them, the models can suggest refactoring 
opportunities based on the detected patterns. A GNN, for 
instance, will detect duplicated code, long sequences of 
methods, or highly coupled classes that are amenable to 
refactoring. The employment of GNNs in code refactoring has 
made refactoring proposals more accurate and beneficial. 
Developers employ such models to automate refactoring 
suggestions and provide optimal recommendations. 

4) Empirical studies and results: Empirical studies on 

applying GNNs to code analysis issues have demonstrated their 

effectiveness and superiority over traditional alternatives. For 

example, studies on code summarization using GNN-based 

methods have demonstrated improved performance in 

generating accurate and concise descriptions of code. Likewise, 

studies on clone detection have demonstrated that clones can be 
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effectively identified by GNNs, yielding increased precision 

and recall compared to traditional methods. 

Empirical studies of code refactoring have demonstrated the 
capability of GNNs to identify sophisticated code smells and 
provide useful refactoring suggestions. The studies are carried 
out with benchmark data sets and actual codebases and yield 
evidence of the utility of GNNs in code analysis. 

Fig. 4 shows a hybrid GNN framework for code analysis. 
This framework integrates both static and dynamic graph 
representations to improve code summary learning. It consists 
of four main components: (1) Retrieval-Augmented Static 

Graph Construction, which augments the original code graph 
with retrieved code summary pairs to improve feature learning; 
(2) Attention-based dynamic graph construction, where a global 
attention mechanism enables message propagation between 
arbitrary pairs of nodes, enabling more flexible relationships; 
(3) Hybrid GNN (HGNN), which combines information from 
static and dynamic graphs through hybrid messaging to enrich 
node representations; and (4) Decoder, which uses an attention-
based LSTM model to generate a code summary from the 
learned representations. This framework effectively leverages 
both structural and dynamic aspects of code to improve the 
quality of code analysis and summarization tasks. 

 

Fig. 4. Hybrid GNN framework for code analysis. 

C. Software Quality Assurance 

Software Quality Assurance (SQA) is an essential software 
engineering process that ensures software artifacts meet the 
quality standards expected of them [28]. This includes activities 
that are related to testing, verification, validation, and bug 
prediction. GNNs have demonstrated tremendous potential to 
improve many aspects of SQA by extracting structural 
information embedded in software artefacts to make more 
accurate predictions and provide better insights. 

1) Test case prioritization: Test case prioritization involves 

sequencing test cases in a way that prioritized test cases are run 

first [29]. This becomes more significant with regression 

testing, where a full test suite must be rerun, and for that, there 

are time and cost factors. Sorting test cases can be facilitated 

with the help of GNNs by identifying the relationships and 

dependencies within the software. 

By representing the software and test cases as a graph, 
where code components serve as nodes and dependencies or 
interactions are represented as edges, the areas of the software 
most likely to be affected by recent updates can be identified 
using GNNs. This helps the model concentrate only on test 
cases that correspond to the key areas. Experimental studies 
have demonstrated that test case prioritization with the aid of 
GNNs can facilitate fault detection much earlier, thereby 
enhancing the efficiency and effectiveness of the test process. 

2) Bug prediction: Bug prediction entails predicting where 

and when defects are likely to occur in various areas of the 

software. Proper bug prediction can be useful in better 

allocating resources and targeting quality assurance activities to 

the areas of the code that are at the highest risk of defects [30]. 

Bug prediction can be significantly improved by utilizing 

GNNs that analyze the structural characteristics of software and 

learn from bug data over time. 

Software can be modeled using different types of graphs, 
such as dependency graphs or co-change graphs, where nodes 
and dependencies, or co-change relations, represent software 
components, and edges represent these relationships. GNNs can 
process such graphs to identify patterns that predict bug-prone 
locations. For instance, a GNN can be trained using past data to 
make predictions about the likelihood of defects in various 
components based on their structural characteristics and change 
history. Experiments have established that bug prediction 
models based upon GNNs are more precise and detailed 
compared to conventional statistical and machine-learning-
based models. 

3) Code review assistance: Code reviews are an essential 

aspect of the software development life cycle, ensuring 

improvement in code quality through peer review. GNNs can 

be leveraged to assist with code reviews by suggesting and 

detecting potential issues, as well as recommending 

enhancements [31]. Based on analyzing the code structure and 
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the relationships between various code components, GNNs can 

identify problematic areas. 

For example, code smells, security issues, or compliance 
with the coding standard can be detected by GNNs. By treating 
the code and its dependencies as a graph data type and learning 
patterns typical of high-quality code, GNNs can provide 
developers with real-time feedback during code reviews. This 
not only accelerates the review process but also helps ensure a 
superior level of code quality. 

4) Empirical studies and results: Empirical research on 

applying the use of GNNs in software quality assurance has 

produced promising evidence. In test case prioritization, 

research has shown that GNNs are capable of achieving better 

fault detection at earlier stages of the test process than other 

prioritization techniques. In bug prediction, research has shown 

that predictions made by GNNs are more accurate, enabling 

teams to address issues proactively. 

While helping with code review, we have observed that 
systems utilizing GNNs enhance review efficiency and 
effectiveness by identifying a higher percentage of issues 
without manual examination. Such research involves real-
world data sets and compares them with standard practices to 
validate the benefits gained from applying GNNs. 

IV. FUTURE DIRECTIONS 

The application of GNNs in software engineering is still in 
its early stages, with numerous areas to explore and develop in 
the future. With the improvement and development of GNNs, 
their capability to revolutionize various facets of software 
engineering, including fault localization, code analysis, and 
software quality assurance, becomes increasingly evident. 
Table II outlines some of the key areas to explore and refine in 
the future, providing a systematic overview of the essential 
directions that will drive the continued improvement and 
deployment of GNNs within this discipline. 

TABLE II.  KEY AREAS FOR FUTURE RESEARCH AND DEVELOPMENT IN GNNS FOR SOFTWARE ENGINEERING 

Future direction Description Expected outcomes 

Advanced GNN 

architectures 

Development of more specialized and scalable GNN architectures 

to handle large-scale, complex software systems. 

Improved efficiency and effectiveness in handling vast data 

and intricate relationships. 

Explainable AI for GNNs 
Creation of methods to enhance the interpretability and 
transparency of GNN models. 

Increased trust and adoption of GNNs through clearer, more 
understandable predictions. 

Real-world applications 
Conducting empirical studies and applying GNNs in real-world 

software projects. 

Validation of GNN effectiveness, identification of strengths 

and weaknesses, and wider industry adoption. 

Integration with 
development tools 

Seamless integration of GNNs into IDEs and CI/CD pipelines. 
Enhanced real-time analysis, automated testing, and proactive 
bug detection. 

Large-scale and high-

quality datasets 

Creation of comprehensive and publicly available datasets for 

GNN training and evaluation. 

Improved performance of GNN models through access to 

diverse, well-annotated datasets. 

Cross-disciplinary 
research 

Encouraging collaboration across computer science, network 
science, cognitive science, and other disciplines. 

Innovative solutions, improved scalability, and 
interpretability of GNNs in software engineering. 

 

A. Advanced GNN Architectures 

To fully realize the potential of GNNs in software 
development, more advanced and specialized architectures of 
GNNs need to be designed. Currently, architectures such as 
GCNs and GATs show promise but also face limitations when 
dealing with large and complex software systems. In their next 
steps, researchers should strive to develop scalable 
architectures of GNNs that can meaningfully interact with the 
vast amounts of data and intricate relationships found in large 
software projects. 

Moreover, hybrid approaches that integrate GNNs with 
additional machine learning methods or domain-specific 
knowledge could further enhance their effectiveness. For 
example, integrating NLP methods with GNNs could enhance 
code documentation and abstraction. Additionally, integrating 
standard static and dynamic analysis tools with GNNs could 
result in more accurate fault localization and bug prediction. 

B. Explainable AI for GNNs 

One of the biggest hindrances to the large-scale adoption of 
GNNs in software development is the interpretability of their 
outputs. Developers and stakeholders should be able to know 
the rationale behind the predictions and suggestions made by 
the GNN models. As a result, there is a vital need to develop 
explainable AI methods for GNNs. 

Research in this area should aim to develop methods that 
yield transparent and comprehensible explanations of the 
predictions made by a GNN. Mechanisms such as attention, 
feature importance analysis, and visualization tools can be 
designed to ensure that GNNs are more transparent and their 
output is more interpretable. As the explainability of GNN 
models improves, developers are more likely to have 
confidence in and efficiently utilize them in their development 
process. 

C. Real-world Applications 

To demonstrate the utility of GNNs in software 
development, it is necessary to conduct extensive empirical 
research and evaluate GNN models against real-world software 
projects. Such research should be conducted using different 
datasets and programming languages, as well as various 
development platforms and software fields. By comparing 
GNN models with conventional methods and measuring their 
efficiency in actual cases, the strengths and limitations can be 
identified, allowing for targeted areas for improvement. 

Collaborating with industrial partners to implement GNNs 
in real-world applications can yield valuable insights and 
feedback. Industry case studies that demonstrate successful 
GNN implementation also have the potential to present 
practical applications and promote broader adoption. 
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D. Integration with Development Tools 

For GNNs to be successfully employed in software 
development, they must be integrated seamlessly into existing 
development tools and processes. This includes developing 
usable interfaces, plugins, and APIs that enable developers to 
integrate GNN-based recommendations and analysis into their 
everyday workflows. 

Future efforts should be directed toward building Integrated 
Development Environments (IDEs) and Continuous 
Integration/Continuous Deployment (CI/CD) pipelines that 
leverage the power of GNNs. This integration would enable 
real-time analysis, automated testing, and early bug detection, 
resulting in a more efficient and higher-quality software 
development process. 

Outside of single-use cases, GNNs have the potential to 
extend to pre-existing analyses by delivering rich semantic 
outputs, such as code representations from summarization or 
similarity measures in clone detection. Those representations 
can be incorporated into symbolic or data-flow analysis to 
enhance inference procedures. Semantic embedding, for 
instance, can be used as a feature input in path prioritization 
during symbolic execution. Code clone clusters can be utilized 
to facilitate property propagation in verification. This inter-
model synergy presents a hybridized strategy that blends the 
accuracy of conventional tools with the adaptability and 
abstraction power of deep learning algorithms. 

E. Large-Scale and High-Quality Datasets 

The effectiveness of GNN models is highly dependent upon 
having large, high-quality datasets to train and test them. 
Software engineering makes the development of such datasets 
problematic due to the heterogeneity of software projects and 
the necessity of accurate annotations. Future research should be 
directed toward developing well-rounded and public datasets 
that span a large gamut of software engineering activities.  

Joint initiatives between academia, industry, and open-
source projects can curate and pool valuable datasets. Such 
datasets should comprise different representations of graphs, 
such as program dependency graphs, execution traces, abstract 
syntax trees, and labeled data to perform activities like bug 
prediction, code summarization, and fault localization. 

F. Cross-Disciplinary Research 

Software engineering is a multidisciplinary field that 
combines components of computer science, mathematics, and 
engineering. Increased cross-disciplinary research will be 
encouraged in the future to harness the power of GNNs in 
software engineering. Concepts and methods borrowed from 
network science, data mining, and cognitive science can offer 
new insights and approaches to enhance GNN applications. 

Joint research endeavors have the potential to provide 
innovative solutions to intricate problems in software 
development. For example, concepts borrowed from cognitive 
science enhance the usability and interpretation of GNN 
models, while innovations in network science facilitate the 
design of more scalable and efficient GNN architectures. 

V. CONCLUSION 

This research highlighted the significant potential of GNNs 
for revolutionizing software engineering, particularly fault 
localization, code analysis, and software quality assurance. 
With the capability to tap into the graph-structured information 
of software data, GNNs provide better insights and more 
precise predictions than classical alternatives. Our survey 
identified the current applications of GNNs to software issues 
in areas of interest, outlined key research and development 
directions, and suggested areas to address these challenges. 
Some of these include improving GNN architectures, 
enhancing model transparency, and integrating GNNs into 
development tools. By overcoming such challenges and 
increasing interdisciplinary research and development, the 
research highlights the potential of GNNs to enhance software 
development efficiency, accuracy, and reliability significantly. 
As technology improves in GNNs, the application of this 
technology to software engineering has the potential to yield 
better-quality software products, marking a groundbreaking 
improvement in the field. 
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