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Abstract—The growing prevalence of Internet of Things (IoT) 

devices has heightened vulnerabilities to botnet-based 

cyberattacks, necessitating robust detection mechanisms. This 

paper proposes DenseRSE-ASPPNet, an advanced deep learning 

framework for botnet detection, incorporating comprehensive 

preprocessing, feature extraction, and optimization. The 

preprocessing pipeline includes data cleaning and Min-Max 

normalization to ensure high-quality input data. The 

DenseNet169 backbone is enhanced with Residual Squeeze-and-

Excitation (RSE) blocks for channel-wise attention recalibration 

and Atrous Spatial Pyramid Pooling (ASPP) for capturing multi-

scale spatial patterns, enabling effective feature extraction. 

Hyperparameter optimization is performed using the Cyclone-

Enhanced Humboldt Squid Optimization Algorithm (CE-

HSOA), which balances global exploration and local exploitation, 

ensuring faster convergence and enhanced robustness. 

Experimental results demonstrate the superior performance of 

the proposed framework, achieving 99.00 per cent accuracy, 

96.40 per cent sensitivity, and 99.95 per cent specificity, 

significantly minimizing false positives and false negatives. The 

proposed DenseRSE-ASPPNet provides an efficient, scalable, and 

effective solution for mitigating botnet threats in IoT 

environments. 

Keywords—Internet of Things; botnet detection; DenseRSE-

ASPPNet; residual squeeze-and-excitation blocks; Cyclone-
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I. INTRODUCTION 

The connectivity of billions of intelligent objects with 
internet-based communication capabilities is known as the 
"Internet of Things." The number of commonplace machines 
that have sensors built in and are able to interact online has 
significantly increased in recent years. By fusing digital 
intelligence with physical equipment, the Internet of Things 
makes the world wiser. There is a lot of data exchange between 
the connected devices, and security is the main issue with IoT 
[1], [2], [3]. IoT devices are vulnerable to several types of 
cyberattacks since they connect objects to the internet and 
allow them to communicate with one another without human 
intervention. An ever-growing pool of attack resources is made 
possible by the quick spread of unsecured IoT devices and the 
simplicity with which attackers can find them via web services 
like Shodan. Attackers can now launch extensive attacks, 
including phishing, spam, and Distributed Denial of Service 
(DDoS), against Internet resources by assembling and utilizing 
many of these susceptible IoT devices [4], [5], [6]. At the very 
beginning of IoT device design and deployment, appropriate 

security requirements should be determined in order to 
guarantee the security of the IOT network and devices. 

Since the Internet of Things is still in its infancy, it does not 
yet have a strong security framework or system, which puts 
sensitive data at risk. To keep IoT entities, businesses, and 
individuals safe, modern security techniques must be 
implemented on IoT networks. Botnet-based DDoS attacks, in 
which hackers infect devices with scripts, pose the biggest 
security threat to the Internet of Things [7], [8]. Botnet 
detection is a significant difficulty in the cybersecurity field 
due to the variety of botnet structures and protocols and the 
constant development of new, clever methods by attackers to 
damage networks through botnet-assisted attacks [9], [10]. An 
intrusion detection system (IDS) is more successful at 
defending a computer network from external threats, even if 
many solutions, like firewalls and encryption, are designed to 
tackle Internet-based cyberattacks. Therefore, identifying and 
stopping different kinds of harmful network communications 
and computer device usage is the main objective of an 
intrusion detection system (IDS) [11], [12], [13]. IDS, monitor 
and analyses a network's regular everyday activity to detect and 
identify hostile cyberattacks. Enhancing a system's security 
requires an intrusion detection system (IDS) that can detect 
botnets in the network and different botnet-assisted attacks. 

The complexity and evolution of botnets have led to the 
proposal of numerous botnet detection techniques. The use of 
machine learning (ML) techniques for botnet identification has 
become increasingly popular within the past ten years. Before 
ML models are learned or trained, feature extraction is a 
crucial step. When learning and drawing conclusions, these 
characteristics act as discriminators. Although some of the 
current methods for detecting botnets rely on packet 
information or traffic features, they are rendered ineffective 
when traffic patterns are encrypted or secret, and traffic 
patterns can be purposefully changed to evade detection [14], 
[15]. Further, the inability of flow-based machine learning 
algorithms to identify botnets to capture the dynamic 
topological structure of communication networks is one of 
their main shortcomings. 

The proposed approach presents an improved 
DenseNet169-based deep learning framework enriched with 
Squeeze-and-Excitation (SE) blocks and Atrous Spatial 
Pyramid Pooling (ASPP) to address the shortcomings of 
current botnet detection techniques. This design tackles issues 
including restricted spatial pattern identification in network 
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traffic, shallow gradient propagation, and ineffective feature 
extraction. Whereas, ASPP captures multi-scale spatial data 
without adding computing overhead, the addition of SE blocks 
enhances channel-wise attention. Advanced pre-processing 
methods further guarantee high-quality input data, and the Self-
Adaptive Humboldt Squid Optimization Algorithm (HSOA) 
optimizes the model's performance by fine-tuning the 
hyperparameters. For the detection of multi-class botnet attacks 
in IoT systems, this all-encompassing method improves 
detection accuracy and robustness, making it extremely 
effective. The following are the paper's main contributions: 

Development of an advanced DenseNet169-based deep 
learning model, DenseSE-ASPPNet, integrating Residual 
Squeeze-and-Excitation (RSE) blocks for channel-wise 
attention and Atrous Spatial Pyramid Pooling (ASPP) for 
multi-scale feature extraction. 

Incorporation of the Cyclone-Enhanced Humboldt Squid 
Optimization Algorithm (CE-HSOA) for efficient 
hyperparameter tuning, achieving a balance between global 
exploration and local exploitation. 

The Residual Squeeze-and-Excitation (RSE) block is an 
enhancement to the standard Squeeze-and-Excitation (SE) 
block, incorporating a residual learning approach to improve 
feature recalibration, which helps with better channel-wise 
attention and more robust feature extraction. 

The paper is structured as follows: Section II presents a 
comprehensive literature review on existing botnet detection 
methods. Section III details the DenseSE-ASPPNet framework. 
Section IV compares the performance of DenseSE-ASPPNet 
with other methods. Finally, Section V provides the 
conclusion. 

II. LITERATURE REVIEW 

This section discusses the recent existing papers related to 
the Botnet attack detection. 

In 2022, Nookala Venu, et al., [16] employing machine 
learning to detect botnet assaults in the Internet of Things. The 
increasing number of IoT devices that are susceptible to botnet 
assaults has made them a serious threat to internet security. 
Many machine learning (ML)-based methods have been 
released so far to identify different types of botnet attacks. 
Regardless of the dataset, this study proposes a universal 
feature set that is extrapolated based on the frequency counting 
approach and the Logistic Regression method to better detect 
botnet attacks. There are six main steps in the process overall, 
starting with data collection and ending with the detection of 
botnet attacks. 

In 2022, Alissa, et al., [17] Detecting botnet attacks in IoT 
with machine learning. UNSW-NB15, the most comprehensive 
dataset that is publicly accessible, was used in that study. 
Exploratory Data Analysis (EDA) is the statistical analysis 
stage that examines the entire dataset. In the future, the model 
will be able to be trained on a big dataset. SVM and Random 
Forest are two examples of machine learning classifiers that 
can be tested. Runtime Botnet detection can also be done with 
deep learning models in addition to ResNet50 and LSTM 
models. 

In 2023, Al-Fawa’reh, et al., [18] Detecting malware 
botnets in IoT networks with deep reinforcement learning. 
MalBoT-DRL, a powerful malware botnet detector that uses 
deep reinforcement learning (RL), is presented in this paper. 
Enhanced generalizability and robustness against model drift 
are features of MalBoT-DRL, which is designed to detect 
botnets at every stage of their lifespan. Damped incremental 
statistics and an attention reward mechanism are combined in 
this model, which hasn't been thoroughly studied in the 
literature. The dynamic adaptation of MalBoT-DRL to the 
constantly evolving malware patterns in IoT environments is 
made possible by this integration. 

In 2022, Kalakoti, et al., [19] Robust feature selection for 
automated botnet detection in Internet of Things networks 
using statistical machine learning. In this research, we 
minimize feature sets for machine learning tasks, which are 
structured as six distinct binary and multiclass classification 
problems according to the stages of the botnet life cycle. More 
precisely, for every classification task, we determined the best 
feature sets by combining filter and wrapper techniques with 
particular machine learning techniques. The SFS and SBS 
wrapper approaches worked well for identifying the best 
feature sets for each classification. 

In 2023, Taher, et al., [20] IIoT botnet detection using a 
dependable machine learning model. In this paper, we offer a 
unique feature selection algorithm, FGOA-kNN, to select the 
most relevant features. It is based on a hybrid filter and 
wrapper selection strategy. The Grasshopper algorithm (GOA) 
is used to reduce the features that are ranked highest in the new 
technique that is combined with clustering. Additionally, a 
suggested technique called IHHO chooses and modifies the 
hyperparameters of the neural network to effectively identify 
botnets. To improve the global search process for ideal 
solutions, three enhancements are made to the proposed Harris 
Hawks algorithm. 

In 2022, Waqas, et al., [21] Botnet attack detection using 
machine learning in cloud-based Internet of Things devices. 
Investigating cyber security in the face of malware, DDOS, and 
B-IDS attacks is the goal of this research paper. In order to 
detect botnet attacks, various machine learning algorithms have 
been used, including support vector machines, naive Bayes, 
linear regression, artificial neural networks, decision trees, 
random forests, fuzzy classifiers, K-nearest neighbors, adaptive 
boosting, gradient boosting, and tree ensembles. 

In 2022, Alrayes, et al., [22] a botnet detection model for 
the IoT environment is designed using the barnacles mating 
optimizer with machine learning (BND-BMOML). The BND-
BMOML model that is being presented is centered on 
identifying and recognizing botnets in the context of the 
Internet of Things. To achieve this, the BND-BMOML model 
first adopts a data standardization strategy. The BMO 
algorithm is used in the given BND-BMOML model to choose 
a useful collection of characteristics. An Elman neural network 
(ENN) model is used in this study's BND-BMOML model for 
botnet detection. Lastly, to illustrate the work's originality, the 
proposed BND-BMOML model employs a chicken swarm 
optimization (CSO) technique for the parameter tuning 
procedure. 
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In 2022, Almuqren, et al., [23] botnet detection using 
hybrid metaheuristics and machine learning in an IoT context 
supported by the cloud. The Hybrid Metaheuristics with 
Machine Learning based Botnet Detection (HMMLB-BND) 
approach is presented in this paper for the Cloud Aided IoT 
context. In the context of cloud-based IoT, the proposed 
HMMLB-BND technique focuses on the identification and 
categorization of botnet attacks. The Modified Firefly 
Optimization (MFFO) method is used in the HMMLB-BND 
technique that is being presented for feature selection. For 
botnet identification, the HMMLB-BND algorithm employs a 
hybrid convolutional neural network (CNN)-quasi-recurrent 
neural network (QRNN) module. Using the chaotic butterfly 
optimization algorithm (CBOA), the best hyperparameter 
tuning procedure is carried out. 

In 2022, Kumar, et al., [24] early IoT botnet detection 
based on machine learning and network-edge traffic. We 
introduce EDIMA, a lightweight IoT botnet detection tool that 
can be placed at home networks' edge gateways that aims to 
identify botnets before an attack is launched. A unique two-
stage Machine Learning (ML)-based detector designed 
especially for IoT bot identification at the edge gateway is part 

of EDIMA. In order to identify individual bots, the ML-based 
bot detector first uses ML algorithms for classifying aggregate 
traffic, followed by tests based on the Autocorrelation Function 
(ACF). A policy engine, a feature extractor, a traffic parser, 
and a malware traffic database are also included in the EDIMA 
architecture. 

In 2023, Catillo, et al., [25] a deep learning technique for 
IoT botnet detection that is portable and cross-device. Complex 
machine learning architectures are used in many of the current 
intrusion detection system (IDS) concepts for the Internet of 
Things. These architectures typically offer a single model for 
each device or assault. The size and dynamic nature of 
contemporary IoT networks make these methods inappropriate. 
In order to learn a single IDS model rather than numerous 
distinct models over the traffic of various IoT devices, this 
study suggests a novel IoT-driven cross-device technique. 
Since a semi-supervised strategy is more applicable to 
unforeseen attacks, it is used. The approach is built on an all-
in-one deep autoencoder, which uses regular traffic from many 
IoT devices to train a single deep neural network. Table I 
compare the existing papers related to the Botnet attack 
detection. 

TABLE I. COMPARISON OF THE LITERATURE REVIEW PAPERS 

Study Method Detection Technique Advantages Disadvantages 

Nookala et al. [16] Logistic Regression 
Botnet detection using 

frequency counting 

Simple and efficient method; good for 

basic botnet detection tasks 

May not handle highly complex 

attacks well due to the simplicity of 
the frequency counting method. 

Alissa et al. [17] 
SVM, Random Forest, 

ResNet50, LSTM 
Botnet detection in IoT 

Effective for large datasets; can utilize 

deep learning for more complex attack 
patterns 

Requires large datasets for training; 

computationally intensive for real-
time detection. 

Al-Fawa’reh et al. 

[18] 

Deep Reinforcement 

Learning (DRL) 

Malware botnet 

detection 

Enhanced generalizability and 

robustness; adapts dynamically to 

evolving malware patterns 

Complexity of DRL models may lead 

to high computational cost and long 

training times. 

Kalakoti et al. [19] Statistical ML Botnet detection 

Effective for binary and multiclass 

classification; good for identifying 
relevant features 

The feature selection process can be 

computationally expensive and may 

not generalize well across different 
datasets. 

Taher et al. [20] 
kNN, Harris Hawks 

Optimization 
IIoT botnet detection 

Combines hybrid filter and wrapper 

methods for better feature selection; 
effective for IIoT 

High computational overhead due to 

the hybrid approach and complexity 
of the optimization algorithms. 

Waqas et al. [21] 
Various ML Algorithms 

(SVM, ANN, DT, RF, etc.) 
Botnet detection 

Offers a variety of classifiers for 

different attack types; flexible and 

adaptable 

Limited by the effectiveness of 

individual classifiers in handling 

diverse types of botnet attacks. 

Alrayes et al. [22] 
Elman Neural Network 

(ENN) 
Botnet detection in IoT 

Efficient in IoT environments; uses 

BMO for effective feature selection 

May struggle with real-time 

detection and the complexity of 

feature selection using the BMO 

method. 

Almuqren et al. [23] Hybrid CNN-QRNN 
Botnet detection in 

cloud-based IoT 

Combines CNN and QRNN for better 

detection performance in cloud IoT 

High computational demand due to 

the hybrid neural network and feature 
selection processes. 

Kumar et al. [24] 
ML-based two-stage 

detector 

Early IoT botnet 

detection at edge 

Lightweight and fast detection at edge 

gateways; helps in early detection 

May not be effective against 

sophisticated botnet attacks with 
complex behaviors or new attack 

patterns. 

Catillo et al. [25] Deep Autoencoder 
Cross-device IoT botnet 

detection 

Uses semi-supervised learning, which 

is beneficial for handling unforeseen 

attacks 

Challenges in dealing with 

unforeseen or novel attack types due 

to the semi-supervised nature of the 
model. 

Study Methodology Detection Technique Advantages Disadvantages 
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The increasing number of Internet of Things (IoT) devices 
has made them a prime target for botnet attacks, presenting a 
significant challenge for network security. The detection of 
botnet assaults in IoT environments is critical, yet existing 
approaches face various limitations in terms of computational 
efficiency, adaptability to evolving attack patterns, and the 
ability to handle complex or unforeseen attack types. Many 
machine learning (ML) and deep learning (DL) techniques 
have been proposed for botnet detection, utilizing methods like 
Logistic Regression, SVM, Random Forest, and deep 
reinforcement learning. However, these methods often struggle 
with issues such as high computational demands, limited 
generalizability, and difficulty in real-time detection. 
Additionally, feature selection and optimization processes, 
essential for improving detection accuracy, are computationally 
expensive and may not generalize well across diverse IoT 
environments. 

Thus, there is a need for more efficient and adaptive botnet 
detection models that can operate effectively in dynamic and 
resource-constrained IoT environments. These models should 
be capable of detecting a wide range of attack types, including 
novel and sophisticated threats, with minimal computation 
overhead and in real-time. Developing such a model requires 
addressing the challenges of feature selection, optimization, 
and ensuring robustness against evolving malware patterns. 

III. PROPOSED METHODOLOGY 

The DenseSE-ASPPNet is proposed as the botnet detection 
system that combines advanced pre-processing, feature 
extraction, and optimization techniques. Pre-processing begins 
with the cleaning of data from entries that may be irrelevant or 
missing; then Min-Max normalization of features into a 
consistent scale to efficiently train the model is applied. For 
feature extraction, we use the DenseNet169 backbone, 
allowing for feature reuse through dense connections for the 
extraction of compact informative representations. In addition, 
RSE blocks improve channel-wise attention recalibration, 
which helps the model to focus more on important features. 
ASPP is used to capture multi-scale spatial patterns, which are 
very important for botnet activity detection at different 
resolutions. Finally, the hyperparameters of the model are 
optimized using the CE-HSOA, which combines global 
exploration and local exploitation to ensure faster convergence 
and enhanced robustness. Together, these modules enable 
DenseSE-ASPPNet to effectively detect botnet activities in IoT 
networks. The proposed Botnet attack detection model is 
shown in Fig. 1. 

A.  Pre-processing 

Pre-processing in the DenseSE-ASPPNet architecture 
consists of two key operations: data cleaning and Min-Max 
normalization. Data cleaning cleans irrelevant, missing, or 
erroneous entries from the raw network traffic data so that only 
valid information is utilized. After data cleaning, all features 
are scaled within a fixed range by applying Min-Max 
normalization. 

1) Data cleaning: The main purpose of data cleaning is to 

remove unusual data from the original data, such as 

duplicating, missing, or illegal data. When an experiment is 

repeated, all duplicate data are eliminated and just the data 

that appears for the first time are retained. The gaps are filled 

in by averaging the data from the preceding and subsequent 

hours. This is shown in Eq. (1), 

𝑥𝑖 =
𝑥𝑖−1+𝑥𝑖+1

2
                  (1) 

In the padding data, 𝑥𝑖 represents the data to be filled, 

𝑥𝑖−1 represents the data from the previous hour, and 𝑥𝑖+1 
represents the data from the next hour. Unlawful data in this 
experiment are those that have a value of 0 but shouldn't be 0. 
It is also replaced by the average value of the data from the 
preceding and following hours, which is determined by Eq. (1). 

2) Min- Max normalization: In information processing, 

data normalization is a crucial step. This entails standardizing 

data in order to reduce complexity, remove redundancy, and 

enhance data quality. Usually, this method entails scaling 

numerical data to a uniform range of values in order to 

standardize it and facilitate comparison and analysis. In this 

investigation, the min-max normalization method was 

employed. 
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Fig. 1. Block diagram of the proposed Botnet attack detection model. 

The initial data is linearly modified using Min-Max 
normalization. With this method, all scaled data between 0 and 
1 is obtained. The following Eq. (2) can be used for this: The 
relationships between the original data's values are preserved 
using Min-Max normalization. 

𝑍∗ =
𝑧−min (𝑧)

𝑟𝑎𝑛𝑔𝑒(𝑧)
=

𝑧−min (𝑧)

𝑚𝑎𝑥(𝑧)−min (𝑧)
                          (2) 
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The minimal value is denoted by min (z), while range (z) 
denotes the range between maximum and minimum. The 
breadth of the interval is 1, and the range of Z^* is within the 
range [0, 1]. 

B.  DenseRSE-ASPPNet 

DenseRSE-ASPPNet is proposed as an effective model for 
botnet detection using advanced feature extraction techniques. 
Using the DenseNet169 as the backbone, it explores dense 
connections that allow feature reuse while learning compact 
and informative representations for the input data. 
Furthermore, the RSE blocks enhance feature recalibration 
capabilities by making the model adaptive to important 
features while key information is preserved through residual 
learning. In addition, Atrous Spatial Pyramid Pooling (ASPP) 
is used to capture multi-scale spatial patterns that are critical 
for botnet activity detection, which can occur at different 
spatial resolutions. Combining DenseNet, RSE blocks, and 
ASPP enables the DenseRSE-ASPPNet model to effectively 
extract relevant features for accurate and robust botnet 
detection in IoT networks. 

Convolutional layers, max pool layers, transition layers, 
and dense (fully connected) layers make up the DenseNet. 
ReLU is used throughout the model's design, whereas SoftMax 
is used to activate the top layer. The maxpool layers reduce the 
dimensionality of the input, while the convolutional layers 
recover the image's characteristics. In the stack, the first 
flattened layer is followed by the fully linked layers. The 
flatten layer functions as an artificial neural network and 
receives a single input array. The DenseRSE-ASPPNet model 
is shown in Fig. 2. 
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Transition  

block 1
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block 2
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Botnet Attack 
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Pre-
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Fig. 2. Architecture of the DenseRSE-ASPPNet model. 

1) Convolution layer: To put it simply, an activation 

occurs when a convolutional layer applies a filter to an input. 

Continuous application of the filter to an input result in a 

feature map that shows the intensity of the detected features at 

different locations within the input. ReLU and other activation 

methods can then be applied to a feature map that has been 

created using several filters. Often, the operation between 

these two entities is a dot product since the filter employed in 

a convolutional layer is narrower than the input data. 

Assuming a P×P square neuron element, the outcome of this 

layer would be (P-m+1)×(P-m+1), followed by a filter of size 

m×m. The nonlinear input to the unit 𝑥𝑖𝑗
𝑙  is determined by 

summing the inputs from the layer cells preceding them, as 

per Eq. (3). 

𝑥𝑖𝑗
𝑙 = ∑ ∑ 𝜇𝑎𝑏𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1𝑚−1
𝑏=0

𝑚−1
𝑎=0                (3) 

The convolutional layer's implementation of the identified 
non-linearity is demonstrated by Eq. (4). 

𝑦𝑖𝑗
𝑙 = 𝜆(𝑥𝑖𝑗

𝑙 )            (4) 

2) MaxPool layer: Adding a maxpool layer to a CNN is 

primarily done to reduce the dimensionality of the feature 

map. The maxpool layer summarizes the features in the region 

that the pooling layer has filtered, applying a filter on the 

feature map similarly to the preceding layer. n_h×n_w×n_c, 

which represent the feature map's height, width, and channels, 

respectively, are presumed to be present in a feature map. The 

feature map's dimensions are determined by Eq. (5) when the 

maximum pooling (〖max〗_p) across the size f and stride s 

filters is utilized. 

𝑚𝑎𝑥𝑝 =
(𝑛ℎ−𝑓+1)

𝑠
×

(𝑛𝑤−𝑓+1)

𝑠
× 𝑛𝑐                      (5) 

3) Dense layer: The fully connected layer is where the 

majority of classification at the network's end occurs. Unlike 

pooling and convolution, it is a global procedure. A global 

analysis is performed on the output of all the preceding layers 

using the information gathered from the feature extraction 

steps. By doing this, it creates a non-linear blend of the 

characteristics that are utilized to classify information. The 

communication between all neurons in a thick layer and all 

neurons in the layer above it is referred to as strongly coupling 

in a neural network. A matrix-vector multiplication occurs 

whenever each neuron in this layer sends information to its 

matching neuron in the layer underneath. The formula for 

matrix-vector multiplication is provided in Eq. (6). 

𝑀. 𝜆 =

𝑚11 𝑚12 ⋯ 𝑚1𝑦 𝑝1

𝑚21 𝑚22 ⋯ 𝑚2𝑦 𝑝2

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝑚𝑥1 𝑚𝑥2 ⋯ 𝑚𝑥𝑦 𝑝𝑦

                  (6) 

A matrix with dimensions of × y and 1× y, respectively, is 
represented by the variables M and p in the equation above. 
Backpropagation can be used to update the previous layer's 
parameters, which comprise the variable matrix, during 
training. To backpropagate over the learning rate, which is 
defined by changing the weights for the layer ly designated by 
ω^ly and bias represented by the variable B^ly of the neural 
network, utilize Eq. (7) and Eq. (8) respectively. 

𝜔𝑙𝑦 = 𝜔𝑙𝑦 − 𝛼 × 𝑑𝜔𝑙𝑦                                (7) 

   𝐵𝑙𝑦 = 𝐵𝑙𝑦 − 𝛼 × 𝑑𝐵𝑙𝑦                                (8) 
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The dω and db are calculated using a chain rule (from the 
output layer via the hidden layers to the input layer). These are 
dω and db, which are the partial derivatives of ω and b of the 
loss function. Eq. (9) through Eq. (12) are utilized to calculate 
dω and db. 

𝑑𝜔𝑙𝑦 =
𝜕𝐿

𝜕𝜔𝑙𝑦 =
1

𝑛
𝑑𝑍𝑙𝑦𝐴[𝑙𝑦−1]𝑇                    (9) 

dBly =
∂L

∂Bly =
1

n
∑ dZly(i)n

i=1                     (10) 

dAly−1 =
∂L

∂A[ly−1] = WlyTdZly                   (11) 

dZly = dAly × g′(Zly)                           (12) 

As per the previously mentioned equations, the layer ly 
linear activation is represented by the variable Z^ly, and the 
differential of the Z^ly-related non-linear function is denoted 
by g^' (Z^ly). The symbol for the nonlinear activation function 
at the same layer is A^ly. 

4) Transition layer: A CNN uses a transition layer to 

make the model simpler. Usually, a transition layer uses an 

11-layer convolution to lower the number of channels and a 

stride 2 filter to cut the input's height and breadth in half. 

5) SE block with residual connection: The SE Block is 

utilized in this situation due to its simplicity in integrating into 

any model and its capacity to rectify information loss by 

recalibrating features with a negligible increase in parameters. 

By passing the input features via the GAP, the SE-Block-

based attention module condenses each channel into a single 

feature, or scalar value. The two phases of the SE Block are 

excitation and squeezing. Every channel in the image is made 

one-dimensional during the squeeze stage by using global 

average pooling, or GAP. A rectified linear unit (ReLU) and a 

sigmoid are two completely connected layers that the 

squeezed vector passes through during the recalibration stage. 

In order to highlight the key information, the flattened vector 

is then multiplied by the image that has undergone a 1 × 1 

convolution and the weight, which represents squeezed 

information. An SE Block is depicted in Fig. 3. The SE 

Block's reduction ratio is a hyperparameter that modifies the 

number of nodes in the ReLU and fully linked layer. The 

number of parameters rose as the reduction ratio dropped. The 

number of parameters dropped as the reduction ratio grew. In 

other words, it is a hyperparameter associated with variations 

in computing cost and capacity. The recalibrated output and 

the input layer are connected by a residual connection that is 

introduced at the recalibration stage. A direct shortcut between 

a module's input and output is another design element in the 

residual connection block that improves the gradient flow 

during backpropagation while maintaining information. 

Adding the recalibrated feature map back to the input is how a 

SE Block that uses residual connections is implemented. 

The SE channel attention process involves several 
important equations. The Squeeze operation uses global 
average pooling to reduce the input feature map (H×W×C) to 
1×1 ×C. The height, breadth, and number of channels of the 

original feature map are denoted by H, W, and C, respectively. 
This could be shown in Eq. (13), 

𝑧𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊
𝑗=1

𝐻
𝑖=1                      (13) 
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Fig. 3. Block diagram of the RSE block. 

In this case, u_c is the feature value of the c^th channel at 
position (i,j) in the input feature map, and z_c is the Squeeze 
output of the c^th channel. An activating mechanism and two 
fully connected layers are used in the Excitation phase to 
establish channel weights and understand the correlations 
between channels. In Eq. (14), 

s = σ(W2δ(W1z))  (14) 

where, z is the Squeeze phase's output, δ is the ReLU value, 
σ is the Sigmoid function, s is the generated channel weight 
vector, and W1 and W2 are learned weight parameters. 
Furthermore, after the SE attention system is executed, the 
feature specification is obtained by multiplying the channel's 
weights by the initial features. In Eq. (15), the recalibration 
procedure is displayed. 

𝑦𝑐 = 𝑠𝑐 . 𝑢𝑐           (15) 

The input features (u_c) are appended to the recalibrated 
features (y_c) in order to create a residual connection: 

ŷc = yc + uc           (16) 

This equation can also be written as: 

�̂�𝑐 = (𝑠𝑐 . 𝑢𝑐) + 𝑢𝑐                             (17) 

The addition ensures that the recalibrated features enhance 
the input features without overwriting the original information, 
maintaining a balance between recalibration and preservation. 

6) ASPP module: The ASPP module's dilated convolution, 

sometimes referred to as extended convolution or atrous 

convolution, is distinguished by the addition of gaps between 

the convolution kernel's constituent pieces. This preserves the 

original input feature map's height and width while expanding 

the kernel's receptive field. The convolution kernel's spacing is 
indicated by the dilation rate. By altering the dilation rate, the 

filter's receptive field can be adjusted appropriately. Every two 

convolutional kernel elements are separated by (r-1) zeros, as 

seen in Fig. 3. k ' = k + (k - 1) × (r - 1) is the kernel's effective 
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size. Among these, r stands for the dilation rate and k for the 

convolutional kernel's size. Dilated convolution is the same as 

ordinary convolution when r=1. It can modify the 

convolutional kernel's receptive field by varying the dilation 

rate without requiring additional calculations or parameters. 

The basic dilation model is shown in Fig. 4. 

 
Fig. 4. 3×3 Filter with different dilation rate as 1, 2, and 3. 

An ASPP module is added at the network's bottom to 
extract multi-scale features that will aid the network in 
comprehending and capturing data at various scales. Spatial 
Pyramid Pooling (SPP) is the foundation of the enhanced 
ASPP module. The use of dilated convolutions in place of 
ordinary convolutions is where ASPP and SPP diverge. This 
module uses dilated convolutions with varying dilation rates as 
the final prediction in order to merge multiple receptive field 
features. The ASPP module makes use of adaptive average 
pooling in conjunction with four parallel dilated convolutions 
(with dilation rates of 1, 6, 12, and 18), as illustrated in Fig. 5. 
Batch normalization (BN), ReLU activation, and a convolution 
operation make up each dilated convolution. Concat can be 
used to join parallel networks. To guarantee that the output 
image size stays the same as the input image size, use BN, 
ReLU, and ordinary convolution (with a kernel size of 1×1). 

7) Fully Connected (FC) layer: The FC layer performs 

feature aggregation by combining the learned features from 

different areas of the input image. The network can provide 

more sophisticated representations by capturing higher-level 

patterns and correlations between features thanks to this 

aggregation. In this assignment, the burst assembly is carried 

out, and the output of the completely linked layer is frequently 

used to generate final predictions. The proposed model's final 

layer has two layers, provides the final output for prediction. 

8) SoftMax activation layer: Deep learning systems 

commonly use the softmax activation function to address 

classification issues. In Eq. (18), where, weight is represented 

by the variable ω and bias by the variable b over an input 

vector x, defines the general form of a nonlinear activation 

function. 

𝑦 = 𝑓(𝜔 × 𝑥 + 𝑏)                            (18) 

The output layer of a convolutional neural network 
employs the softmax function to estimate the likelihood of each 
output class. According to the softmax function's 
specifications, each neuron in the output layer receives a single 

value. Each of these neurons in the output layer determines the 
likelihood (or probability) that a certain node will reach the 
output. When applied to the input, the softmax function is 
defined over the softmax function Θ. According to Eq. (19), 
v_i relates to the exponential function of the input vector, 
represented by e^(v_i ), and the exponent function of the output 
vector, represented by e^(v_o ), with m instances. 

Θ(𝑧)𝑥 =
𝑒𝑣𝑖

∑ 𝑒𝑣𝑜𝑚
𝑦=1

                             (19) 
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Fig. 5. Structure of the ASPP model. 

This work uses softmax as the activation function and the 
binary cross-entropy loss function as the loss function. Binary 
cross-entropy has been used in the past to solve binarization 
challenges. Eq. (20) and Eq. (21) display the binary cross-
entropy loss function for a network with n layers. 

𝐾(𝜔, 𝑏) =
1

𝑛
∑ 𝐿(𝑎(𝑖),𝑛

𝑖=1 𝑎(𝑖))               (20) 

𝐿(�̂�, 𝑎) = −(𝑎 × log �̂� + (1 − 𝑎) × log(1 − �̂�))         (21) 

With the variable a representing output class 1 and (1-a) 
representing output class 0, a  ̂ represents the probability of 
output class 1 and (1-a )̂ for the class 0 result. The heatmap for 
the extracted features is shown in Fig. 6. 

C. Hyper Parameter Tuning of DenseRSE-ASPPNet using 

CE-HSOA 

Hyperparameter tuning is an important step while 
optimizing the performance of the model DenseRSE-ASPPNet. 
The effectiveness of deep learning models, such as DenseRSE-
ASPPNet, may be highly reliant on hyperparameters like a 
learning rate, batch size, number of layers, etc. To effectively 
find a good combination of hyperparameters, we apply the CE-
HSOA. 
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Fig. 6. Heatmap of correlations. 

In HSOA, hunting, migration, and mating were important 
phases. For the search operation, five mechanisms are specified 
in order to quantitatively model this process. Attacking schools 
of fish, escaping fish, successfully attacking, attacking smaller 
squids, and mating Humboldt squids are the components of 
these methods. As CE-HSOA iterations increase, the search 
process shifts from exploration to exploitation through mating, 
bigger squids attacking smaller squids, and fish schools 
attacking. Fish Escape, however, manages exploration in each 
iteration. 

1) Generating initial population: The CE-HSOA 

population is made up of fish swarms and Humboldt squid. 

Algorithm 1 is the pseudocode that CE-HSOA employs to 

create the first population. As may be observed, Humboldt 

squid are thought to be the best individuals in the population, 

whereas fish make up the remainder. Since the Hublot squid is 

larger and more fit than school fish, this problem is in line 

with nature. 

2) Attack of fish schools: In CE-HSOA, the attack of fish 

schools is simulated using Eq. (22). 

𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 = 𝑋𝑏 + 𝑉𝑗𝑒𝑡 . (−𝑋𝐹𝑛𝑒𝑤,𝑟1

𝑑 − 𝑃𝑜𝑝𝐴𝑙𝑙𝑟2
𝑑 )      (22) 

According to Eq. (1), 𝑃𝑜𝑝𝐴𝑙𝑙𝑟2
𝑑  is the saved 𝑟2

𝑡ℎ position in 

the CE-HSOA memory, 𝑋𝐹𝑛𝑒𝑤,𝑟1
𝑑  is the position of 𝑟1

𝑡ℎ fish in 

𝑑𝑡ℎ dimension, 𝑉𝑗𝑒𝑡  is the locomotion velocity parameter, and 

𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 , i is the new position of 𝑖𝑡ℎ  Humboldt squid in 𝑑𝑡ℎ 

dimension. Additionally, 𝑟1 and 𝑟2 are random integer numbers 
between 1 and the size of the PopAll and the population size of 
fish, respectively. Responsibility for 𝑉𝑗𝑒𝑡 . 

3) Successful attack: The new position for Humboldt 

squid (𝑋𝑆𝑖) replaces the existing position for Humboldt squid 

after the new positions for fish and squid have been updated. 

𝑋𝑆𝑖
𝑑 = {

𝑋𝑆𝑖 = 𝑋𝑆𝑛𝑒𝑤,𝑖 ,   𝑖𝑓 𝐹𝑆𝑛𝑒𝑤,𝑖 < 𝐹𝑆𝑖

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑒𝑠𝑐𝑎𝑝𝑒,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (23) 

The new and current fitness functions of the 𝑖𝑡ℎ Humboldt 
squid are denoted by 𝐹𝑆𝑛𝑒𝑤,𝑖 and 𝐹𝑆𝑖 in Eq. (23). 

4) Successful escape: When the school of fish is attacked 

by the squid, the fish flee to a randomly chosen spot. The 

following equation is used in this escape to update the fish's 

position and velocity. 

𝑋𝐹𝑛𝑒𝑤,𝑖 =

{
𝑋𝐹𝑖 + 𝑟𝑛⃗⃗⃗⃗  ⃗. (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝐹𝑖). 𝑤𝑓,   𝑖𝑓 𝑛𝑓𝑒𝑠 < 0.1𝑚𝑎𝑥𝑛𝑓𝑒𝑠

𝑋𝑆𝑖 + 𝑟𝑛⃗⃗⃗⃗  ⃗. (𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑋𝑟1 − 𝑃𝑜𝑝𝐴𝑙𝑙𝑟2),   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (24) 

The number of function evaluations in Eq. (24) is 
represented by 𝑛𝑓𝑒𝑠, the maximum number is represented by 

𝑚𝑎𝑥𝑛𝑓𝑒𝑠, 𝐴𝑟𝑐ℎ𝑖𝑣𝑒𝑋𝑟1
 is the 𝑟𝑡ℎ place in the archive of the best 

results, 𝑋𝑆𝑖 is the 𝑖𝑡ℎ location of the Humboldt squid, 𝑟𝑛⃗⃗⃗⃗  is the 
normal random vector, 𝑤𝑓 =  𝐹𝑏, 𝑋𝐹𝑛𝑒𝑤,𝑖 is the new position 

of 𝑖𝑡ℎ fish, 𝑋𝐹𝑖  is the current position of 𝑖𝑡ℎ fish, and 𝑃𝑏𝑒𝑠𝑡  is N 

top of the best positions. The fitness function of 𝑖𝑡ℎ fish is 𝐹𝑓𝑖
, 

while 𝐹𝑏 is the best fitness function. If the function evaluation 
counter is in the first generation of this equation, the fish will 
migrate toward one of the N best solutions. If not, it shifts to a 
random location. 

5) Attack of stronger squids to smallest squids: Fish and 

Humboldt squid are presumed to be out of the hunt if they are 

unable to locate a better position in the preceding steps. Thus, 

the larger Humboldt squid consumes the smaller ones. At this 

point, the following equation is used to determine the 

Humboldt squid's location: 

𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 = 𝑋𝑆𝑛𝑒𝑤,𝑖

𝑑 + 𝑉𝑗𝑒𝑡2. (𝑋𝑆𝑛𝑒𝑤,𝑖
𝑑 − 𝑋𝑏

𝑑)            (25) 

The second velocity parameter in Eq. (25) is 𝑉𝑗𝑒𝑡2. Based 

on this connection, it is assumed that the smaller Humboldt 

squid is in the best position (𝑋𝑏
𝑑) and that the larger one goes 

toward it in order to search for the optimum solutions. 

6) Humboldt Squid mating: In CE-HSOA, the egg position 

is generated using Eq. (26). It was previously used to improve 

the deferential evolutionary (DE) method. 

𝐸𝑔𝑔𝑠 = (𝜔. 𝑋𝑆 + (1 − 𝜔. 𝑃𝑏𝑒𝑠𝑡)). 𝛾 + (1 − 𝛾). 𝑝𝑜𝑝(𝑟1, : ) +

𝑊. (𝑝𝑜𝑝(𝑟3, : ) − 𝑝𝑜𝑝𝐴𝑙𝑙(𝑟2, : ))                (26) 

The Humboldt squid egg mass is represented by the 
variable Eggs in Eq. (27), while the adaptive weights 
𝜔, 𝛾, 𝑎𝑛𝑑 𝑊 govern the search procedure. Between 0 and 1 are 
𝜔 𝑎𝑛𝑑 𝛾. This equation can be used to estimate 𝑊: 

W = max {ω. γ, (1 − ω). γ, 1 − γ}                 (27) 

The current study defines the following equations [Eq. (28) 
and Eq. (29)] for estimating 𝜔 𝑎𝑛𝑑 𝛾: 

ω = μω + c1. x                                 (28) 

γ = μγ + c2. rn⃗⃗⃗⃗                                  (29) 

where, the user determines the constant parameters 𝑐1 and 
𝑐2. Additionally, in the first generation, 𝜇𝜔 and 𝜇𝛾 are vectors 

with a value of 0.5, and they are updated in subsequent 
generations in the manner described below: 
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𝜇𝜔 =
[𝐷𝑖𝑓𝑓𝐹(𝐼).𝜔(𝐼)2]

[𝐷𝑖𝑓𝑓𝐹(𝐼)].[𝜔(𝐼)]
                       (30) 

𝜇𝛾 =
[𝐷𝑖𝑓𝑓𝐹(𝐼).𝛾(𝐼)2]

[𝐷𝑖𝑓𝑓𝐹(𝐼)].[𝛾(𝐼)]
                         (31) 

where, DiffF  is the difference between the fitness of 
Humboldt squids and their eggs, and I is the index indicating 
which Humboldt squids are more fit than their eggs in Eq. (30) 
and Eq. (31). The mating motion in the CE-HSOA is 
performed multiple times because Humboldt squids mate 
multiple times during their lifetimes, at each generation. Keep 
in mind that the γ ought to be higher than zero. Therefore, the 
following equation is used to rectify the γ value if it falls below 
zero: 

γ = μγ + 0.1. tan (π. rnd)        (32) 

The typical random number rnd in Eq. (32) falls between 0 
and 1. The value of x is calculated using Eq. (33): 

𝑥 =
𝑛𝑓𝑒𝑠

𝑚𝑎𝑥𝑛𝑓𝑒𝑠
. 𝑟𝑛𝑑⃗⃗⃗⃗⃗⃗  ⃗𝑟.10     (33) 

In Eq. (33), the normal random vector over right around 
and the normal random number r are both between 0 and 1, 
respectively. 

7) Control search process with cyclone foraging: There 

are several parameters that influence the CE-HSOA search 

process, such as 𝑉𝑗𝑒𝑡 , 𝑉𝑗𝑒𝑡2 , 𝑥, 𝑤𝑓 ,𝑊, 𝜔, 𝑎𝑛𝑑 𝛾 . To replicate 

Humboldt squids' shape of locomotion, 𝑉𝑗𝑒𝑡  and 𝑉𝑗𝑒𝑡2 are used. 

This is accomplished by using a polynomial function. The 

third and fourth degrees, respectively, are assigned to the 

power of this polynomial function for 𝑉𝑗𝑒𝑡  and 𝑉𝑗𝑒𝑡2 . To 

calculate 𝑉𝑗𝑒𝑡   and 𝑉𝑗𝑒𝑡2, the following formulas are used. 

Incorporating the Cyclone Foraging phase from the Manta 
Ray Optimization algorithm significantly enhances the CE-
HSOA's search process. The movement pattern provided in this 
phase is that of a spiral, thereby increasing the efficiency of 
exploring space while also decreasing the chances of falling 
into a local optimum. This strikes a balance between global 
exploration and local exploitation, ensuring that it is focused on 
the promising regions for better refinement of the solution. 
Moreover, due to its adaptive and dynamic nature, this 
mechanism accelerates convergence and enhances the 
algorithm's robustness against premature stagnation. Further 
improvement of versatility is achieved through incorporation of 
stochastic movements, thereby making CE-HSOA more 
effective in solving complex, nonlinear, or multimodal 
optimization problems. 

𝑉𝑗𝑒𝑡 = 𝑋𝑏𝑒𝑠𝑡 + 𝑟. (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝛽. (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖)      (34) 

𝑉𝑗𝑒𝑡2 = (𝑋 − 𝑎1). (𝑋 − 𝑎2). (𝑋 − 𝑎3). (𝑋 − 𝑎4)      (35) 

where , 𝑋𝑏𝑒𝑠𝑡  is the best solution, and 𝛽  is the weight 
factor. The value of 𝛽 is given by, 

 β = 2er
T−t+1

T . sin (2πr)                     (36) 

The parameters 𝑎1 , 𝑎2 , 𝑎3 , and 𝑎4  of the polynomial 
function that define its shape are found in Eq. (34) and Eq. (35) 
and can be used to derive 𝑋: 

𝑋 =
𝑛𝑓𝑒𝑠

𝑚𝑎𝑥𝑛𝑓𝑒𝑠
                                   (37) 

where, 𝑤𝑓 adjusts the fish's escape radius based on the ratio 

of the fish's current objective function value to the value of the 
best objective function. The extent of fish escapement is 
limited by this parameter during the start of the search, when 
there are many possible options. However, this parameter 
approaches one and its effect is mitigated as the number of 
generations increases. In Eq. (25), the impacts of 𝑋𝑆  are 
greater than those of 𝑝𝑏𝑒𝑠𝑡  because raising the generations in 
equation 8 raises the value of 𝑥 . The local optima trap is 
avoided by CE-HSOA with the aid of these factors. In the 
mating portion,𝑤𝑓 , 𝜔 and 𝛾  oversee preventing the ensuing 

responses becoming convergent too soon. These settings alter 
the search range and strike a balance between exploration and 
exploitation based on the objective function's value and the 

number of generations. 

IV. RESULTS AND DISCUSSIONS 

This section compares the performances of several 
classification techniques—Proposed Model, CNN, KNN, 
SVM, and Logistic Regression—across various metrics such as 
accuracy, sensitivity, specificity, precision, F-measure, NPV, 
FPR, FNR, and MCC. From the obtained results, the Proposed 
Model is seen to be performing better than the other techniques 
across most of these metrics, signifying superior classification 
performance. 

A. Dataset Description 

The N-BaIoT Dataset includes traffic information from 
nine industrial IoT devices. Of them, seven devices gathered 
data for eleven classes, while the other two devices gathered 
data for six classes. The information includes both benign 
traffic and a range of malicious assaults, including SYN, TCP, 
UDP, and scan. Within the current version of the dataset, there 
are 89 csv files totaling 7.58 GB in size, with 1486418 
examples of both normal and attack cases. The ten attack and 
non-attack classifications into which the two botnet attacks, 
MIRAI and BASHLITE, were divided. These attacks fall into 
three categories: 1) scan instructions, which are used to identify 
susceptible IoT devices; 2) ACK, SYN, UDP, and TCP floods; 
and 3) combo or combination assaults, which are used to 
establish a connection and send spam to it [26].  

B. Overall Comparison of the Proposed Botnet Attack 

Detection Model 

The Table II compares the performance metrics of the 
Proposed Model, CNN, KNN, SVM, and Logistic Regression, 
highlighting the superiority of the Proposed Model across all 
evaluated criteria. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

697 | P a g e  

www.ijacsa.thesai.org 

TABLE II. COMPARISON OF THE PERFORMANCE METRICS 

Techniques Sensitivity Specificity Accuracy Precision F-Measure NPV FPR FNR MCC 

Proposed 0.9640 0.9995 0.9900 0.9878 0.9842 0.9964 0.0188 0.0548 0.9726 

CNN 0.9377 0.9940 0.9744 0.9825 0.9856 0.9934 0.0283 0.1301 0.9608 

KNN 0.9280 0.9861 0.9600 0.9767 0.9798 0.9901 0.0749 0.1550 0.8839 

SVM 0.9054 0.9789 0.9484 0.9695 0.9755 0.9800 0.0777 0.1432 0.8760 

Logistic Regression 0.8299 0.9344 0.9219 0.8980 0.8976 0.9769 0.0637 0.2172 0.8092 
 

The Proposed Model shows the highest sensitivity, 
specificity, accuracy, precision, F-measure, NPV, and MCC at 
0.9640, 0.9995, 0.9900, 0.9878, 0.9842, 0.9964, and 0.9726, 
respectively, and lowest FPR and FNR values of 0.0188 and 
0.0548, respectively, indicating effective minimization of false 
classifications. CNN is the second-best performer with high 
sensitivity of 0.9377, specificity of 0.9940, and accuracy of 
0.9744, but higher error rates than the Proposed Model. KNN 
shows average performance, with acceptable sensitivity 
(0.9280) and specificity (0.9861), but high FPR (0.0749) and 
FNR (0.1550). SVM further drops the sensitivity at 0.9054 and 
specifically at 0.9789, along with a decreased MCC at 0.8760. 
The Logistic Regression performs the worst, at the lowest 
sensitivity (0.8299), specificity (0.9344), and MCC (0.8092), 
and the highest FPR (0.0637) and FNR (0.2172). In general, 
the Proposed Model significantly outperforms the other 
alternatives, demonstrating its strength and effectiveness in 
classification tasks. 

C. Accuracy, Sensitivity and Specificity 

The Table II shows a comparative performance of 
accuracy, sensitivity, and specificity for different classification 
techniques. The Proposed Model achieves the highest accuracy 
(0.9900), signifying its superior ability to classify cases 
correctly, both positive and negative. CNN follows with high 
accuracy at 0.9744, while KNN, SVM, and Logistic 
Regression follow with progressively lower accuracies of 
0.9600, 0.9484, and 0.9219, respectively. 

Sensitivity, measuring the model to correctly identify 
positive cases is also highest for the Proposed Model (0.9640), 
as it signifies the efficiency in minimizing the false negatives. 
On the other hand, CNN indicates a competitive sensitivity of 
(0.9377), while KNN indicates somewhat lower at 0.9280; 
whereas SVM, and Logistic Regression indicate extremely 
poor sensitivity in detecting positive cases at 0.9054 and 
0.8299, respectively. Specificity, which measures the accuracy 
in detection of negative cases, approaches near perfection for 
the Proposed Model (0.9995), thus reflecting an excellent 
ability to reduce false positives. CNN (0.9940) and KNN 
(0.9861) are also highly specific, while SVM (0.9789) and 
Logistic Regression (0.9344) performed much weaker. Fig. 7 
shows accuracy, sensitivity and specificity values. 

D. Precision and F-Measure 

The Table II also reports Precision and F-Measure, two 
important metrics that reflect the performance of a model in 
handling positive classifications. Precision measures the 
proportion of correctly identified positive cases out of all 
predicted positives, which is a measure of the ability of the 
model to minimize false positives. The Proposed Model has the 
highest precision at 0.9878, which means it can very well 

classify true positives while keeping false positives at bay. The 
accuracy of CNN is 0.9825, whereas, KNN follows with 
0.9767 and then comes SVM with 0.9695, and then Logistic 
Regression shows the least accuracy with 0.8980. The F-
Measure is the harmonic means of precision and sensitivity. It 
offers a comprehensive view of the performance of the model 
in correctly identifying positive cases by weighing the trade-off 
between these two measures. The Proposed Model has the best 
F-Measure of 0.9842, which indicates its excellent balance 
between high precision and sensitivity. CNN is also performing 
well with an F-Measure of 0.9856, which is slightly higher 
than its precision due to its strong sensitivity. KNN and SVM 
have moderate F-Measure values at 0.9798 and 0.9755, 
respectively, while Logistic Regression lags far behind at 
0.8976. Precision and F-Measure values are shown in Fig. 8. 

 

Fig. 7. Comparison of the accuracy, sensitivity and specificity values. 

 
Fig. 8. Comparison of the precision and F-Measure values. 
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E. NPV and MCC 

The Table II also shows Negative Predictive Value (NPV) 
and Matthews Correlation Coefficient (MCC), furthering the 
interpretation of the model's performance. NPV is defined as 
the proportion of true negatives in all predicted negatives, thus 
representing how well the model can predict negative cases 
with minimal false negatives. The Proposed Model attains the 
highest NPV (0.9964), indicating its high reliability in terms of 
true negatives. CNN is followed by a strong NPV of 0.9934, 
followed by KNN at 0.9901, SVM at 0.9800, and Logistic 
Regression at 0.9769, which means that the performance is 
declining, and Logistic Regression has the worst ability to 
classify negative cases. MCC is a comprehensive metric which 
calculates the correlation between the true and predicted values 
with all possible outcomes: true positives, true negatives, false 
positives, and false negatives. The Proposed Model has the 
highest MCC of 0.9726, which means the model is well-
balanced and robust in its prediction. CNN has a high MCC of 
0.9608, while KNN and SVM have moderate correlation 
values at 0.8839 and 0.8760, respectively. Logistic Regression 
with the lowest MCC is at 0.8092, which reflects the weakest 
overall predictive power. The NPV and MCC values are shown 
in Fig. 9. 

 
Fig. 9. Comparison of the NPV and MCC values. 

F. FPR and FNR 

The Table II evaluates False Positive Rate (FPR) and False 
Negative Rate (FNR), which evaluate the model's error rates in 
specific contexts. FPR is the proportion of the false positives to 
all true negatives, indicating the capacity of the model to get 
negative cases wrongly classified as positives. The Proposed 
Model acquired the lowest FPR, which is 0.0188, thereby 
demonstrating their outstanding capability to minimize false 
positive and correctly classify negative instances. CNN 
(0.0283) has an FPR that is slightly above KNN (0.0749), 
SVM (0.0777), and Logistic Regression (0.0637). Though 
logistic regression does better than both KNN and SVM in its 
FPR, it significantly lags behind the proposed model and CNN. 

Finally, FNR represents how many of the actual positives 
in the set were not discovered as positives by the model-thus 
representing the model's rate of missing true positive 
occurrences. The Proposed Model has the lowest FNR of 
0.0548, indicating its higher efficiency in terms of identifying 
the right cases with fewer misses. CNN comes next with an 

FNR of 0.1301, while KNN has an FNR of 0.1550, SVM 
0.1432, and Logistic Regression 0.2172, showing higher rates 
and a greater possibility of missing true positives. FPR and 
FNR values are compared in Fig. 10. 

 
Fig. 10. Comparison of the FPR and FNR values. 

V. CONCLUSION 

In conclusion, the DenseRSE-ASPPNet model gives the 
best and most efficient approach to botnet detection in IoT 
networks, surpassing other traditional machine learning 
techniques. Through the use of advanced methods such as the 
DenseNet169 backbone, RSE blocks, and ASPP, it can 
efficiently extract informative features and capture multi-scale 
spatial patterns. Optimized for hyperparameters of the model, 
applying the CE-HSOA, which boosts the results to have more 
robust and faster convergence. Therefore, a model that yields 
better Metrics and shows a high percentage of correctness for 
identifying bot activities while having very less errors 
involving false positives and false negatives. 

The performance comparison highlights the advantages of 
DenseRSE-ASPPNet over other models such as CNN, KNN, 
SVM, and Logistic Regression. The proposed model achieves 
the highest Accuracy (0.9900) and Sensitivity (0.9640), 
demonstrating its strong ability to correctly identify botnet 
traffic. Its Specificity (0.9995) and Precision (0.9878) further 
showcase its reliability in minimizing false positives while 
maintaining high detection performance. In contrast, models 
like CNN and SVM show lower performance, particularly in 
terms of FNR, with SVM having an FNR of 0.1432. KNN also 
struggles with a higher False Positive Rate (FPR) of 0.0749, 
indicating that it is less effective in distinguishing botnet 
traffic. Logistic Regression exhibits the lowest performance 
across most metrics, especially in Sensitivity and Accuracy, 
underscoring its limitations for complex tasks like botnet 
detection. Overall, the results demonstrate that DenseRSE-
ASPPNet provides a significant improvement in botnet 
detection performance, making it a highly effective solution for 

securing IoT networks. 
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