
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

609 | P a g e

www.ijacsa.thesai.org

From Code Analysis to Fault Localization: A Survey

of Graph Neural Network Applications in Software

Engineering

Maojie PAN*, Shengxu LIN, Zhenghong XIAO

School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, China

Abstract—Graph Neural Networks (GNNs) represent a class of

deep machine learning algorithms for analyzing or processing

data in graph structure. Most software development activities,

such as fault localization, code analysis, and measures of software

quality, are inherently graph-like. This survey assesses GNN

applications in different subfields of software engineering with

special attention to defect identification and other quality

assurance processes. A summary of the current state-of-the-art is

presented, highlighting important advances in GNN

methodologies and their application in software engineering.

Further, the factors that limit the current solutions in terms of

their use for a wider range of tasks are also considered, including

scalability, interpretability, and compatibility with other tools.

Some suggestions for future work are presented, including the

enhancement of new architectures of GNNs, the enhancement of

the interpretability of GNNs, and the design of a large-scale

dataset of GNNs. The survey will, therefore, provide detailed

insight into how the application of GNNs offers the possibility of

enhancing software development processes and the quality of the

final product.

Keywords—Graph neural networks; fault localization; code

analysis; software quality

I. INTRODUCTION

A. Context

Graph Neural Networks (GNNs) form branches of neural
networks that generate inferences from data in a graph form.
These graphs comprise nodes and edges and facilitate
comprehension of intricate data dependencies and connections
[1]. GNNs have recently proven to be effective in several real-
world applications, including social networks, chemistry, and
natural language processing [2]. Because of these
characteristics, deep graphs can be applied to modeling and
learning structures with complex interdependencies between
them [3].

In software development, a lot of processes are inherently
associated with data that can be naturally modeled using graphs.
These include control flow diagrams, dependency diagrams,
and an abstract syntax tree where software programs’ structure
and relationships are analyzed [4]. These representations are
rather complex, and the traditional paradigm of machine
learning often fails to identify all the necessary features and
relationships within the graphs, which leads to poor results in
fault localization, code analysis, and software quality
evaluation [5]. However, the appearance of GNNs provides a
more suitable opportunity to explore the areas of modern

software development, as they can make use of the structural
information encoded in these diagrams [6].

B. Motivation

Fault location, a key component of software debugging and
maintenance, is one area where GNNs have shown considerable
promise [7]. Through program graphs, where programs are
modeled, GNNs can identify patterns related to faulty code
snippets, guiding developers to locate the precise location of the
bug more effectively [8]. Similarly, GNNs can be used in code
analysis for functions including code synthesis, clone detection,
and refactoring by understanding the structural similarities and
differences between code segments. These capabilities can
significantly reduce the time and effort required to maintain and
improve software systems [9].

In addition to fault location and code analysis, software
quality assurance also utilizes GNNs to prioritize test cases by
identifying the potential effects of each test case on the
software, to predict error-prone regions based on historical data,
and to enhance the overall reliability of software systems [10].
Developing applications with the help of GNNs is not without
challenges, although. Scalability, interpretability, data
availability, and integration with existing tools are some of the
areas that need to be addressed to leverage the benefits of GNNs
in this field fully.

C. Problem Statement

Despite recent growth in the adoption of GNNs in software
development, there remains a lack of complete knowledge
about their proper usage within various software development
processes, such as fault localization, code analysis, and quality
assurance. Some of the unanswered questions include the
scalability issues of GNNs, the interpretability of the results,
and the integration of GNNs with traditional software tools.

D. Research Objectives

The paper provides an exhaustive survey of recent
advancements, outlines the various applications of GNNs in
software development, and presents challenges and directions
for this emerging field. Applications of GNNs to fault
localization, code analysis, and quality assurance will be
discussed, and the methods and results will be assessed. We will
also analyze the practical issues faced by researchers, including
those related to scalability, the need for easy-to-understand
models, and the integration of GNNs with current software
development tools and processes. This survey aims to identify
the revolutionary promise of GNNs in software development

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

610 | P a g e

www.ijacsa.thesai.org

and to encourage more research and development in this field.
The research attempts to answer the following research
questions.

 What are the current applications of GNNs to essential

software engineering activities like fault detection and

code analysis?

 What are the comparative advantages of GNN-based

approaches over traditional static and dynamic

analyses?

 What are the limitations and challenges of deploying

GNNs at scale in real-world software development

processes?

 What are hybrid approaches that integrate classic

methods with GNNs?

The paper is organized as follows. In Section II, a general
overview of GNNs and their fundamental concepts and
essential techniques is presented. In Section III, the targeted
applications of GNNs in software development are presented,
and their influence on fault localization, code analysis, and

quality assurance is highlighted. In Section IV, directions and
potential advancements are explored, and contemporary
challenges to applying GNNs to software development are
discussed. The paper concludes with a general discussion of its
findings and contributions in Section V.

II. GRAPH NEURAL NETWORKS: AN OVERVIEW

A. Definition and Background

GNNs are a class of neural networks designed to perform
inference on data represented as graphs. A graph G is defined
as 𝐺 = (𝑉, 𝐸), where V is a set of vertices (or nodes) and E is a
set of edges connecting the nodes. Each node 𝑣 ∈ 𝑉 and edge
𝑒 ∈ 𝐸 can have associated features, which are essential for
capturing the properties and relationships within the data.

GNNs are inspired by Convolutional Neural Networks
(CNNs). Before delving into GNNs, it is essential to understand
why CNNs and Recurrent Neural Networks (RNNs) cannot
handle graph data effectively. As depicted in Fig. 1, CNNs
operate on data with a grid structure, such as images. As an
alternative, RNNs are adapted to sequences, like text.

Fig. 1. CNN vs. GNN.

Text data is usually stored within arrays. Similarly, matrices
are optimal to store image data. But, as also depicted in Fig. 1,
arrays and matrices are incapable of handling graph data.
Graphs employ a special process called graph convolution. This
technique enables deep neural networks to process graph-
structured data and yield a GNN directly. It can be seen that
masking techniques and filtering operations are employed to
convert images to vectors. However, classical masking
techniques are not suitable for graph data input, as depicted in
the rightmost image.

In contrast to classical static and dynamic analyses that act
based on pre-declared rules or symbolic rationale, GNNs use
data-driven learning to extract patterns from graph-structured
program representations. This learning feature enables GNNs
to generalize across codebases, identify patterns that are not
easily specified by human-created rules, and evolve to respond
to new domains without requiring human intervention. Some
static analyses incorporate feedback loops (e.g., via CEGAR)
but fail to include the ongoing, end-to-end learning process that
allows GNNs to fine-tune with additional data.

B. GNN Evolution

Significant development has occurred in applying neural
networks to graph-structured data over the years. Early
approaches, like the use of recursive neural networks, laid the

foundation by leveraging the same set of parameters repeatedly
over the graph structure [11]. Nonetheless, this was limited by
the fact that the approaches were unable to efficiently adopt
arbitrary graph structures.

The advent of Graph Convolutional Networks (GCNs) was
a groundbreaking development. GCNs generalize the concept
of convolution to graph-structured data, rather than grid-like
data (like images). By operationalizing convolution over the
neighborhood of every node, GCNs are especially useful for
node classification and link prediction tasks [12]. Following the
success of GCNs, several different classes of GNNs have
emerged:

 Graph Attention Networks (GATs): These networks
utilize an attention mechanism that weighs the
importance of various node features [13]. This will
enable the model to emphasize the most significant
components of the graph and improve performance in
cases where some nodes have greater influence.

 Graph Recurrent Networks (GRNs): Utilize recurrent
network architectures to process graph data. Such
networks are ideally suited to sequential graph data,
where the ordering of the node or edge is considered
significant [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

611 | P a g e

www.ijacsa.thesai.org

 Graph Autoencoders (GAEs): Used in unsupervised
learning from graph data. GAEs encode graph data into
a latent space and reconstruct the graph, finding
applications in graph generation and detecting anomalies
[15].

C. GNN Training

Training a GNN involves learning parameters to identify
patterns and relationships within the graph data. Training can
be supervised, unsupervised, or semi-supervised based on the
availability of labeled data.

 Supervised learning: Trains the GNN based on labeled
graph data, and the labels are associated with the node,
edge, or graph level [16]. The model is trained to make
predictions of labels based on input features and graph
topology.

 Unsupervised learning: The GNN is trained to embed the
graph data without labels. Techniques such as graph
autoencoders and contrastive learning are typically

employed to obtain informative representations of the
graph [17].

 Semi-supervised learning: It combines labeled and
unlabeled data to improve the learning process [18]. In
cases where labeled data is limited, and many real-world
applications face this issue, this is especially helpful.

III. GNN APPLICATIONS IN SOFTWARE ENGINEERING

GNNs have become a universal tool in software
development, leveraging the inherent graph-like characteristics
of a wide variety of software artifacts. As shown in Table I,
various GNN architectures possess distinct strengths and
applications, making them suitable for a wide range of software
development activities. Varying from code analysis and fault
location to software quality assurance, numerous paths can be
modeled, analyzed, and optimized using GNNs to enhance
software systems. This section focuses on the application of
GNNs in software development, with a particular emphasis on
the various architectures employed to address complex issues
and enhance the effectiveness and efficiency of software
development.

TABLE I. SUMMARY OF GNN ARCHITECTURES

GNN architecture Key features Strengths
Typical applications in software

engineering

GCN
Applies convolution operations to graph data and

aggregates information from neighboring nodes.

Efficient in collecting local

neighborhood information.

Node classification, fault localization,

code analysis.

GAT
Utilizes attention mechanisms to weigh the

importance of neighboring nodes' features.

Allows the model to focus on the most

relevant parts of the graph.

Code summarization, bug prediction,

and test case prioritization.

GRN
Incorporates recurrent neural network architectures
for processing graph data over time.

Effective for sequential graph data,
capturing temporal dependencies.

Analyzing execution traces, dynamic
analysis.

GAE
Encodes graph structures into a latent space and

reconstructs the graph for unsupervised learning.

Useful for graph generation and

anomaly detection.

Detecting code clones unsupervised

code analysis.

Message Passing

Neural Network

(MPNN)

Generalizes GNNs with a message passing

framework where nodes iteratively exchange

messages.

Flexible in handling different types of

graph structures and tasks.

Program dependency analysis bug

prediction.

Spatial-Temporal

GNN (ST-GNN)

Models both spatial and temporal aspects of graph

data, handling dynamic changes in the graph.

Captures both structural and temporal

evolution of graphs.

Real-time monitoring of software

systems and dynamic code analysis.

A. Fault Localization

Fault location is a critical part of software maintenance and
debugging, aiming to identify the precise fault locations within
a software program [19]. Fault location strategies are typically
based on static or dynamic analysis techniques, which can be
time-consuming and may not always yield accurate results. The
capability of modeling and learning with graph-structured data
offers a promising solution for enhancing fault location by
leveraging the intrinsic software program structure. As
demonstrated in geotechnical engineering, domain-specific
modeling in the field of geotechnical engineering [20] shows
that adapting models to consider material heterogeneity and
structural anisotropy enhances prediction capability. Similarly,
task-specific tuning of the GNN architecture may be necessary
for code analysis and fault localization.

Trained static analysis approaches, such as data flow
analysis, control flow analysis, and abstraction-based analysis,
have long supported software fault detection and code
understanding. However, they are typically based on predefined
rules and cannot handle dynamic software behaviors or loosely
formatted source code. By contrast, GNN-based analysis learns

to operate directly from the graph structure of code and
execution traces. This can guide the model to detect subtle, non-
local relations and semantic structures that are not detectable
with earlier analyses. Additionally, various program
representations, such as Abstract Syntax Trees (ASTs),
Program Dependency Graphs (PDGs), and runtime traces, can
be combined by GNNs within a single learning framework,
providing a richer and more dynamic understanding of software
systems.

1) Program dependency graphs: PDGs are a popular

format adopted in fault localization [21]. PDGs encode the

interdependencies between various components of a program,

in the form of data dependencies (which variables depend on)

and control dependencies (which statements cause others to

execute). In encoding a program in a PDG, GNNs can examine

the interrelations between various facets of the code.

The GNNs can be trained with the PDGs to identify patterns
related to defective code snippets. For example, a GNN can be
trained to identify nodes within the PDG that are likely to have
faults by learning from historical fault data. This requires

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

612 | P a g e

www.ijacsa.thesai.org

encoding node and edge features within the PDG and applying
a message-passing function to consolidate information passed
by the neighboring nodes. The node representations generated
can be used to make predictions about the presence of a fault at
each node.

2) Abstract syntax trees: ASTs embody the program's

syntax structure. Each node within an AST denotes a construct

in the source code, e.g., a variable, an operator, or a control-

flow statement [22]. ASTs give a hierarchical representation of

a program, reflecting the nested relationships between program

components.

ASTs are amenable to GNN applications that aid in fault
localization by leveraging code semantics and structure. By
applying GNNs to processed ASTs, faults can be identified
based on syntactic patterns, effectively learning to recognize
error-prone code patterns or patterns or combinations of
patterns. This can be especially useful for identifying faults that
result from intricate relationships between various code
components.

GNNs capture and leverage the hierarchies and control
flows embedded in code, such as nested loops, conditional
statements, and recursion. Such patterns of code are common to
frequent bugs, including infinite loops, misbounds in loops (i.e.,
off-by-one errors), faulty exception handling, and misuse of
break and continue statements. Through examination of ASTs
and control flow graphs, GNNs can identify recurring structural
patterns that relate to such bugs. For instance, GNNs can
identify anomalies in nesting within loops that suggest missing
base cases or faulty exit conditions within recursive routines,
enabling early detection of runtime faults and logical errors.

3) Dynamic analysis with execution traces: Most software

defects have their roots in faulty state initialization or incorrect

state transitions, and not all of them are explicitly programmed

in the static code structure [23]. To overcome this, execution

traces, runtime event representations in graph format, can be

fed to GNNs to capture variable updates, function call

sequences, and conditional jumps. Traces embed time-

dependent relationships and implicit transitions between states,

enabling GNNs to capture patterns related to erroneous

program execution. In cases where more implicit information is

lacking, hybrid GNNs can take both static data (e.g., ASTs or

PDGs) and dynamic data (e.g., memory dumps, execution

traces) to create a more holistic fault detection system.

4) Empirical studies and results: Numerous empirical

studies have demonstrated the effectiveness of GNNs in fault

localization. The investigations typically involve training the

GNNs with known faulty programs and subsequently with

unknown programs. Precision, F1-score, and recall are metrics

used to measure a model's capability to identify faulty portions

of code correctly.

For instance, one experiment may involve training a GNN
using a database of Java programs based on their PDGs and
ASTs to make predictions about fault locations. The outcome
can demonstrate that a GNN outperforms conventional fault
localization methods, such as SBFL, by yielding more accurate
and precise fault predictions. Such experiments highlight the
tremendous potential of GNNs to enhance the efficiency and
efficacy of fault localization processes within software
development.

Fig. 2 illustrates a novel fault-localization technique that
utilizes a graph-based representation of faulty feeders. Fault
detection accuracy is improved by integrating data from
different data sources, like geographic information system
(GIS) databases and supervisory control and data acquisition
(SCADA) systems. GIS databases provide important
information about network topology, protection device
locations, and electrical characteristics. SCADA systems
provide real-time operational data such as protection device
activations, fault currents and voltage measurements. To further
increase the intelligence of the system, data from customer
information systems (CIS) and station oscillographs can be
integrated.

Fig. 2. A novel fault localization technique using graph-based representation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

613 | P a g e

www.ijacsa.thesai.org

Fig. 3. Neural network model processing graph.

The graph-based representation is then fed to a neural
network model, as shown in Fig. 3. The input to this model is
the adjacency matrix A and the attribute matrix X of the graph.
The first stage employs a linear combination with a rectified
linear unit (ReLU) activation function, which projects the input
features into a new space of representations. The size of the
hidden states and the number of input attributes are
hyperparameters that influence the model's capacity and
generalization capability.

�̂� = 𝑅𝑒𝐿𝑈(𝑊𝑖𝑛𝑋 + 𝑏𝑖𝑛) (1)

In the subsequent layers, a GNN is employed to extract the
dense relationships between the nodes in the graph. A GNN
propagates information over the graph sequentially, allowing
the model to capture relationships between non-immediately
adjacent nodes. The number of propagation steps is a
hyperparameter that controls how much the model supports
long-term dependencies. But more steps of propagation
correspond to increased computational cost and memory
demand.

The network computes a score for every node via a linear
combination and passes this to a softmax function, where the
scores are normalized to a probability distribution. This is to
calculate the probability that a node is the location of the fault.

B. Code Analysis

Code analysis involves a set of activities to comprehend and
enhance the quality of software [24]. Some of the activities
involved include code summarization, clone detection, and
refactoring, among others. Given that GNNs can capture the
structural and relational aspects of code, they provide
substantial benefits in accomplishing the above activities by
generating more precise and informative findings compared to
the conventional methods.

1) Code summarization: Code summarization necessitates

the creation of compact, natural language descriptions of code

functionality [25]. This is a fundamental requirement of

documentation and codebase browsing over large and intricate

codebases. GNNs can leverage the structural information

contained in ASTs and other code graphs to enhance code

summarization.

By representing code in a graph format, GNNs can capture
the structural and relational information that is crucial to the
functionality of code snippets. As a case in point, a GNN can
be trained to embed the AST of a code snippet and create a
summary by translating the learned representation back into
natural language. This enables the model to comprehend the
relationships and contexts within the code, providing more
accurate and relevant summaries.

2) Clone detection: Code clone detection aims to identify

similar or duplicated code sequences within a codebase. Clones

are a source of maintenance issues and potential errors and are

therefore especially essential to detect for software quality [26].

Clone detection can be greatly aided by the use of GNNs that

focus on structural similarities in the graph representations of

code.

Clone detection can be performed by representing code
snippets as graphs (e.g., PDGs, ASTs) and applying GNNs to
extract their structural representations. A comparison of the
structural representations will enable the identification of
similar code fragments, despite their syntactic differences. This
feature is especially helpful in Type-3 clone detection, where
the code snippets are syntactically different but semantically the
same.

3) Code refactoring: Code refactoring rearranges

previously written code without altering its external

functionality, making the code more readable, maintainable,

and efficient [27]. Identifying refactoring areas and

recommending suitable transformations are the two

fundamental challenges of refactoring. GNNs can help

refactoring by inspecting the code structure and extracting

patterns that suggest that refactoring is warranted.

The GNNs are trained over refactoring histories and can
detect code smells and anti-patterns that are usually amenable
to refactoring. By encoding code graphs and applying a GNN
to operate over them, the models can suggest refactoring
opportunities based on the detected patterns. A GNN, for
instance, will detect duplicated code, long sequences of
methods, or highly coupled classes that are amenable to
refactoring. The employment of GNNs in code refactoring has
made refactoring proposals more accurate and beneficial.
Developers employ such models to automate refactoring
suggestions and provide optimal recommendations.

4) Empirical studies and results: Empirical studies on

applying GNNs to code analysis issues have demonstrated their

effectiveness and superiority over traditional alternatives. For

example, studies on code summarization using GNN-based

methods have demonstrated improved performance in

generating accurate and concise descriptions of code. Likewise,

studies on clone detection have demonstrated that clones can be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

614 | P a g e

www.ijacsa.thesai.org

effectively identified by GNNs, yielding increased precision

and recall compared to traditional methods.

Empirical studies of code refactoring have demonstrated the
capability of GNNs to identify sophisticated code smells and
provide useful refactoring suggestions. The studies are carried
out with benchmark data sets and actual codebases and yield
evidence of the utility of GNNs in code analysis.

Fig. 4 shows a hybrid GNN framework for code analysis.
This framework integrates both static and dynamic graph
representations to improve code summary learning. It consists
of four main components: (1) Retrieval-Augmented Static

Graph Construction, which augments the original code graph
with retrieved code summary pairs to improve feature learning;
(2) Attention-based dynamic graph construction, where a global
attention mechanism enables message propagation between
arbitrary pairs of nodes, enabling more flexible relationships;
(3) Hybrid GNN (HGNN), which combines information from
static and dynamic graphs through hybrid messaging to enrich
node representations; and (4) Decoder, which uses an attention-
based LSTM model to generate a code summary from the
learned representations. This framework effectively leverages
both structural and dynamic aspects of code to improve the
quality of code analysis and summarization tasks.

Fig. 4. Hybrid GNN framework for code analysis.

C. Software Quality Assurance

Software Quality Assurance (SQA) is an essential software
engineering process that ensures software artifacts meet the
quality standards expected of them [28]. This includes activities
that are related to testing, verification, validation, and bug
prediction. GNNs have demonstrated tremendous potential to
improve many aspects of SQA by extracting structural
information embedded in software artefacts to make more
accurate predictions and provide better insights.

1) Test case prioritization: Test case prioritization involves

sequencing test cases in a way that prioritized test cases are run

first [29]. This becomes more significant with regression

testing, where a full test suite must be rerun, and for that, there

are time and cost factors. Sorting test cases can be facilitated

with the help of GNNs by identifying the relationships and

dependencies within the software.

By representing the software and test cases as a graph,
where code components serve as nodes and dependencies or
interactions are represented as edges, the areas of the software
most likely to be affected by recent updates can be identified
using GNNs. This helps the model concentrate only on test
cases that correspond to the key areas. Experimental studies
have demonstrated that test case prioritization with the aid of
GNNs can facilitate fault detection much earlier, thereby
enhancing the efficiency and effectiveness of the test process.

2) Bug prediction: Bug prediction entails predicting where

and when defects are likely to occur in various areas of the

software. Proper bug prediction can be useful in better

allocating resources and targeting quality assurance activities to

the areas of the code that are at the highest risk of defects [30].

Bug prediction can be significantly improved by utilizing

GNNs that analyze the structural characteristics of software and

learn from bug data over time.

Software can be modeled using different types of graphs,
such as dependency graphs or co-change graphs, where nodes
and dependencies, or co-change relations, represent software
components, and edges represent these relationships. GNNs can
process such graphs to identify patterns that predict bug-prone
locations. For instance, a GNN can be trained using past data to
make predictions about the likelihood of defects in various
components based on their structural characteristics and change
history. Experiments have established that bug prediction
models based upon GNNs are more precise and detailed
compared to conventional statistical and machine-learning-
based models.

3) Code review assistance: Code reviews are an essential

aspect of the software development life cycle, ensuring

improvement in code quality through peer review. GNNs can

be leveraged to assist with code reviews by suggesting and

detecting potential issues, as well as recommending

enhancements [31]. Based on analyzing the code structure and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

615 | P a g e

www.ijacsa.thesai.org

the relationships between various code components, GNNs can

identify problematic areas.

For example, code smells, security issues, or compliance
with the coding standard can be detected by GNNs. By treating
the code and its dependencies as a graph data type and learning
patterns typical of high-quality code, GNNs can provide
developers with real-time feedback during code reviews. This
not only accelerates the review process but also helps ensure a
superior level of code quality.

4) Empirical studies and results: Empirical research on

applying the use of GNNs in software quality assurance has

produced promising evidence. In test case prioritization,

research has shown that GNNs are capable of achieving better

fault detection at earlier stages of the test process than other

prioritization techniques. In bug prediction, research has shown

that predictions made by GNNs are more accurate, enabling

teams to address issues proactively.

While helping with code review, we have observed that
systems utilizing GNNs enhance review efficiency and
effectiveness by identifying a higher percentage of issues
without manual examination. Such research involves real-
world data sets and compares them with standard practices to
validate the benefits gained from applying GNNs.

IV. FUTURE DIRECTIONS

The application of GNNs in software engineering is still in
its early stages, with numerous areas to explore and develop in
the future. With the improvement and development of GNNs,
their capability to revolutionize various facets of software
engineering, including fault localization, code analysis, and
software quality assurance, becomes increasingly evident.
Table II outlines some of the key areas to explore and refine in
the future, providing a systematic overview of the essential
directions that will drive the continued improvement and
deployment of GNNs within this discipline.

TABLE II. KEY AREAS FOR FUTURE RESEARCH AND DEVELOPMENT IN GNNS FOR SOFTWARE ENGINEERING

Future direction Description Expected outcomes

Advanced GNN

architectures

Development of more specialized and scalable GNN architectures

to handle large-scale, complex software systems.

Improved efficiency and effectiveness in handling vast data

and intricate relationships.

Explainable AI for GNNs
Creation of methods to enhance the interpretability and
transparency of GNN models.

Increased trust and adoption of GNNs through clearer, more
understandable predictions.

Real-world applications
Conducting empirical studies and applying GNNs in real-world

software projects.

Validation of GNN effectiveness, identification of strengths

and weaknesses, and wider industry adoption.

Integration with
development tools

Seamless integration of GNNs into IDEs and CI/CD pipelines.
Enhanced real-time analysis, automated testing, and proactive
bug detection.

Large-scale and high-

quality datasets

Creation of comprehensive and publicly available datasets for

GNN training and evaluation.

Improved performance of GNN models through access to

diverse, well-annotated datasets.

Cross-disciplinary
research

Encouraging collaboration across computer science, network
science, cognitive science, and other disciplines.

Innovative solutions, improved scalability, and
interpretability of GNNs in software engineering.

A. Advanced GNN Architectures

To fully realize the potential of GNNs in software
development, more advanced and specialized architectures of
GNNs need to be designed. Currently, architectures such as
GCNs and GATs show promise but also face limitations when
dealing with large and complex software systems. In their next
steps, researchers should strive to develop scalable
architectures of GNNs that can meaningfully interact with the
vast amounts of data and intricate relationships found in large
software projects.

Moreover, hybrid approaches that integrate GNNs with
additional machine learning methods or domain-specific
knowledge could further enhance their effectiveness. For
example, integrating NLP methods with GNNs could enhance
code documentation and abstraction. Additionally, integrating
standard static and dynamic analysis tools with GNNs could
result in more accurate fault localization and bug prediction.

B. Explainable AI for GNNs

One of the biggest hindrances to the large-scale adoption of
GNNs in software development is the interpretability of their
outputs. Developers and stakeholders should be able to know
the rationale behind the predictions and suggestions made by
the GNN models. As a result, there is a vital need to develop
explainable AI methods for GNNs.

Research in this area should aim to develop methods that
yield transparent and comprehensible explanations of the
predictions made by a GNN. Mechanisms such as attention,
feature importance analysis, and visualization tools can be
designed to ensure that GNNs are more transparent and their
output is more interpretable. As the explainability of GNN
models improves, developers are more likely to have
confidence in and efficiently utilize them in their development
process.

C. Real-world Applications

To demonstrate the utility of GNNs in software
development, it is necessary to conduct extensive empirical
research and evaluate GNN models against real-world software
projects. Such research should be conducted using different
datasets and programming languages, as well as various
development platforms and software fields. By comparing
GNN models with conventional methods and measuring their
efficiency in actual cases, the strengths and limitations can be
identified, allowing for targeted areas for improvement.

Collaborating with industrial partners to implement GNNs
in real-world applications can yield valuable insights and
feedback. Industry case studies that demonstrate successful
GNN implementation also have the potential to present
practical applications and promote broader adoption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

616 | P a g e

www.ijacsa.thesai.org

D. Integration with Development Tools

For GNNs to be successfully employed in software
development, they must be integrated seamlessly into existing
development tools and processes. This includes developing
usable interfaces, plugins, and APIs that enable developers to
integrate GNN-based recommendations and analysis into their
everyday workflows.

Future efforts should be directed toward building Integrated
Development Environments (IDEs) and Continuous
Integration/Continuous Deployment (CI/CD) pipelines that
leverage the power of GNNs. This integration would enable
real-time analysis, automated testing, and early bug detection,
resulting in a more efficient and higher-quality software
development process.

Outside of single-use cases, GNNs have the potential to
extend to pre-existing analyses by delivering rich semantic
outputs, such as code representations from summarization or
similarity measures in clone detection. Those representations
can be incorporated into symbolic or data-flow analysis to
enhance inference procedures. Semantic embedding, for
instance, can be used as a feature input in path prioritization
during symbolic execution. Code clone clusters can be utilized
to facilitate property propagation in verification. This inter-
model synergy presents a hybridized strategy that blends the
accuracy of conventional tools with the adaptability and
abstraction power of deep learning algorithms.

E. Large-Scale and High-Quality Datasets

The effectiveness of GNN models is highly dependent upon
having large, high-quality datasets to train and test them.
Software engineering makes the development of such datasets
problematic due to the heterogeneity of software projects and
the necessity of accurate annotations. Future research should be
directed toward developing well-rounded and public datasets
that span a large gamut of software engineering activities.

Joint initiatives between academia, industry, and open-
source projects can curate and pool valuable datasets. Such
datasets should comprise different representations of graphs,
such as program dependency graphs, execution traces, abstract
syntax trees, and labeled data to perform activities like bug
prediction, code summarization, and fault localization.

F. Cross-Disciplinary Research

Software engineering is a multidisciplinary field that
combines components of computer science, mathematics, and
engineering. Increased cross-disciplinary research will be
encouraged in the future to harness the power of GNNs in
software engineering. Concepts and methods borrowed from
network science, data mining, and cognitive science can offer
new insights and approaches to enhance GNN applications.

Joint research endeavors have the potential to provide
innovative solutions to intricate problems in software
development. For example, concepts borrowed from cognitive
science enhance the usability and interpretation of GNN
models, while innovations in network science facilitate the
design of more scalable and efficient GNN architectures.

V. CONCLUSION

This research highlighted the significant potential of GNNs
for revolutionizing software engineering, particularly fault
localization, code analysis, and software quality assurance.
With the capability to tap into the graph-structured information
of software data, GNNs provide better insights and more
precise predictions than classical alternatives. Our survey
identified the current applications of GNNs to software issues
in areas of interest, outlined key research and development
directions, and suggested areas to address these challenges.
Some of these include improving GNN architectures,
enhancing model transparency, and integrating GNNs into
development tools. By overcoming such challenges and
increasing interdisciplinary research and development, the
research highlights the potential of GNNs to enhance software
development efficiency, accuracy, and reliability significantly.
As technology improves in GNNs, the application of this
technology to software engineering has the potential to yield
better-quality software products, marking a groundbreaking
improvement in the field.

FUNDING

This work was supported by 2022 Guangdong Province
undergraduate Teaching Quality and teaching reform
construction project: “Exploration and Practice of Teaching
Reform in the Course of Software Testing Technology Based
on CDIO Engineering Education Model” (No. 991700189).

REFERENCES

[1] Y. Gan and Z. Hu, "Fusion Privacy Protection of Graph Neural Network
Points of Interest Recommendation," International Journal of Advanced
Computer Science and Applications, vol. 14, no. 4, 2023.

[2] G. Corso, H. Stark, S. Jegelka, T. Jaakkola, and R. Barzilay, "Graph
neural networks," Nature Reviews Methods Primers, vol. 4, no. 1, p. 17,
2024.

[3] P. Veličković, "Everything is connected: Graph neural networks," Current
Opinion in Structural Biology, vol. 79, p. 102538, 2023.

[4] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, "Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,"
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 3, pp. 1-33, 2021.

[5] M. B. Bagherabad, E. Rivandi, and M. J. Mehr, "Machine Learning for
Analyzing Effects of Various Factors on Business Economic," Authorea
Preprints, 2025, doi:
https://doi.org/10.36227/techrxiv.174429010.09842200/v1.

[6] S. Liu, "A unified framework to learn program semantics with graph
neural networks," in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 1364-1366.

[7] M. N. Rafi, D. J. Kim, A. R. Chen, T.-H. Chen, and S. Wang, "Towards
Better Graph Neural Network-Based Fault Localization through
Enhanced Code Representation," Proceedings of the ACM on Software
Engineering, vol. 1, no. FSE, pp. 1937-1959, 2024.

[8] A. A. Kulkarni, D. G. Niranjan, N. Saju, P. R. Shenoy, and A. Arya,
"Graph-Based Fault Localization in Python Projects with Class-
Imbalanced Learning," in International Conference on Engineering
Applications of Neural Networks, 2024: Springer, pp. 354-368.

[9] N. Mehrotra, A. Sharma, A. Jindal, and R. Purandare, "Improving cross-
language code clone detection via code representation learning and graph
neural networks," IEEE Transactions on Software Engineering, 2023.

[10] Z. Li et al., "Fault localization based on knowledge graph in software-
defined optical networks," Journal of Lightwave Technology, vol. 39, no.
13, pp. 4236-4246, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

617 | P a g e

www.ijacsa.thesai.org

[11] V. La Gatta, V. Moscato, M. Postiglione, and G. Sperli, "An
epidemiological neural network exploiting dynamic graph structured data
applied to the COVID-19 outbreak," IEEE Transactions on Big Data, vol.
7, no. 1, pp. 45-55, 2020.

[12] H. Ren et al., "Graph convolutional networks in language and vision: A
survey," Knowledge-Based Systems, vol. 251, p. 109250, 2022.

[13] Q. Li, W. Lin, Z. Liu, and A. Prorok, "Message-aware graph attention
networks for large-scale multi-robot path planning," IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5533-5540, 2021.

[14] L. Ruiz, F. Gama, and A. Ribeiro, "Gated graph recurrent neural
networks," IEEE Transactions on Signal Processing, vol. 68, pp. 6303-
6318, 2020.

[15] Z. Hou et al., "Graphmae: Self-supervised masked graph autoencoders,"
in Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 594-604.

[16] T. Chen, X. Zhang, M. You, G. Zheng, and S. Lambotharan, "A GNN-
based supervised learning framework for resource allocation in wireless
IoT networks," IEEE Internet of Things Journal, vol. 9, no. 3, pp. 1712-
1724, 2021.

[17] Y.-M. Shin, C. Tran, W.-Y. Shin, and X. Cao, "Edgeless-GNN:
Unsupervised Representation Learning for Edgeless Nodes," IEEE
Transactions on Emerging Topics in Computing, 2023.

[18] P. Qin, W. Chen, M. Zhang, D. Li, and G. Feng, "CC-GNN: A clustering
contrastive learning network for graph semi-supervised learning," IEEE
Access, 2024.

[19] M. K. Thota, F. H. Shajin, and P. Rajesh, "Survey on software defect
prediction techniques," International Journal of Applied Science and
Engineering, vol. 17, no. 4, pp. 331-344, 2020.

[20] A. Azadi and M. Momayez, "Simulating a Weak Rock Mass by a
Constitutive Model," Mining, vol. 5, no. 2, p. 23, 2025, doi:
https://doi.org/10.3390/mining5020023.

[21] K. Noda, H. Yokoyama, and S. Kikuchi, "Sirius: Static program repair
with dependence graph-based systematic edit patterns," in 2021 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), 2021: IEEE, pp. 437-447.

[22] K. Wang, M. Yan, H. Zhang, and H. Hu, "Unified abstract syntax tree
representation learning for cross-language program classification," in
Proceedings of the 30th IEEE/ACM International Conference on Program
Comprehension, 2022, pp. 390-400.

[23] D. Prestat, N. Moha, R. Villemaire, and F. Avellaneda, "DynAMICS: A
tool-based method for the specification and dynamic detection of Android
behavioural code smells," IEEE Transactions on Software Engineering,
2024.

[24] A. K. Turzo and A. Bosu, "What makes a code review useful to opendev
developers? an empirical investigation," Empirical Software Engineering,
vol. 29, no. 1, p. 6, 2024.

[25] A. Bansal, Z. Eberhart, Z. Karas, Y. Huang, and C. McMillan, "Function
call graph context encoding for neural source code summarization," IEEE
Transactions on Software Engineering, vol. 49, no. 9, pp. 4268-4281,
2023.

[26] M. Zakeri-Nasrabadi, S. Parsa, M. Ramezani, C. Roy, and M.
Ekhtiarzadeh, "A systematic literature review on source code similarity
measurement and clone detection: Techniques, applications, and
challenges," Journal of Systems and Software, p. 111796, 2023.

[27] K. DePalma, I. Miminoshvili, C. Henselder, K. Moss, and E. A. AlOmar,
"Exploring ChatGPT’s code refactoring capabilities: An empirical study,"
Expert Systems with Applications, vol. 249, p. 123602, 2024.

[28] A. Al MohamadSaleh and S. Alzahrani, "Development of a maturity
model for software quality assurance practices," Systems, vol. 11, no. 9,
p. 464, 2023.

[29] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A. Panichella,
"Single and multi-objective test cases prioritization for self-driving cars
in virtual environments," ACM Transactions on Software Engineering
and Methodology, vol. 32, no. 2, pp. 1-30, 2023.

[30] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja, "Ensemble machine
learning paradigms in software defect prediction," Procedia Computer
Science, vol. 218, pp. 199-209, 2023.

[31] O. B. Sghaier and H. Sahraoui, "A multi-step learning approach to assist
code review," in 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2023: IEEE, pp. 450-
460.

