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Abstract—Accurate rainfall estimation is essential for various 

applications, including transportation management, agriculture, 

and climate modeling. Traditional measurement methods, such as 

rain gauges and radar systems, often face challenges due to limited 

spatial resolution and susceptibility to environmental 

interferences. These constraints affect the ability of the model to 

deliver high-resolution, real-time rainfall data, allowing the model 

to be challenging to capture localized variations effectively. 

Therefore, this study aimed to introduce a hybrid deep learning 

architecture that combined a Convolutional Neural Network 

(CNN) with a Convolutional Block Attention Module (CBAM) to 

improve rainfall intensity estimation using images captured by 

surveillance cameras. The proposed model was evaluated using 

standard datasets and previous unseen images collected at 

different times of the day, including morning, noon, afternoon, 

and night, to assess its toughness against temporal variations. The 

experimental results showed that VGG-CBAM architecture 

performed better than ResNet (Residual Network)-CBAM across 

all evaluation metrics, achieving a coefficient of determination (R²) 

of 0.93 compared to 0.89. Furthermore, when tested on unseen 

images captured at different periods, the model showed strong 

generalization capability, with correlation values (R) ranging from 

0.77 to 0.98. These results signified the effectiveness of the 

proposed method in improving the accuracy and adaptability of 

image-based rainfall estimation, offering a scalable and high-

resolution alternative to conventional measurement methods. 
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CBAM 

I. INTRODUCTION 

Rain is a fundamental element of weather observation and 
significantly affects many aspects of human life [1]. Rain impact 
extends across multiple sectors, including transportation [2], 
agriculture [3], public health [4], tourism [5], and finance [6], 
influencing daily activities as well as economic stability. A 
striking example concerning the rain effect was the 2015 floods 
in Jakarta, which submerged 20% of the city, evacuated 1,400 
residents, and caused daily economic losses of approximately 
USD 114 million, according to the National Disaster 
Management Authority (BNPB) [7]. Despite the critical role of 
rainfall data in disaster management and planning, rain 
observation systems remain limited and insufficiently 
distributed [13]. There is a pressing need for cost-effective and 
easy-to-maintain rainfall intensity measurement systems that 
can be widely deployed across different locations. 

Rainfall can be measured using primary or derivative 
methods, where the primary method includes using a rain gauge, 
which is simple to operate and maintain [8]. However, the 
method requires installation in unobstructed locations, which 
can limit its effectiveness in specific environments [9]. The 
derivative method, which includes radar and satellite-based 
measurements, has the advantage of covering large areas. 
However, this method is vulnerable to external interferences, 
such as signal disruptions from nearby fields, reflections from 
objects, and limitations in both temporal and spatial resolution 
[10]. High-resolution rainfall data, spatially and temporally, is 
crucial for hydrological and climate modeling. Accurate data 
improves the precision and reliability of simulations and 
predictions, making it an essential component in environmental 
and meteorological studies [11]. 

The need for high-resolution spatial and temporal rainfall 
data extends outside hydrological applications and plays a 
crucial role in the transportation sector, particularly in Intelligent 
Transport Systems (ITS) and human mobility management. 
Studies have consistently shown that weather conditions, 
specifically rainfall, significantly impact transportation [12], 
[13], often disrupting traffic flow and increasing congestion. 
Traffic congestion in highly urbanized areas such as Jakarta 
leads to considerable economic losses, estimated at $5 billion 
annually [14]. A practical method for mitigating congestion is 
the implementation of ITS, which provides real-time traffic 
updates, allowing drivers to select alternative routes and avoid 
heavily congested areas. However, the effectiveness of ITS 
depends on access to real-time weather data, particularly high-
resolution rainfall intensity measurements, which are essential 
for predicting traffic behavior under varying weather conditions. 
Despite the importance of such data, the sparse distribution of 
rainfall observation instruments has created significant gaps, 
limiting the efficiency of ITS operations. To address the issue, 
crowd-sourced data from surveillance cameras presents a 
promising alternative. This camera, widely installed in urban 
areas, can estimate rainfall intensity, providing the high-
resolution data needed to increase ITS performance and improve 
urban mobility management. 

Recent advancements in deep learning have facilitated using 
a Convolutional Neural Network (CNN) for estimating rainfall 
intensity from surveillance camera images. Unlike traditional 
methods that rely on physical sensors such as rain gauges or 
radar, CNN-based models can automatically learn spatial and 
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temporal rainfall patterns directly from images. Several studies 
have shown the effectiveness of CNN in extracting rainfall-
related features from image data, leading to improved estimation 
accuracy. For instance, Yin et al. [15], introduced an image-
based deep-learning model to estimate urban rainfall intensity 
with high spatial and temporal resolution. The study used a 
modified Residual Network (ResNet)34 architecture, termed 
irCNN, which was trained on a dataset comprising both 
synthetic and real-time images captured from surveillance 
cameras and smartphones. The model achieved Mean Absolute 
Percentage Error (MAPE) between 16.5% and 21.9% in rainfall 
intensity estimation. Despite these promising results, challenges 
remain in ensuring the model's generalizability across different 
locations, camera types, and extreme weather conditions. 
Further validation and model improvements are necessary to 
increase strength and adaptability for real-world applications. 

 A two-stage framework has been developed for rainfall 
estimation, combining raindrop extraction with deep learning-
based intensity estimation. In the first stage, raindrop extraction 
uses low-rank matrix decomposition [16],  and Markov random 
fields [17]. In the second stage, rainfall intensity is estimated 
using a deep learning model, irCNN [18]. The dataset used for 
evaluation is collected from rainfall events in Hangzhou, China, 
and includes daytime and night-time conditions. During the 
process, ground truth data is obtained from a tipping-bucket rain 
gauge for accuracy assessment. The results show that 
preprocessing significantly improves performance in nighttime 
conditions, reducing MAPE to 19.73%. However, preprocessing 
slightly lowered accuracy for daytime images, with MAPE 
increasing from 17.06% (raw image) to 19.58%. The result 
signifies that it may not be necessary for daytime scenarios as 
preprocessing improves model strength in low-light conditions. 

A deep learning-based method has been developed for 
estimating rainfall intensity using video footage from 
surveillance cameras. This method uses a Recurrent Neural 
Network (RNN), specifically Long Short-Term Memory 
(LSTM) and Gated Recurrent Units (GRU) [19]. The results 
shows that GRU, optimized using Adam optimizer, achieved the 
lowest MAPE of 4.49%, while LSTM produced slightly higher 
errors with a MAPE of 5.67%. These signify that GRU is 
computationally efficient and maintains high rainfall estimation 
accuracy. Despite these promising results, the study has some 
distinguished limitations. The model is not tested on unseen 
image data from different cameras or locations, raising concerns 
about its ability to generalize to real-world conditions where 
environmental variables may differ significantly. Further 
validation is necessary to assess the strength and adaptability of 
the model across diverse settings. 

Shalaby et al. [20], introduced a deep learning-based method 
for estimating rainfall intensity using video footage from 
surveillance cameras and smartphones. This method uses CNN 
to analyze rainfall patterns and consists of three primary stages: 
image preprocessing, CNN model training, and transfer 
learning. The model was initially trained on surveillance camera 
images and later fine-tuned with smartphone images to improve 
generalization. Relating to the discussion, the dataset collected 
at Monash University, Malaysia, between May and December 
2022, included 6,121 images from surveillance cameras and 
1,984 images from smartphones. The ground truth rainfall 

intensity measurements were obtained using a tipping-bucket 
rain gauge. The results showed that image preprocessing 
significantly improved model performance, with the best CNN 
model achieving an R² of 0.955 and Mean Absolute Error 
(MAE) of 2.508 mm/h for surveillance camera data. 

Additionally, transfer learning improved prediction accuracy 
for smartphone images, producing R² of 0.840 and MAE of 
4.374 mm/h. Despite the promising outcomes, the study had 
certain limitations. The model's generalization was restricted 
due to training on a single camera setup, and the study did not 
evaluate nighttime images, leaving its performance in low-light 
conditions uncertain. Further analysis is needed to improve 
strength across diverse camera environments and lighting 
conditions. 

A study on rainfall intensity estimation using a surveillance 
camera with CNN has been widely conducted. However, two 
significant aspects require improvement. First, the accuracy of 
existing models remains a challenge. Despite previous studies 
showing that deep learning models successfully estimate 
rainfall, many methods rely on preprocessed inputs, such as rain 
streak removal or background subtraction, before feeding the 
data into CNN. Even though preprocessing improves feature 
extraction, it often introduces fixed assumptions about lighting 
conditions, scene background, and rainfall characteristics. This 
process can reduce adaptability to real-time variations such as 
changing illumination, environmental noise, and dynamic 
backgrounds. Second, many existing models struggle with 
generalization to unseen data. Several studies have reported that 
CNN-based rainfall estimation models perform well on training 
datasets but experience significant performance drops when 
tested on independent images from different locations, weather 
conditions, or camera configurations. This lack of generalization 
is partly due to dataset biases introduced by preprocessing 
methods that filter information essential for recognizing rainfall 
across diverse environments. 

Addressing the complexities of real-world environments is 
crucial for effective image processing. This study introduces a 
groundbreaking method that eliminates the need for 
preprocessing by directly processing raw images. The method 
uses a strong CNN architecture to improve adaptability and 
simplify computational workflows. By performing this process, 
the analysis anticipates significant improvements in model 
accuracy and generalization capabilities, allowing seamless 
performance across diverse surveillance camera settings. 

The primary objective of this study is to estimate rainfall 
intensity images using a Deep Learning model using ResNet 
architecture, leveraging the image captured by a surveillance 
camera. This study is driven by three major factors which 
include: 

1) Toughness to temporal variability without 

preprocessing: Despite applying deep learning models to 

rainfall estimation, the ability to handle temporal variations 

remains underexplored. Environmental changes, such as 

fluctuations in lighting between day and night or seasonal 

variations, can significantly affect model performance. 

However, most existing models rely heavily on preprocessing 

methods to standardize image inputs, which can be 
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computationally expensive and impractical for real-time 

applications. This study aims to develop a ResNet-based model 

that inherently adapts to temporal variations, ensuring 

consistent and reliable rainfall estimation without extensive 

preprocessing. 

2) Higher Temporal and Spatial Resolution Compared to 

Automatic Rain Gauge (ARG): Surveillance cameras offer 

higher temporal and spatial resolution than tipping bucket 

ARG, among the most widely used rainfall measurement 

systems. Relating to the discussion, a single surveillance 

camera can capture multiple images per second from various 

locations across a city, providing continuous and detailed data. 

This capability enables real-time monitoring and a more 

granular measurement of rainfall intensity, which is not 

achievable with the relatively sparse ARG network. 

3) Limited Study on Models Evaluated with Unseen Image 

Data: A significant gap in the existing study is the lack of 

models tested on unseen images that are not part of the training 

process. Many existing models perform well on training and 

validation datasets but struggle to generalize when exposed to 

unseen data from the cameras used to train the model. 

Therefore, this study explicitly addresses the mentioned 

limitation by evaluating the model on entirely new image 

datasets, ensuring the toughness and adaptability of the model 

in real-world deployment. 

The rest of this article is organized as follows: Section II 
presents related work, while Section III describes the methods. 
Section IV details the experimental setup, followed by 
Section V, which discusses the results. Finally, Section VI 
concludes the analysis and recommends directions for future 
study. 

II. RELATED WORKS 

Several studies have explored using surveillance cameras 
and CNN to estimate rainfall intensity. This method included 
analyzing images captured by CCTV cameras every 10 minutes 
at 85 locations during daylight hours (6:00 AM to 7:00 PM 
Singapore time). These images had resolutions of either 640 × 
480 or 320 × 240 pixels [21]. Data from a tipping bucket rain 
gauge was recorded at 5-minute intervals to obtain rainfall 
labels. The Inverse Distance Weighting (IDW) [22] method was 
then applied to associate the rainfall labels with the 
corresponding camera locations. For rain removal, studies tested 
two deep learning models, namely VGG19 [23] and a hybrid 
method combining VGG19 with a Density-aware Image 
De- raining method using a Multi-stream Dense Network (DID-
MDN) [24]. Both models incorporated three hidden layers (512, 
256, 128), used ReLU activation, and were trained with ADAM 
optimizer-based gradient descent, set at a learning rate 0.25 [25]. 
The results showed that the hybrid model outperformed the 
standard VGG19 model. Additionally, high-quality images 
produced more accurate rainfall estimates compared to lower-
resolution images. 

Yin et al. [15], applied the irCNN model to estimate rainfall 
using CCTV images. The existing irCNN architecture was a 
modified version of ResNet [26], based explicitly on ResNet34, 
but with convolutional layers reduced to 29. The study used 

three types of data: synthetic rain image, image captured with a 
mobile phone camera, and image extracted from CCTV footage. 
Rainfall labels were obtained from rain gauge data recorded at 
one-minute intervals. However, since the temporal resolution of 
the gauge data did not match CCTV and mobile phone images, 
linear interpolation was applied to downscale the measurements 
accordingly. Yin initialized the irCNN model with pre-trained 
weights from ImageNet [27] for training. The results showed 
that the proposed model achieved MAPE ranging from 13.5% to 
21.9%, signifying its effectiveness in estimating rainfall from 
image-based data sources. 

During the analysis process, CNN combined with various 
RNN architectures, including SimpleRNN [28], LSTM [29], and 
Gated Recurrent Unit (GRU) [30], was used to estimate rainfall 
intensity from surveillance camera videos [19]. The study's 
CNN backbone is used for feature extraction as EfficientNetB0 
[31]. To process the data, the original video recordings, captured 
at a resolution of 1920 × 1080 pixels, were cropped to 540 × 380 
pixels. CCTV footage was acquired from a single fixed-location 
camera, while rainfall labels were obtained from ARG at one-
minute intervals. The proposed model was evaluated using three 
optimization algorithms: Adam, RMSProp, and Stochastic 
Gradient Descent (SGD). The analysis showed that MAPE 
ranged from 3.55% to 6.95%, signifying the model's 
effectiveness in estimating rainfall from video-based data. 

Zheng et al. [18], introduced a two-stage deep-learning 
framework designed to estimate rainfall intensity using video 
footage from a surveillance camera. The first stage focused on 
preprocessing and applied three primary methods, namely Low-
Rank Matrix Decomposition (LRMD) [32] to separate the 
background from raindrop regions, Markov Random Fields 
(MRF) [33] for raindrop segmentation, and Sparse Optimization 
(SO) to improve raindrop visibility while minimizing noise. 
After preprocessing, the extracted rainfall features were fed into 
irCNN, a modified ResNet34 model version that continuously 
predicted rainfall intensity. Video recordings from 12 different 
rainfall events in Hangzhou, China, were used to evaluate the 
framework. These recordings captured daytime and night-time 
conditions, with ground truth intensity measured by a tipping-
bucket rain gauge. Experimental results showed that 
preprocessing significantly improved nighttime performance, 
reducing MAPE to 19.73%. During the daytime, better accuracy 
was achieved when using raw images rather than preprocessed 
ones, with MAPE values of 17.06% compared to 19.58% after 
preprocessing. Despite the advancements of this model, the 
study has several limitations. Since the model was tested using 
data from a fixed camera setup, its ability to generalize to 
different camera sources or new locations remains uncertain. 
Another concern is that the preprocessing stage might remove 
subtle rainfall details, affecting estimation accuracy, particularly 
in high-intensity rainfall scenarios. The studies shows the 
importance of further validation to improve the model's 
reliability, specifically in extreme weather conditions and across 
diverse surveillance networks. 

Even though deep learning and surveillance camera imagery 
have significantly improved rainfall estimation, several 
challenges remain unresolved. A significant issue is the reliance 
on extensive preprocessing methods, such as rain streak 
extraction and image decomposition, to improve model 
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accuracy. As these methods improve performance, the models 
add computational complexity, making real-time deployment 
difficult and reducing the ability to adapt to changing conditions 
such as lighting variations and seasonal shifts. Another 
limitation stems from the dependence on rain gauge data, which 
typically has a temporal resolution of one minute. Despite the 
accuracy, the sparse distribution of ARG restricts high-
resolution spatial rainfall measurements. In areas without ARG 
coverage, interpolation methods must be used, which can 
introduce errors and reduce measurement reliability. Lastly, a 
critical challenge lies in deep learning models' strength when 
applied to images from diverse environmental settings. Many 
models perform well on the training datasets but struggle to 
generalize when faced with new camera locations, lighting 
conditions, or urban landscapes. This limitation reduces the 
effectiveness in real-world applications and shows the need for 
further improvements in model adaptability. 

This study introduces a novel rainfall estimation model to 
improve accuracy, adaptability, and spatial resolution. The first 
significant improvement is the model's ability to handle 
temporal variations without relying on extensive preprocessing. 
By eliminating the need for computationally expensive 
preprocessing methods, the model can seamlessly adapt to 
changes in lighting and seasonal conditions, making real-time 
deployment more practical. Another significant advancement is 
the shift away from traditional rain gauge-based methods, which 
are constrained by the sparse distribution of ARG. Surveillance 
cameras, widely installed in urban areas, offer a significantly 
denser spatial network for rainfall monitoring. The proposed 
method can supplement ARG data by incorporating deep 
learning methods with camera imagery, providing a more 
detailed and continuous representation of rainfall intensity. It 
reduces dependence on interpolation methods and improves the 
accuracy of rainfall distribution mapping. Finally, it is tested on 
previously unseen datasets from different camera sources and 
locations to ensure the model's toughness across diverse 
environments. The evaluation process improves the ability of the 
model to generalize outside its training data, ensuring reliable 
performance in varying environmental conditions. The proposed 
method improves rainfall estimation accuracy, efficiency, and 
scalability by addressing these limitations using deep learning 
and surveillance camera imagery. 

III. METHODS 

VGG16 and ResNet34 architectures were previously used to 
estimate rainfall intensity from surveillance camera images or 
videos. However, the accuracy of the models remained a 
challenge and required further improvement. This limitation was 
a foundation for the decision to use the architectures and 
improve the performance by incorporating the Convolutional 
Block Attention Module (CBAM). 

A. VGG16 

VGG architecture was introduced by Simonyan [34] and 
featured 16 convolutional layers organized into five sequential 
blocks. The design incorporated increasing filters in deeper 
layers to improve feature extraction. Each convolutional layer 

used 33 kernels, ReLU activation, and the same padding. The 
first two blocks consisted of convolutional layers with 64 and 
128 filters, followed by batch normalization and max pooling. 

Following the process, the third block contained three layers 
with 256 filters, while the fourth and fifth blocks each included 
three layers with 512 filters. VGG architecture has been widely 
applied in various fields, including rainfall intensity estimation 
[21], leaf disease classification [35], plant disease identification 
[36], and classification of individuals with dementia People 
[37]. 

B. ResNet34 

ResNet was developed as CNN architecture to address 
performance degradation issues commonly observed in deep 
networks [26]. In traditional CNN architectures, each layer 
attempted to learn a direct mapping from input to output. 
However, as network depth increased, performance often 
deteriorated due to optimization challenges rather than 
overfitting. ResNet introduced residual learning to overcome 
this issue, allowing the model to learn a residual mapping rather 
than a direct one. The core component of ResNet was the 
residual block, which consisted of multiple nonlinear layers, 
including convolutional layers, batch normalization, and 
activation functions. These layers were combined with an 
identity shortcut connection that directly associated the input to 
the output of the block, helping to maintain gradient flow and 
improve training efficiency. ResNet has been widely applied in 
various fields, including colorectal cancer detection [38], 
pathologic myopia[39], and rainfall estimation [15]. 

C. Convolutional Block Attention Module (CBAM) 

CBAM, introduced by Woo et al. [40], was developed as an 
attention mechanism designed to improve the performance of 
CNN. Designed as a lightweight and versatile component, 
CBAM could be seamlessly incorporated into any CNN 
architecture [40], [41]. 

The mechanism consisted of two major modules, the channel 
and spatial attention module, as shown in Fig. 1. The channel 
attention module identified the most important features by 
prioritizing relevant channels in the feature map. Consequently, 
the spatial attention module determined the locations of 
significant features, showing crucial spatial regions in the input 
data. 

 
Fig. 1. Image of CBAM architecture [40]. 

When processing an intermediate feature map F∈ℝCHW as 

input, CBAM first generated a 1D channel attention map Mc∈
ℝC11 followed by 2D spatial attention map Ms∈ℝ1HW as 

shown in Fig. 2 and Fig. 3. The complete attention mechanism 
operated through element-wise multiplication, represented by 
⊗. During this operation, channel attention values were 
extended across the spatial dimensions, while spatial attention 
values were expanded along the channel dimension. The 
resulting feature map was represented after applying the channel 
attention module 'F . The parameter ''F  was the final output, 
as shown in Eq. (1) and Eq. (2). Fig. 2 and Fig. 3 further showed 
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the computation process of the channel and spatial attention 
module, respectively. 

 
Fig. 2. Computational process for channel attention [40]. 

 
Fig. 3. Computational process for spatial attention [40]. 

 
 ' CF M F F 

 (1) 

 
 '' ' 'SF M F F 

 (2) 

The process began by capturing spatial information from the 
feature map through average and max pooling operations. These 
processes generated two distinct spatial context descriptors. 

avg

CF representing the average-pooled features and 
max

CF

signifying the max pooling feature. Both descriptors were then 
processed through a shared network to compute the channel 

attention map Mc∈ℝC11 where r was the reduction ratio. After 

passing each descriptor through the network, the resulting 
feature vectors were fused using element-wise summation. The 
channel attention was determined using the following 
computation in the following Eq. (3) 
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where, 𝜎 represented the sigmoid function, while W0∈ ℝC  

C/r and W1∈ ℝR/c  C. 

During this process, a spatial attention map was generated to 
capture the inter-spatial relationships of features. Unlike channel 
attention, which identified 'what' was important, spatial attention 
focused on 'where' the most informative regions were located, 
allowing it to be a complementary mechanism. The computation 
of spatial attention began with average and max pooling along 
the channel axis. These operations helped to form a compact yet 
practical feature descriptor by improving the visibility of crucial 
regions in the feature map [42]. The spatial attention map Ms(F) 

∈ℝHxW , was then generated by applying a convolution layer to 

the concatenated feature descriptor, enabling the model to 
signify or suppress specific regions. The process started with 
two pooling operations that aggregated channel information, 

producing two 2D feature maps, namely  𝐹𝑠
𝑎𝑣𝑔∈  ℝ1xHxW and 

𝐹𝑠
𝑚𝑎𝑥∈ ℝ1xHxW, both computed across the channel dimension. 

These pooled feature maps were concatenated and processed 
through a standard convolution layer, producing the final 2D 

spatial attention map. In summation, the complete spatial 
attention mechanism was mathematically described in the 
following Eq. (4) 
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where, 𝜎  was the sigmoid function, and f7x7 referred to a 

convolution operation using a 77 filter size. 

D. VGG-CBAM 

VGG-CBAM refers to the combination of VGG architecture 
with the CBAM module in the context of this discussion. 
Previous studies investigated the application of VGG-CBAM, 
particularly in facial expression recognition [43] and image 
classification [41]. However, to the best available knowledge, 
no study has yet explored the use of the model for estimating 
rainfall intensity from CCTV footage. 

 
Fig. 4. Proposed architecture of VGG-CBAM model. 

Fig. 4 shows VGG-CBAM architecture, which began with 
an input layer, followed by three convolutional layers (Conv 1, 
2, and 3) to extract initial spatial features. After these layers, the 
Max Pooling 1 was applied to reduce spatial dimensions, 
followed by the first CBAM module (CBAM 1) to improve 
feature representation through spatial and channel-wise 
attention. The next stage consisted of three additional 
convolutional layers (Conv 4, 5, and 6), followed by Max 
Pooling 2 and CBAM 2 to refine the extracted features further. 
This pattern continued with another set of convolutional layers 
(Conv 7, 8, and 9), succeeded by Max Pooling 3 and CBAM 3. 
In the final segment, two more convolutional layers (Conv 10 
and 11) were introduced, followed by Max Pooling 4 and the last 
attention module, CBAM 4. The network was completed with 
two dense layers responsible for aggregating extracted features 
and generating the final output. This design enabled the 
architecture to perform tasks such as classification or regression 
effectively. Several studies have applied VGG-CBAM in 
various fields, including bat classification [41] and facial 
expression recognition [43]. 
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E. ResNet-CBAM 

ResNet-CBAM refers to the integration of ResNet 
architecture with the CBAM module. Several studies have used 
this architecture for disease detection, including brain diseases 
[44] and lung cancer [45]. However, to the best of available 
knowledge, no studies have yet investigated the application of 
the model for estimating rainfall intensity. 

Fig. 5 shows ResNet-CBAM architecture, as the design used 
a ResNet backbone configured with four stages of residual 
blocks, arranged into 3, 4, 6, and 3 blocks per stage, leading to 
16 residual blocks across the network. Unlike traditional ResNet 
implementations, which typically included multiple pooling 
layers, this architecture used a single global average pooling 
layer immediately before the fully connected layer to reduce 
spatial dimensions. CBAM modules were strategically 
incorporated to improve feature representation, with 15 CBAM 
modules distributed across the residual blocks. These modules 
refined spatial and channel-wise feature maps, enabling the 
network to focus on the most relevant features. Several studies 
have applied ResNet-CBAM in different domains, including 
brain disease detection [44] and malignant–benign pulmonary 
nodule classification [45], multi-classification on arrhythmias 
[46], as well as flower classification [47]. 

 

Fig. 5. The proposed architecture of the ResNet-CBAM model. 

IV. EXPERIMENTAL SETUP 

A. Dataset 

This study used Python 3.11 and TensorFlow 2.0, with the 
dataset stored in HDF5 files. The deep Learning model was 
executed on a PC equipped with an Intel(R) 11th Gen Core™ 
i7-11700F processor and NVIDIA RTX 3090 GPU with 32 GB 
of memory. Moreover, the dataset used in this study was 
captured with a surveillance camera featuring a resolution of 
2560x1440 pixels and a frame rate of 25 frames per second (fps). 
Fig. 6 shows the samples of image rainfall captured during the 
study. The analysis focused on eight rainfall events recorded 
between January and April 2024. 

  

Fig. 6. Image rainfall captured using a surveillance camera. 

The selected rainfall events occurred at different times, 
including morning, afternoon, evening, and night. Data was 
collected during the analysis using ARG installed near the 
CCTV camera to ensure accurate rainfall measurements. The 
specific rainfall events included in the analysis are shown in 
Table I. 

TABLE I.  RAINFALL EVENTS USED FOR DATASET CREATION 

Rain event Time event Duration (minutes) Period 

January 29, 2024 06:26-06:43 17 Morning 

February 06, 2024 06:51-07:19 28 Morning 

February 04, 2024 11:55-13:55 120 Noon 

March 14, 2024 11:54–12:31 37 Noon 

March 31, 2024 15:15–15:47 32 Afternoon 

April 09, 2024 16:05–17:40 95 Afternoon 

January 27, 2024 00:10–00:54 44 Night 

February 10, 2024 01:08–03:04 116 Night 

This study used rainfall measurements from the tipping 
bucket type ARG as the ground truth dataset. The use of tipping 
bucket ARG for ground truth data has been extensively 
documented in previous studies [15], [19], [48], [49]. The device 
in this analysis operated with a resolution of 0.2 mm per minute. 
Additionally, the model's mechanism functioned by directing 
rainfall into a funnel, where it accumulated in a small bucket. 
After reaching full capacity, the bucket tipped, registering a 
measurement of 0.2 mm of rainfall. However, this design 
imposed a limitation, as the model could not record rainfall 
intensities below 0.2 mm, even when rainfall was visibly present 
in camera imagery. 

 
Fig. 7. Comparison between rainfall real value and rainfall after moving 

average five window. 

Fig. 7 showed that the raw rainfall data collected from ARG 
indicated significant variability, with unexpected increase in 
rainfall followed by abrupt decrease. This pattern signified that 
per-minute rainfall measurements from ARG might not 
accurately reflect actual rainfall intensity [50]. Previous studies 
recommended an appropriate temporal resolution for ARG data 
ranging between 5 and 10 minutes [51]. A five-minute moving 
average method was applied to address the high fluctuations in 
the data. This method computed the average rainfall intensity 
over a rolling five-minute window, producing a smoother 
dataset that reduced the impact of rapid spikes or drops observed 
in minute-by-minute measurements. The mathematical 
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formulation of the moving average method was presented in the 
following Eq. (5) 

 

2 1 2

5

t t t t t

t

R R R R R
R       


 (5) 

In the moving average formula, Rt represented the rainfall 
intensity at time t. Similar to the previous value, Rt−1 and Rt−2 
corresponded to the rainfall intensities recorded 1 minute and 2 
minutes before t, respectively. Rt+1 and Rt+2 represented the 
rainfall intensities, which recorded 1 minute and 2 minutes after 
t, while R0 signified the current rainfall concentration. After the 
data had been smoothed using the moving average method, the 
next step included applying linear interpolation to the per-
second data. This step was crucial for ensuring precise rainfall 
intensity values at each second, enabling synchronization with 
the image captured by the surveillance camera. The formula for 
linear interpolation was presented in the following Eq. (6) 
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where, it  represented the rainfall intensity at second t, IL was 
the rainfall concentration at the start of the minute, IR signified 
the intensity at the last minute, and t indicated the specific 
second being evaluated. 

Fig. 8 shows the results of rainfall observations and 
interpolation during the analysis. The black line represented 
observed rainfall intensity, while the red line signified the results 
of linear interpolation. The image captured by the camera during 

the process had a resolution of 26601440 pixels. However, full 
resolution was not used as input; instead, a random selection of 

180120 pixels was performed for the processing. The dataset 
used during the analysis comprised 49,005 samples divided into 
three subsets, including 70% used for training, 15% for 
validation, and 15% for testing, respectively. 

 
Fig. 8. Rainfall intensity interpolation over time. 

B. Evaluation Criteria 

The following formulas were used to assess regression 
model performance, including MAE, Mean Arctangent 
Absolute Percentage Error (MAAPE), Nash-Sutcliffe Efficiency 
(NSE), Kling-Gupta Efficiency (KGE), and the Coefficient of 
Determination (R²). 
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V. RESULT 

Four models were evaluated in this study, namely VGG16, 
ResNet34, and their respective versions integrated with CBAM. 
The selection of VGG16 and ResNet34 was based on proven 
effectiveness in previous studies on rainfall intensity estimation 
using surveillance camera imagery. 

Table II shows the evaluation metrics for four models, 
including VGG16, ResNet34, VGG16-CBAM, and ResNet34-
CBAM. 

TABLE II.  PERFORMANCE METRICS OF EVALUATED MODELS IN TESTING 

PHASE 

Model MAAPE MAE NSE KGE RMSE R2 

VGG16 10.06 0.04 0.94 0.95 0.08 0.94 

ResNet34 14.34 0.06 0.91 0.94 0.10 0.91 

VGG16-

CBAM 
9.3 0.03 0.95 0.96 0.07 0.95 

ResNet34-

CBAM 
13.42 0.05 0.92 0.95 0.09 0.92 

A comparison between the original VGG16 and ResNet32 
models showed significant differences in the performance for 
rainfall estimation. VGG16 consistently outperformed 
ResNet34 across all evaluation metrics, signifying a stronger 
ability to capture complex patterns in the data. This advantage 
was attributed to the deeper and more feature-rich architecture 
of VGG16, which facilitated more effective feature extraction 
and processing. ResNet34, despite using residual connections to 
mitigate vanishing gradient issues, failed to achieve comparable 
results. The outcome recommended that the architectural design 
of the model was less suited for this specific task. Further 
analysis comparing VGG16 to its improved version, VGG16-
CBAM, showed the impact of incorporating attention 
mechanisms. The addition of CBAM enabled the model to 
prioritize critical spatial and channel-wise features, improving 
accuracy and error reduction across all evaluation metrics. These 
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results signified the effectiveness of attention mechanisms in 
refining feature extraction and improving the capacity of the 
model to detect relevant patterns in complex datasets. Finally, 
VGG16-CBAM surfaced as a more effective model than the 
original VGG16. 

When evaluating ResNet34 and ResNet34-CBAM models, 
the incorporation of CBAM showed a clear performance 
improvement. By enabling the model to signify important 
features while suppressing irrelevant factors selectively, the 
CBAM module contributed to higher predictive accuracy and 
reduced errors. Despite these improvements, ResNet34-CBAM 
still underperformed compared to both VGG16 and VGG16-
CBAM. This result implied that while attention mechanisms 
offered benefits, the structural limitations of ResNet34 
constrained the total effectiveness of the model for rainfall 
estimation. A direct comparison between VGG16-CBAM and 
ResNet32-CBAM further reinforced the superiority of VGG16 
architecture. Relating to this discussion, VGG16-CBAM 
consistently delivered better results across all evaluation 
metrics, showing that combining a strong base architecture with 
an advanced attention mechanism produced the most effective 
model. These results signified that although attention 
mechanisms such as CBAM improved performance across 
different architectures, the total effectiveness still heavily 
depended on the fundamental design of the base model. It 
showed the importance of carefully selecting and optimizing 
model architectures for superior performance in complex data 
modeling tasks. 

 
(a) 

 
(b) 

Fig. 9. Training and validation loss curve. (a) VGG16, (b) VGG16-CBAM. 

Fig. 9 shows the loss graphs for VGG16 and VGG16-
CBAM, indicating significant differences in training and 
validation performance. For the VGG16 model, the training loss 

gradually decreased with the number of epochs, eventually 
converging to a low value. However, a significant gap existed 
between the training and validation losses, with the validation 
loss remaining consistently higher. The discrepancy showed that 
despite effectively learning patterns of the VGG16 model from 
the training data, generalization to unseen validation data was 
limited, signifying potential overfitting. Consequently, the 
VGG16-CBAM model signified improved performance, as 
reflected in its loss curves. Both training and validation losses 
decreased gradually and converged to lower values than those 
observed in the VGG16 model. Moreover, the validation loss 
closely followed the training loss in the epochs, indicating 
improved generalization. The reduced gap between training and 
validation losses showed that the CBAM module enabled the 
model to focus on relevant features more effectively, mitigating 
overfitting and improving performance on unseen. 

 
(a) 

 
(b) 

Fig. 10. Training and validation loss curve of (a) ResNet34 and (b) ResNet34-

CBAM. 

Fig. 10 compared the training and validation loss of 
ResNet34 and ResNet34 incorporated with CBAM, showing 
key differences in the learning behavior. For the ResNet34 
model, training loss gradually decreased, signifying effective 
learning. However, the validation loss showed significant 
fluctuations, specifically in the early training phase, implying 
instability and potential overfitting. Due to this instability, early 
stopping was triggered sooner, as the validation loss failed to 
show consistent improvement, reflecting the limited 
generalization capability of the model. Consequently, the 
ResNet34-CBAM model signified a smoother and more stable 
decline in training and validation loss. The validation loss 
closely followed the training loss in training, indicating 
improved generalization and reduced overfitting. Early stopping 
occurred later for ResNet34-CBAM as the model improved its 
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validation performance. The inclusion of CBAM improved the 
ability of the model to focus on relevant features, leading to 
superior stability, lower overall loss, and better performance. 
These results showed ResNet34-CBAM as a more effective 
architecture for this task. 

Fig. 9(b) and Fig. 10(b) presented a comparison of the 
training and validation loss for VGG-CBAM and ResNet-
CBAM, respectively, in the training process. In Fig. 9, which 
showed VGG-CBAM, the validation loss consistently decreased 
with minimal fluctuations and eventually reached a lower value 
than ResNet-CBAM. Additionally, the difference between 
training and validation loss in VGG-CBAM remained relatively 
small, indicating that the model generalized well and maintained 
stable training performance. Fig. 10, which showed ResNet-
CBAM, signified a slightly slower decline in validation loss, 
with the final loss values remaining slightly higher than those 
observed in VGG-CBAM. Although ResNet-CBAM showed 
stable and consistent learning, its ability to minimize validation 
loss was marginally weaker than VGG-CBAM. The results 

signified that while both models benefited from integrating the 
CBAM module, VGG-CBAM achieved better final validation 
loss and convergence efficiency. 

Table III shows the performance metrics of the proposed 
models, VGG-CBAM (Model I) and ResNet-CBAM (Model II), 
across different periods, namely morning, noon, afternoon, and 
night. The evaluation used images captured by an unseen camera 
that had not been included in the training phase. The results 
showed that both models maintained strong predictive 
capabilities even when tested on previously unseen data, 
signifying the ability to generalize effectively in rainfall 
estimation tasks. Although both models showed strong 
predictive capabilities across all periods, slight variations in 
performance appeared based on the time of day. Specifically, the 
morning and noon intervals showed slightly lower NSE and R² 
scores compared to the nighttime period. This discrepancy could 
be attributed to increased environmental noise, fluctuations in 
illumination, or atmospheric disturbances, all of which 
potentially affected the quality of image captured by the unseen 
camera. 

TABLE III.  PERFORMANCE EVALUATION OF THE PROPOSED MODELS ON UNSEEN IMAGES 

Time Model MAAPE MAE NSE KGE RMSE R2 

Morning 
I 0.19 0.05 0.80 0.83 0.05 0.80 

II 0.42 0.05 0.83 0.85 0.06 0.83 

Noon 
I 0.42 0.05 0.82 0.78 0.06 0.82 

II 0.43 0.04 0.77 0.71 0.05 0.77 

Afternoon 
I 0.45 0.05 0.82 0.75 0.06 0.82 

II 0.80 0.05 0.76 0.84 0.05 0.76 

Night 
I 0.11 0.06 0.98 0.93 0.07 0.98 

II 0.1 0.05 0.98 0.94 0.06 0.98 
 

During the afternoon, a noticeable increase in MAAPE was 
observed, particularly for ResNet-CBAM (Model II). It showed 
that fluctuating daylight conditions introduced additional 
challenges in feature extraction and rainfall estimation accuracy. 
The presence of dynamic shadows, variable cloud coverage, and 
rapid changes in lighting intensity probably affected the model's 
ability to consistently recognize rainfall-related patterns in 
surveillance images. Despite these variations, both models 
maintained highly reliable performance, as reflected in the 
consistently strong NSE, R², and KGE scores across different 
periods. These results showed the adaptability of the models to 
diverse lighting and environmental conditions, signifying the 
suitability for real-world applications where data acquisition 
was subjected to temporal variability. 

VI. CONCLUSION AND FUTURE WORK 

In conclusion, this study developed two improved deep 
learning models, VGG-CBAM and ResNet-CBAM, for 
estimating rainfall intensity using surveillance camera images. 
The VGG-CBAM model combined the tough feature extraction 
capabilities of VGG16 with CBAM modules, while the ResNet-
CBAM model incorporated CBAM into ResNet34 architecture, 

which consisted of 16 residual blocks. Both models 
outperformed the baseline counterparts, with VGG-CBAM 
signifying the highest accuracy and toughness across various 
evaluation metrics. Incorporating CBAM modules improved 
spatial and channel-wise attention, allowing the models to 
capture fine-grained rainfall patterns more effectively. 
Surveillance cameras as a data source offered a scalable and 
cost-effective alternative to traditional rainfall observation 
methods. Relating to this discussion, future studies would focus 
on optimizing the architecture, incorporating transfer learning, 
and expanding the dataset to improve the generalizability of the 
models across diverse urban environments and weather 
conditions. 
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