
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

688 | P a g e

www.ijacsa.thesai.org

DenseRSE-ASPPNet: An Enhanced DenseNet169

with Residual Dense Blocks and CE-HSOA-Based

Optimization for IoT Botnet Detection

Mohd Abdul Rahim Khan

Department of Electrical Engineering and Computer Science, A’sharqiyah University, IBRA-400 OMAN

Abstract—The growing prevalence of Internet of Things (IoT)

devices has heightened vulnerabilities to botnet-based

cyberattacks, necessitating robust detection mechanisms. This

paper proposes DenseRSE-ASPPNet, an advanced deep learning

framework for botnet detection, incorporating comprehensive

preprocessing, feature extraction, and optimization. The

preprocessing pipeline includes data cleaning and Min-Max

normalization to ensure high-quality input data. The

DenseNet169 backbone is enhanced with Residual Squeeze-and-

Excitation (RSE) blocks for channel-wise attention recalibration

and Atrous Spatial Pyramid Pooling (ASPP) for capturing multi-

scale spatial patterns, enabling effective feature extraction.

Hyperparameter optimization is performed using the Cyclone-

Enhanced Humboldt Squid Optimization Algorithm (CE-

HSOA), which balances global exploration and local exploitation,

ensuring faster convergence and enhanced robustness.

Experimental results demonstrate the superior performance of

the proposed framework, achieving 99.00 per cent accuracy,

96.40 per cent sensitivity, and 99.95 per cent specificity,

significantly minimizing false positives and false negatives. The

proposed DenseRSE-ASPPNet provides an efficient, scalable, and

effective solution for mitigating botnet threats in IoT

environments.

Keywords—Internet of Things; botnet detection; DenseRSE-

ASPPNet; residual squeeze-and-excitation blocks; Cyclone-

Enhanced Humboldt Squid Optimization Algorithm

I. INTRODUCTION

The connectivity of billions of intelligent objects with
internet-based communication capabilities is known as the
"Internet of Things." The number of commonplace machines
that have sensors built in and are able to interact online has
significantly increased in recent years. By fusing digital
intelligence with physical equipment, the Internet of Things
makes the world wiser. There is a lot of data exchange between
the connected devices, and security is the main issue with IoT
[1], [2], [3]. IoT devices are vulnerable to several types of
cyberattacks since they connect objects to the internet and
allow them to communicate with one another without human
intervention. An ever-growing pool of attack resources is made
possible by the quick spread of unsecured IoT devices and the
simplicity with which attackers can find them via web services
like Shodan. Attackers can now launch extensive attacks,
including phishing, spam, and Distributed Denial of Service
(DDoS), against Internet resources by assembling and utilizing
many of these susceptible IoT devices [4], [5], [6]. At the very
beginning of IoT device design and deployment, appropriate

security requirements should be determined in order to
guarantee the security of the IOT network and devices.

Since the Internet of Things is still in its infancy, it does not
yet have a strong security framework or system, which puts
sensitive data at risk. To keep IoT entities, businesses, and
individuals safe, modern security techniques must be
implemented on IoT networks. Botnet-based DDoS attacks, in
which hackers infect devices with scripts, pose the biggest
security threat to the Internet of Things [7], [8]. Botnet
detection is a significant difficulty in the cybersecurity field
due to the variety of botnet structures and protocols and the
constant development of new, clever methods by attackers to
damage networks through botnet-assisted attacks [9], [10]. An
intrusion detection system (IDS) is more successful at
defending a computer network from external threats, even if
many solutions, like firewalls and encryption, are designed to
tackle Internet-based cyberattacks. Therefore, identifying and
stopping different kinds of harmful network communications
and computer device usage is the main objective of an
intrusion detection system (IDS) [11], [12], [13]. IDS, monitor
and analyses a network's regular everyday activity to detect and
identify hostile cyberattacks. Enhancing a system's security
requires an intrusion detection system (IDS) that can detect
botnets in the network and different botnet-assisted attacks.

The complexity and evolution of botnets have led to the
proposal of numerous botnet detection techniques. The use of
machine learning (ML) techniques for botnet identification has
become increasingly popular within the past ten years. Before
ML models are learned or trained, feature extraction is a
crucial step. When learning and drawing conclusions, these
characteristics act as discriminators. Although some of the
current methods for detecting botnets rely on packet
information or traffic features, they are rendered ineffective
when traffic patterns are encrypted or secret, and traffic
patterns can be purposefully changed to evade detection [14],
[15]. Further, the inability of flow-based machine learning
algorithms to identify botnets to capture the dynamic
topological structure of communication networks is one of
their main shortcomings.

The proposed approach presents an improved
DenseNet169-based deep learning framework enriched with
Squeeze-and-Excitation (SE) blocks and Atrous Spatial
Pyramid Pooling (ASPP) to address the shortcomings of
current botnet detection techniques. This design tackles issues
including restricted spatial pattern identification in network

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

689 | P a g e

www.ijacsa.thesai.org

traffic, shallow gradient propagation, and ineffective feature
extraction. Whereas, ASPP captures multi-scale spatial data
without adding computing overhead, the addition of SE blocks
enhances channel-wise attention. Advanced pre-processing
methods further guarantee high-quality input data, and the Self-
Adaptive Humboldt Squid Optimization Algorithm (HSOA)
optimizes the model's performance by fine-tuning the
hyperparameters. For the detection of multi-class botnet attacks
in IoT systems, this all-encompassing method improves
detection accuracy and robustness, making it extremely
effective. The following are the paper's main contributions:

Development of an advanced DenseNet169-based deep
learning model, DenseSE-ASPPNet, integrating Residual
Squeeze-and-Excitation (RSE) blocks for channel-wise
attention and Atrous Spatial Pyramid Pooling (ASPP) for
multi-scale feature extraction.

Incorporation of the Cyclone-Enhanced Humboldt Squid
Optimization Algorithm (CE-HSOA) for efficient
hyperparameter tuning, achieving a balance between global
exploration and local exploitation.

The Residual Squeeze-and-Excitation (RSE) block is an
enhancement to the standard Squeeze-and-Excitation (SE)
block, incorporating a residual learning approach to improve
feature recalibration, which helps with better channel-wise
attention and more robust feature extraction.

The paper is structured as follows: Section II presents a
comprehensive literature review on existing botnet detection
methods. Section III details the DenseSE-ASPPNet framework.
Section IV compares the performance of DenseSE-ASPPNet
with other methods. Finally, Section V provides the
conclusion.

II. LITERATURE REVIEW

This section discusses the recent existing papers related to
the Botnet attack detection.

In 2022, Nookala Venu, et al., [16] employing machine
learning to detect botnet assaults in the Internet of Things. The
increasing number of IoT devices that are susceptible to botnet
assaults has made them a serious threat to internet security.
Many machine learning (ML)-based methods have been
released so far to identify different types of botnet attacks.
Regardless of the dataset, this study proposes a universal
feature set that is extrapolated based on the frequency counting
approach and the Logistic Regression method to better detect
botnet attacks. There are six main steps in the process overall,
starting with data collection and ending with the detection of
botnet attacks.

In 2022, Alissa, et al., [17] Detecting botnet attacks in IoT
with machine learning. UNSW-NB15, the most comprehensive
dataset that is publicly accessible, was used in that study.
Exploratory Data Analysis (EDA) is the statistical analysis
stage that examines the entire dataset. In the future, the model
will be able to be trained on a big dataset. SVM and Random
Forest are two examples of machine learning classifiers that
can be tested. Runtime Botnet detection can also be done with
deep learning models in addition to ResNet50 and LSTM
models.

In 2023, Al-Fawa’reh, et al., [18] Detecting malware
botnets in IoT networks with deep reinforcement learning.
MalBoT-DRL, a powerful malware botnet detector that uses
deep reinforcement learning (RL), is presented in this paper.
Enhanced generalizability and robustness against model drift
are features of MalBoT-DRL, which is designed to detect
botnets at every stage of their lifespan. Damped incremental
statistics and an attention reward mechanism are combined in
this model, which hasn't been thoroughly studied in the
literature. The dynamic adaptation of MalBoT-DRL to the
constantly evolving malware patterns in IoT environments is
made possible by this integration.

In 2022, Kalakoti, et al., [19] Robust feature selection for
automated botnet detection in Internet of Things networks
using statistical machine learning. In this research, we
minimize feature sets for machine learning tasks, which are
structured as six distinct binary and multiclass classification
problems according to the stages of the botnet life cycle. More
precisely, for every classification task, we determined the best
feature sets by combining filter and wrapper techniques with
particular machine learning techniques. The SFS and SBS
wrapper approaches worked well for identifying the best
feature sets for each classification.

In 2023, Taher, et al., [20] IIoT botnet detection using a
dependable machine learning model. In this paper, we offer a
unique feature selection algorithm, FGOA-kNN, to select the
most relevant features. It is based on a hybrid filter and
wrapper selection strategy. The Grasshopper algorithm (GOA)
is used to reduce the features that are ranked highest in the new
technique that is combined with clustering. Additionally, a
suggested technique called IHHO chooses and modifies the
hyperparameters of the neural network to effectively identify
botnets. To improve the global search process for ideal
solutions, three enhancements are made to the proposed Harris
Hawks algorithm.

In 2022, Waqas, et al., [21] Botnet attack detection using
machine learning in cloud-based Internet of Things devices.
Investigating cyber security in the face of malware, DDOS, and
B-IDS attacks is the goal of this research paper. In order to
detect botnet attacks, various machine learning algorithms have
been used, including support vector machines, naive Bayes,
linear regression, artificial neural networks, decision trees,
random forests, fuzzy classifiers, K-nearest neighbors, adaptive
boosting, gradient boosting, and tree ensembles.

In 2022, Alrayes, et al., [22] a botnet detection model for
the IoT environment is designed using the barnacles mating
optimizer with machine learning (BND-BMOML). The BND-
BMOML model that is being presented is centered on
identifying and recognizing botnets in the context of the
Internet of Things. To achieve this, the BND-BMOML model
first adopts a data standardization strategy. The BMO
algorithm is used in the given BND-BMOML model to choose
a useful collection of characteristics. An Elman neural network
(ENN) model is used in this study's BND-BMOML model for
botnet detection. Lastly, to illustrate the work's originality, the
proposed BND-BMOML model employs a chicken swarm
optimization (CSO) technique for the parameter tuning
procedure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

690 | P a g e

www.ijacsa.thesai.org

In 2022, Almuqren, et al., [23] botnet detection using
hybrid metaheuristics and machine learning in an IoT context
supported by the cloud. The Hybrid Metaheuristics with
Machine Learning based Botnet Detection (HMMLB-BND)
approach is presented in this paper for the Cloud Aided IoT
context. In the context of cloud-based IoT, the proposed
HMMLB-BND technique focuses on the identification and
categorization of botnet attacks. The Modified Firefly
Optimization (MFFO) method is used in the HMMLB-BND
technique that is being presented for feature selection. For
botnet identification, the HMMLB-BND algorithm employs a
hybrid convolutional neural network (CNN)-quasi-recurrent
neural network (QRNN) module. Using the chaotic butterfly
optimization algorithm (CBOA), the best hyperparameter
tuning procedure is carried out.

In 2022, Kumar, et al., [24] early IoT botnet detection
based on machine learning and network-edge traffic. We
introduce EDIMA, a lightweight IoT botnet detection tool that
can be placed at home networks' edge gateways that aims to
identify botnets before an attack is launched. A unique two-
stage Machine Learning (ML)-based detector designed
especially for IoT bot identification at the edge gateway is part

of EDIMA. In order to identify individual bots, the ML-based
bot detector first uses ML algorithms for classifying aggregate
traffic, followed by tests based on the Autocorrelation Function
(ACF). A policy engine, a feature extractor, a traffic parser,
and a malware traffic database are also included in the EDIMA
architecture.

In 2023, Catillo, et al., [25] a deep learning technique for
IoT botnet detection that is portable and cross-device. Complex
machine learning architectures are used in many of the current
intrusion detection system (IDS) concepts for the Internet of
Things. These architectures typically offer a single model for
each device or assault. The size and dynamic nature of
contemporary IoT networks make these methods inappropriate.
In order to learn a single IDS model rather than numerous
distinct models over the traffic of various IoT devices, this
study suggests a novel IoT-driven cross-device technique.
Since a semi-supervised strategy is more applicable to
unforeseen attacks, it is used. The approach is built on an all-
in-one deep autoencoder, which uses regular traffic from many
IoT devices to train a single deep neural network. Table I
compare the existing papers related to the Botnet attack
detection.

TABLE I. COMPARISON OF THE LITERATURE REVIEW PAPERS

Study Method Detection Technique Advantages Disadvantages

Nookala et al. [16] Logistic Regression
Botnet detection using

frequency counting

Simple and efficient method; good for

basic botnet detection tasks

May not handle highly complex

attacks well due to the simplicity of
the frequency counting method.

Alissa et al. [17]
SVM, Random Forest,

ResNet50, LSTM
Botnet detection in IoT

Effective for large datasets; can utilize

deep learning for more complex attack
patterns

Requires large datasets for training;

computationally intensive for real-
time detection.

Al-Fawa’reh et al.

[18]

Deep Reinforcement

Learning (DRL)

Malware botnet

detection

Enhanced generalizability and

robustness; adapts dynamically to

evolving malware patterns

Complexity of DRL models may lead

to high computational cost and long

training times.

Kalakoti et al. [19] Statistical ML Botnet detection

Effective for binary and multiclass

classification; good for identifying
relevant features

The feature selection process can be

computationally expensive and may

not generalize well across different
datasets.

Taher et al. [20]
kNN, Harris Hawks

Optimization
IIoT botnet detection

Combines hybrid filter and wrapper

methods for better feature selection;
effective for IIoT

High computational overhead due to

the hybrid approach and complexity
of the optimization algorithms.

Waqas et al. [21]
Various ML Algorithms

(SVM, ANN, DT, RF, etc.)
Botnet detection

Offers a variety of classifiers for

different attack types; flexible and

adaptable

Limited by the effectiveness of

individual classifiers in handling

diverse types of botnet attacks.

Alrayes et al. [22]
Elman Neural Network

(ENN)
Botnet detection in IoT

Efficient in IoT environments; uses

BMO for effective feature selection

May struggle with real-time

detection and the complexity of

feature selection using the BMO

method.

Almuqren et al. [23] Hybrid CNN-QRNN
Botnet detection in

cloud-based IoT

Combines CNN and QRNN for better

detection performance in cloud IoT

High computational demand due to

the hybrid neural network and feature
selection processes.

Kumar et al. [24]
ML-based two-stage

detector

Early IoT botnet

detection at edge

Lightweight and fast detection at edge

gateways; helps in early detection

May not be effective against

sophisticated botnet attacks with
complex behaviors or new attack

patterns.

Catillo et al. [25] Deep Autoencoder
Cross-device IoT botnet

detection

Uses semi-supervised learning, which

is beneficial for handling unforeseen

attacks

Challenges in dealing with

unforeseen or novel attack types due

to the semi-supervised nature of the
model.

Study Methodology Detection Technique Advantages Disadvantages

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

691 | P a g e

www.ijacsa.thesai.org

The increasing number of Internet of Things (IoT) devices
has made them a prime target for botnet attacks, presenting a
significant challenge for network security. The detection of
botnet assaults in IoT environments is critical, yet existing
approaches face various limitations in terms of computational
efficiency, adaptability to evolving attack patterns, and the
ability to handle complex or unforeseen attack types. Many
machine learning (ML) and deep learning (DL) techniques
have been proposed for botnet detection, utilizing methods like
Logistic Regression, SVM, Random Forest, and deep
reinforcement learning. However, these methods often struggle
with issues such as high computational demands, limited
generalizability, and difficulty in real-time detection.
Additionally, feature selection and optimization processes,
essential for improving detection accuracy, are computationally
expensive and may not generalize well across diverse IoT
environments.

Thus, there is a need for more efficient and adaptive botnet
detection models that can operate effectively in dynamic and
resource-constrained IoT environments. These models should
be capable of detecting a wide range of attack types, including
novel and sophisticated threats, with minimal computation
overhead and in real-time. Developing such a model requires
addressing the challenges of feature selection, optimization,
and ensuring robustness against evolving malware patterns.

III. PROPOSED METHODOLOGY

The DenseSE-ASPPNet is proposed as the botnet detection
system that combines advanced pre-processing, feature
extraction, and optimization techniques. Pre-processing begins
with the cleaning of data from entries that may be irrelevant or
missing; then Min-Max normalization of features into a
consistent scale to efficiently train the model is applied. For
feature extraction, we use the DenseNet169 backbone,
allowing for feature reuse through dense connections for the
extraction of compact informative representations. In addition,
RSE blocks improve channel-wise attention recalibration,
which helps the model to focus more on important features.
ASPP is used to capture multi-scale spatial patterns, which are
very important for botnet activity detection at different
resolutions. Finally, the hyperparameters of the model are
optimized using the CE-HSOA, which combines global
exploration and local exploitation to ensure faster convergence
and enhanced robustness. Together, these modules enable
DenseSE-ASPPNet to effectively detect botnet activities in IoT
networks. The proposed Botnet attack detection model is
shown in Fig. 1.

A. Pre-processing

Pre-processing in the DenseSE-ASPPNet architecture
consists of two key operations: data cleaning and Min-Max
normalization. Data cleaning cleans irrelevant, missing, or
erroneous entries from the raw network traffic data so that only
valid information is utilized. After data cleaning, all features
are scaled within a fixed range by applying Min-Max
normalization.

1) Data cleaning: The main purpose of data cleaning is to

remove unusual data from the original data, such as

duplicating, missing, or illegal data. When an experiment is

repeated, all duplicate data are eliminated and just the data

that appears for the first time are retained. The gaps are filled

in by averaging the data from the preceding and subsequent

hours. This is shown in Eq. (1),

𝑥𝑖 =
𝑥𝑖−1+𝑥𝑖+1

2
 (1)

In the padding data, 𝑥𝑖 represents the data to be filled,

𝑥𝑖−1 represents the data from the previous hour, and 𝑥𝑖+1
represents the data from the next hour. Unlawful data in this
experiment are those that have a value of 0 but shouldn't be 0.
It is also replaced by the average value of the data from the
preceding and following hours, which is determined by Eq. (1).

2) Min- Max normalization: In information processing,

data normalization is a crucial step. This entails standardizing

data in order to reduce complexity, remove redundancy, and

enhance data quality. Usually, this method entails scaling

numerical data to a uniform range of values in order to

standardize it and facilitate comparison and analysis. In this

investigation, the min-max normalization method was

employed.

Dataset

1. Data cleaning

2. Min-Max

normalization

Pre-processing

RSE

block

ASPP

block

Fully

connected

layer

Convolution

layer
Max pooling

layer Dense

block 1

Dense

block 2

Dense

block 3

Transition

block 1

Transition

block 2

Transition

block 3

Botnet

Attack

detected

Botnet

Attack not

detected

Pre-

processed

data

Fig. 1. Block diagram of the proposed Botnet attack detection model.

The initial data is linearly modified using Min-Max
normalization. With this method, all scaled data between 0 and
1 is obtained. The following Eq. (2) can be used for this: The
relationships between the original data's values are preserved
using Min-Max normalization.

𝑍∗ =
𝑧−min (𝑧)

𝑟𝑎𝑛𝑔𝑒(𝑧)
=

𝑧−min (𝑧)

𝑚𝑎𝑥(𝑧)−min (𝑧)
 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

692 | P a g e

www.ijacsa.thesai.org

The minimal value is denoted by min (z), while range (z)
denotes the range between maximum and minimum. The
breadth of the interval is 1, and the range of Z^* is within the
range [0, 1].

B. DenseRSE-ASPPNet

DenseRSE-ASPPNet is proposed as an effective model for
botnet detection using advanced feature extraction techniques.
Using the DenseNet169 as the backbone, it explores dense
connections that allow feature reuse while learning compact
and informative representations for the input data.
Furthermore, the RSE blocks enhance feature recalibration
capabilities by making the model adaptive to important
features while key information is preserved through residual
learning. In addition, Atrous Spatial Pyramid Pooling (ASPP)
is used to capture multi-scale spatial patterns that are critical
for botnet activity detection, which can occur at different
spatial resolutions. Combining DenseNet, RSE blocks, and
ASPP enables the DenseRSE-ASPPNet model to effectively
extract relevant features for accurate and robust botnet
detection in IoT networks.

Convolutional layers, max pool layers, transition layers,
and dense (fully connected) layers make up the DenseNet.
ReLU is used throughout the model's design, whereas SoftMax
is used to activate the top layer. The maxpool layers reduce the
dimensionality of the input, while the convolutional layers
recover the image's characteristics. In the stack, the first
flattened layer is followed by the fully linked layers. The
flatten layer functions as an artificial neural network and
receives a single input array. The DenseRSE-ASPPNet model
is shown in Fig. 2.

RSE blockASPP block

Fully

connected

layer

Convolution layer Max pooling layer
Dense

block 1

Dense

block 2

Dense

block 3

Transition

block 1

Transition

block 2

Transition

block 3

Botnet Attack

detected

Botnet Attack

not detected

Pre-

processed

data

Fig. 2. Architecture of the DenseRSE-ASPPNet model.

1) Convolution layer: To put it simply, an activation

occurs when a convolutional layer applies a filter to an input.

Continuous application of the filter to an input result in a

feature map that shows the intensity of the detected features at

different locations within the input. ReLU and other activation

methods can then be applied to a feature map that has been

created using several filters. Often, the operation between

these two entities is a dot product since the filter employed in

a convolutional layer is narrower than the input data.

Assuming a P×P square neuron element, the outcome of this

layer would be (P-m+1)×(P-m+1), followed by a filter of size

m×m. The nonlinear input to the unit 𝑥𝑖𝑗
𝑙 is determined by

summing the inputs from the layer cells preceding them, as

per Eq. (3).

𝑥𝑖𝑗
𝑙 = ∑ ∑ 𝜇𝑎𝑏𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1𝑚−1
𝑏=0

𝑚−1
𝑎=0 (3)

The convolutional layer's implementation of the identified
non-linearity is demonstrated by Eq. (4).

𝑦𝑖𝑗
𝑙 = 𝜆(𝑥𝑖𝑗

𝑙) (4)

2) MaxPool layer: Adding a maxpool layer to a CNN is

primarily done to reduce the dimensionality of the feature

map. The maxpool layer summarizes the features in the region

that the pooling layer has filtered, applying a filter on the

feature map similarly to the preceding layer. n_h×n_w×n_c,

which represent the feature map's height, width, and channels,

respectively, are presumed to be present in a feature map. The

feature map's dimensions are determined by Eq. (5) when the

maximum pooling (〖max〗_p) across the size f and stride s

filters is utilized.

𝑚𝑎𝑥𝑝 =
(𝑛ℎ−𝑓+1)

𝑠
×

(𝑛𝑤−𝑓+1)

𝑠
× 𝑛𝑐 (5)

3) Dense layer: The fully connected layer is where the

majority of classification at the network's end occurs. Unlike

pooling and convolution, it is a global procedure. A global

analysis is performed on the output of all the preceding layers

using the information gathered from the feature extraction

steps. By doing this, it creates a non-linear blend of the

characteristics that are utilized to classify information. The

communication between all neurons in a thick layer and all

neurons in the layer above it is referred to as strongly coupling

in a neural network. A matrix-vector multiplication occurs

whenever each neuron in this layer sends information to its

matching neuron in the layer underneath. The formula for

matrix-vector multiplication is provided in Eq. (6).

𝑀. 𝜆 =

𝑚11 𝑚12 ⋯ 𝑚1𝑦 𝑝1

𝑚21 𝑚22 ⋯ 𝑚2𝑦 𝑝2

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝑚𝑥1 𝑚𝑥2 ⋯ 𝑚𝑥𝑦 𝑝𝑦

 (6)

A matrix with dimensions of × y and 1× y, respectively, is
represented by the variables M and p in the equation above.
Backpropagation can be used to update the previous layer's
parameters, which comprise the variable matrix, during
training. To backpropagate over the learning rate, which is
defined by changing the weights for the layer ly designated by
ω^ly and bias represented by the variable B^ly of the neural
network, utilize Eq. (7) and Eq. (8) respectively.

𝜔𝑙𝑦 = 𝜔𝑙𝑦 − 𝛼 × 𝑑𝜔𝑙𝑦 (7)

 𝐵𝑙𝑦 = 𝐵𝑙𝑦 − 𝛼 × 𝑑𝐵𝑙𝑦 (8)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

693 | P a g e

www.ijacsa.thesai.org

The dω and db are calculated using a chain rule (from the
output layer via the hidden layers to the input layer). These are
dω and db, which are the partial derivatives of ω and b of the
loss function. Eq. (9) through Eq. (12) are utilized to calculate
dω and db.

𝑑𝜔𝑙𝑦 =
𝜕𝐿

𝜕𝜔𝑙𝑦 =
1

𝑛
𝑑𝑍𝑙𝑦𝐴[𝑙𝑦−1]𝑇 (9)

dBly =
∂L

∂Bly =
1

n
∑ dZly(i)n

i=1 (10)

dAly−1 =
∂L

∂A[ly−1] = WlyTdZly (11)

dZly = dAly × g′(Zly) (12)

As per the previously mentioned equations, the layer ly
linear activation is represented by the variable Z^ly, and the
differential of the Z^ly-related non-linear function is denoted
by g^' (Z^ly). The symbol for the nonlinear activation function
at the same layer is A^ly.

4) Transition layer: A CNN uses a transition layer to

make the model simpler. Usually, a transition layer uses an

11-layer convolution to lower the number of channels and a

stride 2 filter to cut the input's height and breadth in half.

5) SE block with residual connection: The SE Block is

utilized in this situation due to its simplicity in integrating into

any model and its capacity to rectify information loss by

recalibrating features with a negligible increase in parameters.

By passing the input features via the GAP, the SE-Block-

based attention module condenses each channel into a single

feature, or scalar value. The two phases of the SE Block are

excitation and squeezing. Every channel in the image is made

one-dimensional during the squeeze stage by using global

average pooling, or GAP. A rectified linear unit (ReLU) and a

sigmoid are two completely connected layers that the

squeezed vector passes through during the recalibration stage.

In order to highlight the key information, the flattened vector

is then multiplied by the image that has undergone a 1 × 1

convolution and the weight, which represents squeezed

information. An SE Block is depicted in Fig. 3. The SE

Block's reduction ratio is a hyperparameter that modifies the

number of nodes in the ReLU and fully linked layer. The

number of parameters rose as the reduction ratio dropped. The

number of parameters dropped as the reduction ratio grew. In

other words, it is a hyperparameter associated with variations

in computing cost and capacity. The recalibrated output and

the input layer are connected by a residual connection that is

introduced at the recalibration stage. A direct shortcut between

a module's input and output is another design element in the

residual connection block that improves the gradient flow

during backpropagation while maintaining information.

Adding the recalibrated feature map back to the input is how a

SE Block that uses residual connections is implemented.

The SE channel attention process involves several
important equations. The Squeeze operation uses global
average pooling to reduce the input feature map (H×W×C) to
1×1 ×C. The height, breadth, and number of channels of the

original feature map are denoted by H, W, and C, respectively.
This could be shown in Eq. (13),

𝑧𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊
𝑗=1

𝐻
𝑖=1 (13)

Input conv

Fixed-size

Feature

1x1xC 1x1xC1x1xC

ReLU
Sigm

oid

FCFC

Re-Calibrated

Features

Channel-wise

Multiplication

Residual connection

Output

Fig. 3. Block diagram of the RSE block.

In this case, u_c is the feature value of the c^th channel at
position (i,j) in the input feature map, and z_c is the Squeeze
output of the c^th channel. An activating mechanism and two
fully connected layers are used in the Excitation phase to
establish channel weights and understand the correlations
between channels. In Eq. (14),

s = σ(W2δ(W1z)) (14)

where, z is the Squeeze phase's output, δ is the ReLU value,
σ is the Sigmoid function, s is the generated channel weight
vector, and W1 and W2 are learned weight parameters.
Furthermore, after the SE attention system is executed, the
feature specification is obtained by multiplying the channel's
weights by the initial features. In Eq. (15), the recalibration
procedure is displayed.

𝑦𝑐 = 𝑠𝑐 . 𝑢𝑐 (15)

The input features (u_c) are appended to the recalibrated
features (y_c) in order to create a residual connection:

ŷc = yc + uc (16)

This equation can also be written as:

�̂�𝑐 = (𝑠𝑐 . 𝑢𝑐) + 𝑢𝑐 (17)

The addition ensures that the recalibrated features enhance
the input features without overwriting the original information,
maintaining a balance between recalibration and preservation.

6) ASPP module: The ASPP module's dilated convolution,

sometimes referred to as extended convolution or atrous

convolution, is distinguished by the addition of gaps between

the convolution kernel's constituent pieces. This preserves the

original input feature map's height and width while expanding

the kernel's receptive field. The convolution kernel's spacing is
indicated by the dilation rate. By altering the dilation rate, the

filter's receptive field can be adjusted appropriately. Every two

convolutional kernel elements are separated by (r-1) zeros, as

seen in Fig. 3. k ' = k + (k - 1) × (r - 1) is the kernel's effective

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

694 | P a g e

www.ijacsa.thesai.org

size. Among these, r stands for the dilation rate and k for the

convolutional kernel's size. Dilated convolution is the same as

ordinary convolution when r=1. It can modify the

convolutional kernel's receptive field by varying the dilation

rate without requiring additional calculations or parameters.

The basic dilation model is shown in Fig. 4.

Fig. 4. 3×3 Filter with different dilation rate as 1, 2, and 3.

An ASPP module is added at the network's bottom to
extract multi-scale features that will aid the network in
comprehending and capturing data at various scales. Spatial
Pyramid Pooling (SPP) is the foundation of the enhanced
ASPP module. The use of dilated convolutions in place of
ordinary convolutions is where ASPP and SPP diverge. This
module uses dilated convolutions with varying dilation rates as
the final prediction in order to merge multiple receptive field
features. The ASPP module makes use of adaptive average
pooling in conjunction with four parallel dilated convolutions
(with dilation rates of 1, 6, 12, and 18), as illustrated in Fig. 5.
Batch normalization (BN), ReLU activation, and a convolution
operation make up each dilated convolution. Concat can be
used to join parallel networks. To guarantee that the output
image size stays the same as the input image size, use BN,
ReLU, and ordinary convolution (with a kernel size of 1×1).

7) Fully Connected (FC) layer: The FC layer performs

feature aggregation by combining the learned features from

different areas of the input image. The network can provide

more sophisticated representations by capturing higher-level

patterns and correlations between features thanks to this

aggregation. In this assignment, the burst assembly is carried

out, and the output of the completely linked layer is frequently

used to generate final predictions. The proposed model's final

layer has two layers, provides the final output for prediction.

8) SoftMax activation layer: Deep learning systems

commonly use the softmax activation function to address

classification issues. In Eq. (18), where, weight is represented

by the variable ω and bias by the variable b over an input

vector x, defines the general form of a nonlinear activation

function.

𝑦 = 𝑓(𝜔 × 𝑥 + 𝑏) (18)

The output layer of a convolutional neural network
employs the softmax function to estimate the likelihood of each
output class. According to the softmax function's
specifications, each neuron in the output layer receives a single

value. Each of these neurons in the output layer determines the
likelihood (or probability) that a certain node will reach the
output. When applied to the input, the softmax function is
defined over the softmax function Θ. According to Eq. (19),
v_i relates to the exponential function of the input vector,
represented by e^(v_i), and the exponent function of the output
vector, represented by e^(v_o), with m instances.

Θ(𝑧)𝑥 =
𝑒𝑣𝑖

∑ 𝑒𝑣𝑜𝑚
𝑦=1

 (19)

Input Input

Adaptive

AVGPool

Conv 1x1

ACONV

3X3

 Rate=6

ACONV

 3X3

Rate=12

ACONV

3X3

 Rate=18

Conv 1x1

BN, ReLUBN, ReLU BN, ReLUBN, ReLU BN, ReLU

Bilinear

Interpolate
Concat

Conv 1x1

BN, ReLU

Output

Fig. 5. Structure of the ASPP model.

This work uses softmax as the activation function and the
binary cross-entropy loss function as the loss function. Binary
cross-entropy has been used in the past to solve binarization
challenges. Eq. (20) and Eq. (21) display the binary cross-
entropy loss function for a network with n layers.

𝐾(𝜔, 𝑏) =
1

𝑛
∑ 𝐿(𝑎(𝑖),𝑛

𝑖=1 𝑎(𝑖)) (20)

𝐿(�̂�, 𝑎) = −(𝑎 × log �̂� + (1 − 𝑎) × log(1 − �̂�)) (21)

With the variable a representing output class 1 and (1-a)
representing output class 0, a ̂ represents the probability of
output class 1 and (1-a)̂ for the class 0 result. The heatmap for
the extracted features is shown in Fig. 6.

C. Hyper Parameter Tuning of DenseRSE-ASPPNet using

CE-HSOA

Hyperparameter tuning is an important step while
optimizing the performance of the model DenseRSE-ASPPNet.
The effectiveness of deep learning models, such as DenseRSE-
ASPPNet, may be highly reliant on hyperparameters like a
learning rate, batch size, number of layers, etc. To effectively
find a good combination of hyperparameters, we apply the CE-
HSOA.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

695 | P a g e

www.ijacsa.thesai.org

Fig. 6. Heatmap of correlations.

In HSOA, hunting, migration, and mating were important
phases. For the search operation, five mechanisms are specified
in order to quantitatively model this process. Attacking schools
of fish, escaping fish, successfully attacking, attacking smaller
squids, and mating Humboldt squids are the components of
these methods. As CE-HSOA iterations increase, the search
process shifts from exploration to exploitation through mating,
bigger squids attacking smaller squids, and fish schools
attacking. Fish Escape, however, manages exploration in each
iteration.

1) Generating initial population: The CE-HSOA

population is made up of fish swarms and Humboldt squid.

Algorithm 1 is the pseudocode that CE-HSOA employs to

create the first population. As may be observed, Humboldt

squid are thought to be the best individuals in the population,

whereas fish make up the remainder. Since the Hublot squid is

larger and more fit than school fish, this problem is in line

with nature.

2) Attack of fish schools: In CE-HSOA, the attack of fish

schools is simulated using Eq. (22).

𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 = 𝑋𝑏 + 𝑉𝑗𝑒𝑡 . (−𝑋𝐹𝑛𝑒𝑤,𝑟1

𝑑 − 𝑃𝑜𝑝𝐴𝑙𝑙𝑟2
𝑑) (22)

According to Eq. (1), 𝑃𝑜𝑝𝐴𝑙𝑙𝑟2
𝑑 is the saved 𝑟2

𝑡ℎ position in

the CE-HSOA memory, 𝑋𝐹𝑛𝑒𝑤,𝑟1
𝑑 is the position of 𝑟1

𝑡ℎ fish in

𝑑𝑡ℎ dimension, 𝑉𝑗𝑒𝑡 is the locomotion velocity parameter, and

𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 , i is the new position of 𝑖𝑡ℎ Humboldt squid in 𝑑𝑡ℎ

dimension. Additionally, 𝑟1 and 𝑟2 are random integer numbers
between 1 and the size of the PopAll and the population size of
fish, respectively. Responsibility for 𝑉𝑗𝑒𝑡 .

3) Successful attack: The new position for Humboldt

squid (𝑋𝑆𝑖) replaces the existing position for Humboldt squid

after the new positions for fish and squid have been updated.

𝑋𝑆𝑖
𝑑 = {

𝑋𝑆𝑖 = 𝑋𝑆𝑛𝑒𝑤,𝑖 , 𝑖𝑓 𝐹𝑆𝑛𝑒𝑤,𝑖 < 𝐹𝑆𝑖

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑒𝑠𝑐𝑎𝑝𝑒, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (23)

The new and current fitness functions of the 𝑖𝑡ℎ Humboldt
squid are denoted by 𝐹𝑆𝑛𝑒𝑤,𝑖 and 𝐹𝑆𝑖 in Eq. (23).

4) Successful escape: When the school of fish is attacked

by the squid, the fish flee to a randomly chosen spot. The

following equation is used in this escape to update the fish's

position and velocity.

𝑋𝐹𝑛𝑒𝑤,𝑖 =

{
𝑋𝐹𝑖 + 𝑟𝑛⃗⃗⃗⃗ ⃗. (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝐹𝑖). 𝑤𝑓, 𝑖𝑓 𝑛𝑓𝑒𝑠 < 0.1𝑚𝑎𝑥𝑛𝑓𝑒𝑠

𝑋𝑆𝑖 + 𝑟𝑛⃗⃗⃗⃗ ⃗. (𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑋𝑟1 − 𝑃𝑜𝑝𝐴𝑙𝑙𝑟2), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (24)

The number of function evaluations in Eq. (24) is
represented by 𝑛𝑓𝑒𝑠, the maximum number is represented by

𝑚𝑎𝑥𝑛𝑓𝑒𝑠, 𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑋𝑟1
 is the 𝑟𝑡ℎ place in the archive of the best

results, 𝑋𝑆𝑖 is the 𝑖𝑡ℎ location of the Humboldt squid, 𝑟𝑛⃗⃗⃗⃗ is the
normal random vector, 𝑤𝑓 = 𝐹𝑏, 𝑋𝐹𝑛𝑒𝑤,𝑖 is the new position

of 𝑖𝑡ℎ fish, 𝑋𝐹𝑖 is the current position of 𝑖𝑡ℎ fish, and 𝑃𝑏𝑒𝑠𝑡 is N

top of the best positions. The fitness function of 𝑖𝑡ℎ fish is 𝐹𝑓𝑖
,

while 𝐹𝑏 is the best fitness function. If the function evaluation
counter is in the first generation of this equation, the fish will
migrate toward one of the N best solutions. If not, it shifts to a
random location.

5) Attack of stronger squids to smallest squids: Fish and

Humboldt squid are presumed to be out of the hunt if they are

unable to locate a better position in the preceding steps. Thus,

the larger Humboldt squid consumes the smaller ones. At this

point, the following equation is used to determine the

Humboldt squid's location:

𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 = 𝑋𝑆𝑛𝑒𝑤,𝑖

𝑑 + 𝑉𝑗𝑒𝑡2. (𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 − 𝑋𝑏

𝑑) (25)

The second velocity parameter in Eq. (25) is 𝑉𝑗𝑒𝑡2. Based

on this connection, it is assumed that the smaller Humboldt

squid is in the best position (𝑋𝑏
𝑑) and that the larger one goes

toward it in order to search for the optimum solutions.

6) Humboldt Squid mating: In CE-HSOA, the egg position

is generated using Eq. (26). It was previously used to improve

the deferential evolutionary (DE) method.

𝐸𝑔𝑔𝑠 = (𝜔. 𝑋𝑆 + (1 − 𝜔. 𝑃𝑏𝑒𝑠𝑡)). 𝛾 + (1 − 𝛾). 𝑝𝑜𝑝(𝑟1, :) +

𝑊. (𝑝𝑜𝑝(𝑟3, :) − 𝑝𝑜𝑝𝐴𝑙𝑙(𝑟2, :)) (26)

The Humboldt squid egg mass is represented by the
variable Eggs in Eq. (27), while the adaptive weights
𝜔, 𝛾, 𝑎𝑛𝑑 𝑊 govern the search procedure. Between 0 and 1 are
𝜔 𝑎𝑛𝑑 𝛾. This equation can be used to estimate 𝑊:

W = max {ω. γ, (1 − ω). γ, 1 − γ} (27)

The current study defines the following equations [Eq. (28)
and Eq. (29)] for estimating 𝜔 𝑎𝑛𝑑 𝛾:

ω = μω + c1. x (28)

γ = μγ + c2. rn⃗⃗⃗⃗ (29)

where, the user determines the constant parameters 𝑐1 and
𝑐2. Additionally, in the first generation, 𝜇𝜔 and 𝜇𝛾 are vectors

with a value of 0.5, and they are updated in subsequent
generations in the manner described below:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

696 | P a g e

www.ijacsa.thesai.org

𝜇𝜔 =
[𝐷𝑖𝑓𝑓𝐹(𝐼).𝜔(𝐼)2]

[𝐷𝑖𝑓𝑓𝐹(𝐼)].[𝜔(𝐼)]
 (30)

𝜇𝛾 =
[𝐷𝑖𝑓𝑓𝐹(𝐼).𝛾(𝐼)2]

[𝐷𝑖𝑓𝑓𝐹(𝐼)].[𝛾(𝐼)]
 (31)

where, DiffF is the difference between the fitness of
Humboldt squids and their eggs, and I is the index indicating
which Humboldt squids are more fit than their eggs in Eq. (30)
and Eq. (31). The mating motion in the CE-HSOA is
performed multiple times because Humboldt squids mate
multiple times during their lifetimes, at each generation. Keep
in mind that the γ ought to be higher than zero. Therefore, the
following equation is used to rectify the γ value if it falls below
zero:

γ = μγ + 0.1. tan (π. rnd) (32)

The typical random number rnd in Eq. (32) falls between 0
and 1. The value of x is calculated using Eq. (33):

𝑥 =
𝑛𝑓𝑒𝑠

𝑚𝑎𝑥𝑛𝑓𝑒𝑠
. 𝑟𝑛𝑑⃗⃗⃗⃗⃗⃗ ⃗𝑟.10 (33)

In Eq. (33), the normal random vector over right around
and the normal random number r are both between 0 and 1,
respectively.

7) Control search process with cyclone foraging: There

are several parameters that influence the CE-HSOA search

process, such as 𝑉𝑗𝑒𝑡 , 𝑉𝑗𝑒𝑡2 , 𝑥, 𝑤𝑓 ,𝑊, 𝜔, 𝑎𝑛𝑑 𝛾 . To replicate

Humboldt squids' shape of locomotion, 𝑉𝑗𝑒𝑡 and 𝑉𝑗𝑒𝑡2 are used.

This is accomplished by using a polynomial function. The

third and fourth degrees, respectively, are assigned to the

power of this polynomial function for 𝑉𝑗𝑒𝑡 and 𝑉𝑗𝑒𝑡2 . To

calculate 𝑉𝑗𝑒𝑡 and 𝑉𝑗𝑒𝑡2, the following formulas are used.

Incorporating the Cyclone Foraging phase from the Manta
Ray Optimization algorithm significantly enhances the CE-
HSOA's search process. The movement pattern provided in this
phase is that of a spiral, thereby increasing the efficiency of
exploring space while also decreasing the chances of falling
into a local optimum. This strikes a balance between global
exploration and local exploitation, ensuring that it is focused on
the promising regions for better refinement of the solution.
Moreover, due to its adaptive and dynamic nature, this
mechanism accelerates convergence and enhances the
algorithm's robustness against premature stagnation. Further
improvement of versatility is achieved through incorporation of
stochastic movements, thereby making CE-HSOA more
effective in solving complex, nonlinear, or multimodal
optimization problems.

𝑉𝑗𝑒𝑡 = 𝑋𝑏𝑒𝑠𝑡 + 𝑟. (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝛽. (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖) (34)

𝑉𝑗𝑒𝑡2 = (𝑋 − 𝑎1). (𝑋 − 𝑎2). (𝑋 − 𝑎3). (𝑋 − 𝑎4) (35)

where , 𝑋𝑏𝑒𝑠𝑡 is the best solution, and 𝛽 is the weight
factor. The value of 𝛽 is given by,

 β = 2er
T−t+1

T . sin (2πr) (36)

The parameters 𝑎1 , 𝑎2 , 𝑎3 , and 𝑎4 of the polynomial
function that define its shape are found in Eq. (34) and Eq. (35)
and can be used to derive 𝑋:

𝑋 =
𝑛𝑓𝑒𝑠

𝑚𝑎𝑥𝑛𝑓𝑒𝑠
 (37)

where, 𝑤𝑓 adjusts the fish's escape radius based on the ratio

of the fish's current objective function value to the value of the
best objective function. The extent of fish escapement is
limited by this parameter during the start of the search, when
there are many possible options. However, this parameter
approaches one and its effect is mitigated as the number of
generations increases. In Eq. (25), the impacts of 𝑋𝑆 are
greater than those of 𝑝𝑏𝑒𝑠𝑡 because raising the generations in
equation 8 raises the value of 𝑥 . The local optima trap is
avoided by CE-HSOA with the aid of these factors. In the
mating portion,𝑤𝑓 , 𝜔 and 𝛾 oversee preventing the ensuing

responses becoming convergent too soon. These settings alter
the search range and strike a balance between exploration and
exploitation based on the objective function's value and the

number of generations.

IV. RESULTS AND DISCUSSIONS

This section compares the performances of several
classification techniques—Proposed Model, CNN, KNN,
SVM, and Logistic Regression—across various metrics such as
accuracy, sensitivity, specificity, precision, F-measure, NPV,
FPR, FNR, and MCC. From the obtained results, the Proposed
Model is seen to be performing better than the other techniques
across most of these metrics, signifying superior classification
performance.

A. Dataset Description

The N-BaIoT Dataset includes traffic information from
nine industrial IoT devices. Of them, seven devices gathered
data for eleven classes, while the other two devices gathered
data for six classes. The information includes both benign
traffic and a range of malicious assaults, including SYN, TCP,
UDP, and scan. Within the current version of the dataset, there
are 89 csv files totaling 7.58 GB in size, with 1486418
examples of both normal and attack cases. The ten attack and
non-attack classifications into which the two botnet attacks,
MIRAI and BASHLITE, were divided. These attacks fall into
three categories: 1) scan instructions, which are used to identify
susceptible IoT devices; 2) ACK, SYN, UDP, and TCP floods;
and 3) combo or combination assaults, which are used to
establish a connection and send spam to it [26].

B. Overall Comparison of the Proposed Botnet Attack

Detection Model

The Table II compares the performance metrics of the
Proposed Model, CNN, KNN, SVM, and Logistic Regression,
highlighting the superiority of the Proposed Model across all
evaluated criteria.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

697 | P a g e

www.ijacsa.thesai.org

TABLE II. COMPARISON OF THE PERFORMANCE METRICS

Techniques Sensitivity Specificity Accuracy Precision F-Measure NPV FPR FNR MCC

Proposed 0.9640 0.9995 0.9900 0.9878 0.9842 0.9964 0.0188 0.0548 0.9726

CNN 0.9377 0.9940 0.9744 0.9825 0.9856 0.9934 0.0283 0.1301 0.9608

KNN 0.9280 0.9861 0.9600 0.9767 0.9798 0.9901 0.0749 0.1550 0.8839

SVM 0.9054 0.9789 0.9484 0.9695 0.9755 0.9800 0.0777 0.1432 0.8760

Logistic Regression 0.8299 0.9344 0.9219 0.8980 0.8976 0.9769 0.0637 0.2172 0.8092

The Proposed Model shows the highest sensitivity,
specificity, accuracy, precision, F-measure, NPV, and MCC at
0.9640, 0.9995, 0.9900, 0.9878, 0.9842, 0.9964, and 0.9726,
respectively, and lowest FPR and FNR values of 0.0188 and
0.0548, respectively, indicating effective minimization of false
classifications. CNN is the second-best performer with high
sensitivity of 0.9377, specificity of 0.9940, and accuracy of
0.9744, but higher error rates than the Proposed Model. KNN
shows average performance, with acceptable sensitivity
(0.9280) and specificity (0.9861), but high FPR (0.0749) and
FNR (0.1550). SVM further drops the sensitivity at 0.9054 and
specifically at 0.9789, along with a decreased MCC at 0.8760.
The Logistic Regression performs the worst, at the lowest
sensitivity (0.8299), specificity (0.9344), and MCC (0.8092),
and the highest FPR (0.0637) and FNR (0.2172). In general,
the Proposed Model significantly outperforms the other
alternatives, demonstrating its strength and effectiveness in
classification tasks.

C. Accuracy, Sensitivity and Specificity

The Table II shows a comparative performance of
accuracy, sensitivity, and specificity for different classification
techniques. The Proposed Model achieves the highest accuracy
(0.9900), signifying its superior ability to classify cases
correctly, both positive and negative. CNN follows with high
accuracy at 0.9744, while KNN, SVM, and Logistic
Regression follow with progressively lower accuracies of
0.9600, 0.9484, and 0.9219, respectively.

Sensitivity, measuring the model to correctly identify
positive cases is also highest for the Proposed Model (0.9640),
as it signifies the efficiency in minimizing the false negatives.
On the other hand, CNN indicates a competitive sensitivity of
(0.9377), while KNN indicates somewhat lower at 0.9280;
whereas SVM, and Logistic Regression indicate extremely
poor sensitivity in detecting positive cases at 0.9054 and
0.8299, respectively. Specificity, which measures the accuracy
in detection of negative cases, approaches near perfection for
the Proposed Model (0.9995), thus reflecting an excellent
ability to reduce false positives. CNN (0.9940) and KNN
(0.9861) are also highly specific, while SVM (0.9789) and
Logistic Regression (0.9344) performed much weaker. Fig. 7
shows accuracy, sensitivity and specificity values.

D. Precision and F-Measure

The Table II also reports Precision and F-Measure, two
important metrics that reflect the performance of a model in
handling positive classifications. Precision measures the
proportion of correctly identified positive cases out of all
predicted positives, which is a measure of the ability of the
model to minimize false positives. The Proposed Model has the
highest precision at 0.9878, which means it can very well

classify true positives while keeping false positives at bay. The
accuracy of CNN is 0.9825, whereas, KNN follows with
0.9767 and then comes SVM with 0.9695, and then Logistic
Regression shows the least accuracy with 0.8980. The F-
Measure is the harmonic means of precision and sensitivity. It
offers a comprehensive view of the performance of the model
in correctly identifying positive cases by weighing the trade-off
between these two measures. The Proposed Model has the best
F-Measure of 0.9842, which indicates its excellent balance
between high precision and sensitivity. CNN is also performing
well with an F-Measure of 0.9856, which is slightly higher
than its precision due to its strong sensitivity. KNN and SVM
have moderate F-Measure values at 0.9798 and 0.9755,
respectively, while Logistic Regression lags far behind at
0.8976. Precision and F-Measure values are shown in Fig. 8.

Fig. 7. Comparison of the accuracy, sensitivity and specificity values.

Fig. 8. Comparison of the precision and F-Measure values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

698 | P a g e

www.ijacsa.thesai.org

E. NPV and MCC

The Table II also shows Negative Predictive Value (NPV)
and Matthews Correlation Coefficient (MCC), furthering the
interpretation of the model's performance. NPV is defined as
the proportion of true negatives in all predicted negatives, thus
representing how well the model can predict negative cases
with minimal false negatives. The Proposed Model attains the
highest NPV (0.9964), indicating its high reliability in terms of
true negatives. CNN is followed by a strong NPV of 0.9934,
followed by KNN at 0.9901, SVM at 0.9800, and Logistic
Regression at 0.9769, which means that the performance is
declining, and Logistic Regression has the worst ability to
classify negative cases. MCC is a comprehensive metric which
calculates the correlation between the true and predicted values
with all possible outcomes: true positives, true negatives, false
positives, and false negatives. The Proposed Model has the
highest MCC of 0.9726, which means the model is well-
balanced and robust in its prediction. CNN has a high MCC of
0.9608, while KNN and SVM have moderate correlation
values at 0.8839 and 0.8760, respectively. Logistic Regression
with the lowest MCC is at 0.8092, which reflects the weakest
overall predictive power. The NPV and MCC values are shown
in Fig. 9.

Fig. 9. Comparison of the NPV and MCC values.

F. FPR and FNR

The Table II evaluates False Positive Rate (FPR) and False
Negative Rate (FNR), which evaluate the model's error rates in
specific contexts. FPR is the proportion of the false positives to
all true negatives, indicating the capacity of the model to get
negative cases wrongly classified as positives. The Proposed
Model acquired the lowest FPR, which is 0.0188, thereby
demonstrating their outstanding capability to minimize false
positive and correctly classify negative instances. CNN
(0.0283) has an FPR that is slightly above KNN (0.0749),
SVM (0.0777), and Logistic Regression (0.0637). Though
logistic regression does better than both KNN and SVM in its
FPR, it significantly lags behind the proposed model and CNN.

Finally, FNR represents how many of the actual positives
in the set were not discovered as positives by the model-thus
representing the model's rate of missing true positive
occurrences. The Proposed Model has the lowest FNR of
0.0548, indicating its higher efficiency in terms of identifying
the right cases with fewer misses. CNN comes next with an

FNR of 0.1301, while KNN has an FNR of 0.1550, SVM
0.1432, and Logistic Regression 0.2172, showing higher rates
and a greater possibility of missing true positives. FPR and
FNR values are compared in Fig. 10.

Fig. 10. Comparison of the FPR and FNR values.

V. CONCLUSION

In conclusion, the DenseRSE-ASPPNet model gives the
best and most efficient approach to botnet detection in IoT
networks, surpassing other traditional machine learning
techniques. Through the use of advanced methods such as the
DenseNet169 backbone, RSE blocks, and ASPP, it can
efficiently extract informative features and capture multi-scale
spatial patterns. Optimized for hyperparameters of the model,
applying the CE-HSOA, which boosts the results to have more
robust and faster convergence. Therefore, a model that yields
better Metrics and shows a high percentage of correctness for
identifying bot activities while having very less errors
involving false positives and false negatives.

The performance comparison highlights the advantages of
DenseRSE-ASPPNet over other models such as CNN, KNN,
SVM, and Logistic Regression. The proposed model achieves
the highest Accuracy (0.9900) and Sensitivity (0.9640),
demonstrating its strong ability to correctly identify botnet
traffic. Its Specificity (0.9995) and Precision (0.9878) further
showcase its reliability in minimizing false positives while
maintaining high detection performance. In contrast, models
like CNN and SVM show lower performance, particularly in
terms of FNR, with SVM having an FNR of 0.1432. KNN also
struggles with a higher False Positive Rate (FPR) of 0.0749,
indicating that it is less effective in distinguishing botnet
traffic. Logistic Regression exhibits the lowest performance
across most metrics, especially in Sensitivity and Accuracy,
underscoring its limitations for complex tasks like botnet
detection. Overall, the results demonstrate that DenseRSE-
ASPPNet provides a significant improvement in botnet
detection performance, making it a highly effective solution for

securing IoT networks.

ACKNOWLEDGMENT

I am grateful to Dr. Talal Alwahaibi Dean College of
Engineering at Ashariqiyah University Ibra for their
encouragement and assistance in helping me finish this

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

699 | P a g e

www.ijacsa.thesai.org

research and also support of Ashariqiyah University Ibra
Oman.

REFERENCES

[1] Nasir, M.H., Arshad, J. and Khan, M.M., 2023. Collaborative device-
level botnet detection for internet of things. Computers & Security, 129,
p.103172.

[2] Li, R., Li, Q., Huang, Y., Zhang, W., Zhu, P. and Jiang, Y., 2022,
September. Iotensemble: Detection of botnet attacks on internet of
things. In European Symposium on Research in Computer Security (pp.
569-588). Cham: Springer Nature Switzerland.

[3] Mudassir, M., Unal, D., Hammoudeh, M. and Azzedin, F., 2022.
Detection of botnet attacks against industrial IoT systems by multilayer
deep learning approaches. Wireless Communications and Mobile
Computing, 2022(1), p.2845446.

[4] Ali, M.H., Jaber, M.M., Abd, S.K., Rehman, A., Awan, M.J.,
Damaševičius, R. and Bahaj, S.A., 2022. Threat analysis and distributed
denial of service (DDoS) attack recognition in the internet of things
(IoT). Electronics, 11(3), p.494.

[5] Nadeem, M.W., Goh, H.G., Aun, Y. and Ponnusamy, V., 2023.
Detecting and mitigating botnet attacks in software-defined networks
using deep learning techniques. IEEE Access, 11, pp.49153-49171.

[6] Rehman Javed, A., Jalil, Z., Atif Moqurrab, S., Abbas, S. and Liu, X.,
2022. Ensemble adaboost classifier for accurate and fast detection of
botnet attacks in connected vehicles. Transactions on Emerging
Telecommunications Technologies, 33(10), p.e4088.

[7] Khanday, S.A., Fatima, H. and Rakesh, N., 2023. Towards the
Development of an Ensemble Intrusion Detection Model for DDoS and
Botnet Mitigation using the IoT-23 Dataset. Journal of Harbin
Engineering University, 44(5).

[8] Maha, A.J., Al-Shurman, M. and Al-Duwairi, B., Attention-based deep
learning approach for detecting IoT botnet-based distributed denial of
service attacks.

[9] Alshahrani, S.M., Alrayes, F.S., Alqahtani, H., Alzahrani, J.S., Maray,
M., Alazwari, S., Shamseldin, M.A. and Al Duhayyim, M., 2023. IoT-
Cloud Assisted Botnet Detection Using Rat Swarm Optimizer with Deep
Learning. Computers, Materials & Continua, 74(2).

[10] Hoang, X.D. and Vu, X.H., 2022. An improved model for detecting
DGA botnets using random forest algorithm. Information Security
Journal: A Global Perspective, 31(4), pp.441-450.

[11] Onyema, E.M., Kumar, M.A., Balasubaramanian, S., Bharany, S.,
Rehman, A.U., Eldin, E.T. and Shafiq, M., 2022. A security policy
protocol for detection and prevention of internet control message
protocol attacks in software defined networks. Sustainability, 14(19),
p.11950.

[12] Attou, H., Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M.,
Alabdultif, A. and Almusallam, N., 2023. Towards an intelligent

intrusion detection system to detect malicious activities in cloud
computing. Applied Sciences, 13(17), p.9588.

[13] Madhu, B., Chari, M.V.G., Vankdothu, R., Silivery, A.K. and
Aerranagula, V., 2023. Intrusion detection models for IOT networks via
deep learning approaches. Measurement: Sensors, 25, p.100641.

[14] Abu Bakar, R. and Kijsirikul, B., 2023. Enhancing Network Visibility
and Security with Advanced Port Scanning Techniques. Sensors, 23(17),
p.7541.

[15] Lawrence, H., Ezeobi, U., Tauil, O., Nosal, J., Redwood, O., Zhuang, Y.
and Bloom, G., 2022. CUPID: A labeled dataset with Pentesting for
evaluation of network intrusion detection. Journal of Systems
Architecture, 129, p.102621.

[16] Nookala Venu, D., Kumar, A. and Rao, M.A.S., 2022. Botnet attacks
detection in internet of things using machine
learning. NeuroQuantology, 20(4), pp.743-754.

[17] Alissa, K., Alyas, T., Zafar, K., Abbas, Q., Tabassum, N. and Sakib, S.,
2022. Botnet attack detection in iot using machine
learning. Computational Intelligence and Neuroscience, 2022(1),
p.4515642.

[18] Al-Fawa’reh, M., Abu-Khalaf, J., Szewczyk, P. and Kang, J.J., 2023.
MalBoT-DRL: Malware botnet detection using deep reinforcement
learning in IoT networks. IEEE Internet of Things Journal.

[19] Kalakoti, R., Nõmm, S. and Bahsi, H., 2022. In-depth feature selection
for the statistical machine learning-based botnet detection in IoT
networks. IEEE Access, 10, pp.94518-94535.

[20] Taher, F., Abdel-Salam, M., Elhoseny, M. and El-Hasnony, I.M., 2023.
Reliable machine learning model for IIoT botnet detection. IEEE
Access, 11, pp.49319-49336.

[21] Waqas, M., Kumar, K., Laghari, A.A., Saeed, U., Rind, M.M., Shaikh,
A.A., Hussain, F., Rai, A. and Qazi, A.Q., 2022. Botnet attack detection
in Internet of Things devices over cloud environment via machine
learning. Concurrency and Computation: Practice and Experience, 34(4),
p.e6662.

[22] S. Alrayes, F., Maray, M., Gaddah, A., Yafoz, A., Alsini, R.,
Alghushairy, O., Mohsen, H. and Motwakel, A., 2022. Modeling of
botnet detection using barnacles mating optimizer with machine learning
model for Internet of Things environment. Electronics, 11(20), p.3411.

[23] Almuqren, L., Alqahtani, H., Aljameel, S.S., Salama, A.S., Yaseen, I.
and Alneil, A.A., 2023. Hybrid metaheuristics with machine learning
based botnet detection in cloud assisted internet of things
environment. IEEE Access.

[24] Kumar, A., Shridhar, M., Swaminathan, S. and Lim, T.J., 2022. Machine
learning-based early detection of IoT botnets using network-edge
traffic. Computers & Security, 117, p.102693.

[25] Catillo, M., Pecchia, A. and Villano, U., 2023. A deep learning method
for lightweight and cross-device IoT botnet detection. Applied
Sciences, 13(2), p.837.

[26] Dataset is taken from https://www.kaggle.com/datasets/mkashifn/nbaiot-
dataset.

https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset

