
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

718 | P a g e  

www.ijacsa.thesai.org 

Towards an Optimization Model for Household 

Waste Bins Location Management

Moulay Lakbir Tahiri Alaoui, Meryam Belhiah, Soumia Ziti 

Intelligent Processing and Security of Systems-Faculty of Sciences, Mohammed V University in Rabat, Morocco 

 

 
Abstract—Smart cities require effective, adaptive household 

waste management systems due to rapid urbanization. Traditional 

bin placement strategies based on placing bins equidistant among 

residents fail to account for actual human behavior, leading to 

overflowing or underused bins. This paper addresses optimizing 

bin location and capacity through Internet of things (IoT) 

technologies and data-driven decision-making by deploying 

LoRaWAN sensors in Tangier City as a case study; real-time 

usage information was then collected and analyzed. Through 

statistical analysis and outlier detection techniques, the proposed 

approach identifies bin placements that are non-optimized by 

using statistical analysis. It also evaluates data quality and classes 

bins by their usage level; results show several bins were constantly 

overused or underused indicating that dynamic placement and 

capacity adjustment would improve waste collection efficiency, 

reduce operational costs and enhance citizen satisfaction within a 

Smart City framework. 
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I. INTRODUCTION 

Cities in developing nations are rapidly expanding, 
increasing the challenges associated with household waste 
management. Data collected from networks of IoT sensors 
placed in waste bins provide valuable data about filling levels 
and enable dynamic waste collection planning. Leveraging IoT 
networks to monitor fill rates in real time allows waste collection 
to be optimized without degrading the quality of service for 
citizens or wasting resources by emptying half-full bins. 

Despite recent advances, several shortcomings remain in 
existing waste management systems. Many solutions rely on 
static routing or periodic collection schedules, ignoring real-
time variations in bin usage. Prior works often lack robustness 
against real-world factors such as communication failures, and 
temporary urban events. To communicate with the servers, some 
studies use both IOT and GSM  [1], which is expensive. 

Furthermore, most studies address filling rate without 
integrating additional factors such as bin moisture and 
temperature, which are crucial for assessing waste degradation 
and health risks. 

These limitations explain why the problem of dynamic and 
efficient bin management remains partially unsolved. Existing 
approaches either oversimplify the complexity of urban 
environments or fail to incorporate reliable outlier detection, 
resulting in inefficient resource allocation and increased 
operational costs [2]. 

This study proposes a method to optimize bin locations and 
dimensions based on continuous real-time data collected from 
sensors embedded in waste bins. The approach also incorporates 
an optimized routing algorithm for waste collection vehicles, 
aiming to minimize fuel consumption, travel time, and human 
resource utilization, which together represent a significant 
portion of municipal operating budgets [3]. 

The key contributions of this work are: 

 A real-time data analysis framework that integrates fill 
rate, moisture, and temperature measurements for 
dynamic waste bin management. 

 An outlier detection method designed to distinguish 
between temporary and permanent bin overflow 
conditions. 

 A system design that considers technical constraints such 
as energy limitations, frequency interference, and 
network security in heterogeneous IoT environments. 

 An evaluation showing how optimizing bin dimensions 
and locations can significantly reduce waste 
management costs. 

However, limitations remain. The current system depends on 
the stability of wireless communication networks and the 
accuracy of low-cost sensors, which may introduce 
measurement errors under specific urban conditions. 

The remainder of this paper is organized as follows. 
Section II reviews related works, including the IoT paradigm, 
IoT network architecture, LoRaWAN technology, and the 
challenges faced by IoT devices. It also discusses key data 
quality dimensions and methods to enhance the household waste 
collection process. Section III presents the proposed 
optimization model for managing household waste bin 
locations, including the outlier detection method, comparison 
metrics, and hyperparameter tuning process. It also describes the 
case study conducted in Tangier City, detailing data pre-
analysis, quality verification, and outlier detection results. 
Section IV presents and discusses the results, including data pre-
analysis, quality verification, outlier detection, and 
identification of slow- and fast-filling bins. Section V concludes 
the paper and suggests future research directions. 

II. RELATED WORKS 

A. IoT Paradigm 

IoT and internet of everything (IoE) refer to a connected 
world where all objects are interconnected via ubiquitous 
sensors [4] and devices from different manufacturer’s need to 
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exchange data. The IoT economic impact could grow to 
$3,352.97 billion  by 2030 [5] ; the number of IoT devices may 
reach 75 billion [6]. 

Globally dispersed, diverse, and heterogeneous IoT devices 
provide data that influence interoperability and data quality [6]. 

Heterogeneous networks and sensors’ challenges are the 
origin of communication problems between multiple nodes and 
layers.  The following sub-chapter delves into the fundamental 
structure, components, and layers of IoT, exploring their 
applications and challenges. 

B. IoT Network Architecture 

The IoT architecture is divided into several layers [7], each 
one responsible for different functions within the ecosystem as 
depicted in Fig. 1: 

 

Fig. 1. IoT Architectre [7]. 

The physical layer, sometimes referred to as the perception 
layer, is in charge of actuating the environment in real time, 
measurement, and communication to the next layer, like 
temperature, bin level filling, moisture, geolocation, etc. 

Maintenance of these devices poses challenges in terms of 
replacement and repair due to potential sensor placement in 
inconvenient locations [8]. This could lead to operational 
difficulties and even delays in data collection. Moreover, 
environmental conditions like high temperatures or humidity 
can affect sensor performance, necessitating extra care during 
hardware maintenance procedures. Furthermore, issues with the 
power supply or connectivity may make it difficult for the 
physical layer sensors to function. It may be necessary to 
regularly monitor and troubleshoot these issues in order to 
ensure accurate and uninterrupted data transmission. Defective 
equipment can lead to a malfunctioning sensor that produces 
inaccurate data, affecting service delivery and overall business 
insights. 

Sensors often face limitations: being cost-effective means 
they aren't of the highest quality and have limited capacities. 
This includes issues with connectivity and short battery life for 
various functions, lack of precision, loss of calibration, and 
keeping up reporting once the device becomes faulty [9]. 

Noise is a major problem for sensors. The signals they rely 
on can be seriously disrupted by interference or physical 
impediments, which results in inaccurate data collection[10]. 

Network layer: interconnects IoT devices with the next layer 
[11] using universal protocols. 

Application layer: controls sensors, receives data, analyzes 
them, and takes decisions[12]. 

In the next subsection, we describe the LoRaWan solution 
and present its benefits and drawbacks. 

C. LoRaWan 

LoRaWan is a member of the Low Power Wide Area 
Network (LPWAN) family. These devices use the medium 
access control protocol (MAC) mechanism to communicate 
with the gateway. 

1) LoRaWAN Dataframe: Dataframes have the same time 

duration. To overcome noise and interference, LoRa uses 

forward error correction (FEC) codes ranging between 4/8 and 

4/5 and diagonal interleaving. The symbol rate Sr depends on 

the bandwith Bw and the spreading factor according to the 

Formula (1) [13]: 

   Sr  =
Sp    ∗    Bw

2SF                             (1) 

2) LoRaWAN Topology: LoRaWan has a star topology as 

per Fig. 2 [14]. Sensors can only communicate with the 

gateways but not with each other; gateways communicate with 

the server; they encapsulate raw data received from sensors in 

UDP/IP packets and send them to the server. The server sends 

downlink packets and commands. Devices are divided into 

three classes [15]: 

Class A: has basic options needed to join a LoRaWan 
network. Bidirectional communication can be enabled. Class A 
devices are most of the time asleep, thus they consume the least 
of power. 

Class B: more receive windows can be scheduled to get 
synchronized and to inform when devices are ready for 
downlink traffic; power consumption is higher than the first 
ones. 

Class C: Receive windows are open continuously except 
during transmission, power consumption is higher for this class. 

 

Fig. 2. LoRaWan network topology. 

3) LoRaWAN transmission: The LoRa physical layer can 

use 125 KHz channels from the bands 433 MHz, 868 MHz, and 

915 MHz to transmit, sensors communicate within 1% of the 

time only and transmit a small amount of data [16]. 

To guarantee secure and reliable communication, LoRaWan 
sets a number of mechanisms and joining procedures for 
sensors. 
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Once the sensor joins the network and is activated using 
over-the-air procedure (OTAA) [17] or by personalization 
(ABP) [18], the device sends a join or re-join message with 
needed keys  and identifiers and gets a join-accept message from 
the server. The use of open source protocols helps to reduce the 
solution fees; the communication protocol MAC [19]  is used 
between the sensors and the gateway; furthermore, to avoid 
financing frequency license fees, unlicensed bands may be used; 
the 868 MHz sub-band is unlicensed in Europe [20] and 
Morocco, according to the frequency regulation center [21]. 

Numerous technologies, including SigFox, IEEE 802.15.4g, 
LoRaWAN, and Z-Wave, use the same frequency, which may 
have an effect on signal quality and interference. In order to 
overcome interference, European regulations share time 
resources; a radio transmitting for one second cannot transmit 
for the next 99 seconds [22]. 

D. LoRaWan Solution to IoT Devices Challenges 

With the cited information above, the LoRaWan solution 
overcomes most of the IoT constraints while maintaining the 
same quality of service: 

 Joining and re-joining procedures: restrict the sensors 
allowed to send data to MGWs. 

 Power consumption: LoRaWan is a low-power area 
network [15]; sensors are asleep most of the time, 
especially for class A devices. Sensors contain a solar 
panel that extends the lifespan of sensor batteries and 
delivers sufficient voltage to sensor units (low power 
transmitter). Fig. 3 shows LoraWan Sensor modules. The 
embedded GPS module in the device helps to inform 
trucks about exact geolocation and to identify the 
location of bins. Table I summarizes solutions to most 
sensor challenges and the reason behind the popularity of 
this technology. 

 Frequency transmission fees: as per [16] free of charge 
frequency usage to reduce the solution cost. 

 Interference using processes like listen before sending or 
sending 1% of the time reduces considerably the 
interference. Data control and preprocessing can be done 
on the application server. 

 Distance between the sensors and the gateway can reach 
6 km with a high reception rate (more than 90%) [23]. 

 Synchronization: Is a drawback for LoRaWan [24] 

 Access to transmission channels from multiple and 
heterogeneous sensors is unpredictable which causes 
collision and loss of frames [25]. 

TABLE I.  LORAWAN SOLUTION TO IOT DEVICES CHALLENGES 

Challenge Solution Details 

Power 

consumption 
Low power consumption 

Sensors are asleep most 

of the time 

Frequency 
transmission fees 

Free of charge frequency 
usage 

Used to reduce charges 

Interference 

Sending 1%  of the time 

reduces considerably the 
interference 

A limited number of  

devices  can transmit in 
the same time 

 
Fig. 3. LoRaWan sensor modules. 

In the following section, we will present the most important 
dimensions regarding data quality. 

E. Data Quality Dimensions 

Data dimensions are characteristics of data quality that can 
reveal the data's overall quality level once they are measured 
correctly [26]. Data quality is a crucial parameter for services 
based on IoT; a control and validation of the quality are 
mandatory before model deployment. Herein we will define the 
most influencing data quality dimensions: 

1) Accuracy: Evaluates the reliability, dependability, and 

certification of data [27]. It represents the degree to which 

observations are correct, trustworthy, and guaranteed error-

free. It can also be defined as how a value ‘v’ is close to the 

correct value of the real world. 

2) Completeness: A «NULL» value may indicate a missing 

value, which is an existing value in the real world but the 

observation is lost for a specified reason; those values may exist 

but are unknown, or they do not exist, or the system does not 

know if they exist or not [28]. 

3) Timeliness, volatility and currency: The temporal 

dimensions are sensitive since late data may be unuseful. 

Timeliness describes how current the data are; it can 

alternatively be described as the offset between the server time 

and the received sensor's timestamp. Volatility is a measure of 

how frequently data changes over time; where currency 

specifies how fast data are updated, it can be defined as in 

Formula (2) [29]: 

Currency = Age + (Delivery_Time - Input_Time)      (2) 

where, “age” indicates the data's original age upon receipt 
and “Input_time” is the server time when data are observed. 

F. Household Waste Collection Process Enhancement 

While the majority of research concentrated on management 
and trash classification, the current work looks at bin locations 
and identifies inadequate ones; it also shows outliers, including 
the most and least used bins; as well as inaccurate data produced 
by malfunctioning devices.  Non-synchronized bins are sorted 
out to permit a full operational waste collection process. The 
data control part in our program can be deployed by other IoT 
services. 
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III. TOWARDS AN OPTIMIZATION MODEL FOR HOUSEHOLD 

WASTE BINS LOCATION MANAGEMENT 

A. Outlier Detection Model Presentation 

Outliers represent a rare event in a dataset; this unexpected 
value may be due to a measurement error or a faulty sensor, but 
it can also be a valuable insight [27]. In this subsection, we will 
present the main steps and procedures of our model that detects 
outliers. Data may be numbers, dates, geo-location values, etc. 

Our model is built using Jupyter Notebook with required 
libraries and dependencies installed, like Pandas, Numpy, 
Matplotlib, Sickit-Learn, Pyod, Pycaret etc. The model is 
designed to operate in a variety of fields; it can be adapted 
according to each domain specification, and the following steps 
are performed: 

 Data collection: supplied data, in text, csv, or other 
formats, contain multiple columns; it is filtered to keep 
necessary columns for our model. 

 Cleanup: NaN and empty values represent a non-
complete observation; it should be detected and 
cleaned/corrected. 

 Preprocessing: data columns are interpreted as object 
types and need to be converted to appropriate types such 
as date time, integer, etc. 

 Data normalization and feature selection: features should 
have similar scales with a low correlation level to provide 
better results. The data show below variables: 

o The server time (servertime) and time of the IoT 

device related to the observation. 

o Bin_number, Bin_index1 and Bin_index2 

represent an identyer of the waste bin used by 

different layers. 

o Filling_level is a variable measuring the fill level 

of a Bin. 

o Bin_longitude and latitude represents GPS 

coordinates. 

Time identifiers and Bin indexes are correlated as per Fig. 4. 
To detect outliers we use the variables bin identifier, time and 
fill level etc. A new variable will be introduced to classify data 
per day of the year. 

 Data from Bin_index columns are converted to a 
dictionary to simplify data analysis and allow 
exploration of data through outlier detection methods 
requiring numerical values. 

 Parameter tuning: we can change the ratio of data to train 
the model according to the data size, and other 
parameters can be changed according to our need. 

 Pandas library helps to sort out IoT devices that overflow 
the server and bins rarely transmitting their filling level. 
We use Pycaret to detect outliers, tune, and compare the 
models. 

 Model comparison: different outlier detection models 
can be compared using different metrics, as we will 
present in the next subsection. 

 
Fig. 4. Correlation matrix. 

The Fig. 5 below summarizes different data treatment steps 
of our program: 

 
Fig. 5. Data processing. 

1) Comparison metrics: The model sorts out the best 

method to detect outliers based on the best metrics. The main 

metrics used in the case of classification models are [30]: 

 Accuracy: it presents the ratio of the correct prediction 
numbers to all the prediction numbers. 

Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                (3) 

Auc=  
1+  𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠 − 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡

2
   (4) 

Recall:   Recall = 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑓
             (5) 

Precision:  Precision = 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
        (6) 

F1 Score:      F1 = 2 *  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
      [31]         (7) 

2) Outlier detection using KNN method: The number of 

neighbors to be given an integer K, this method calculates the 

distance to the k nearest neighbors. In a m-dimentional space, 
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let A and B be two points; they can be expressed as the tulpes: 

(A[1], A[2],…A[m]) and (B[1], B[2]…B[m]). The distance AB 

can be : √(∑(B[i]-A[i])2. An object O is an outlier if the number 

of neighbors within a distance r defined as a threshold is less 

than K. 

To detect outliers, we use Pycaret 3.3.1. Setup function trains 
the environment, multiple parameters can be specified in this 
step such us features, thresholds, outlier method, the number of 
neighbors to be used for KNN method, etc. possible models can 
be listed, compared, and the best model is identified, the model 
is tuned and saved for future use. 

3) Hyperparameter tuning: Finding outliers is not an easy 

task; it depends on many factors. The model should be well 

trained, which requires a large dataset with low-correlated 

features. It also depends on how rare the outliers we are 

interested in are. Using default parameter values for a model 

helps to sort out data that are very different; however, to detect 

outliers that are not completely different, parameter tuning is 

mandatory [32]. The number of neighbors can be increased and 

the threshold reduced. The number of dimensions may be large, 

which increases computational resources and time. Principal 

Component Analysis (PCA) is used to overcome this issue and 

convert correlated variables to non-correlated ones. 

B. Case Study: Household Collection in Tangier City 

This study concerns a part of the Tangier city, one of the 
biggest cities in northern Morocco; it has undergone an 
economic and demographic surge empowered by the 
establishment of the Tangier-Med port, cars and aircraft 
manufacturers, among other development factors. Like many 
growing cities, the population has risen significantly; therefore, 
public services have to follow the pace. 

In most cities, household waste collection is planned once a 
day in low traffic periods. Although this approach appears to be 
effective, it has a number of drawbacks, and there is more to be 
done to optimize the collection process. Indeed, time, fuel 
consumption, and human resources will be overused if we 
include the total number of bins in everyday travel in order to 
empty and clean them up. 

IV. RESULTS 

This paper aims to sort out the rate at which bins are filling 
up. Datas are gathered from different LoRaWan sensors placed 
in all household bins in the studied region. 

Data is collected over a 10-day period, sensors calculate bins 
filling level and send it to a central server, where, GPS location 
(longitude and latitude), server time, and measurement time are 
included. It is important to highlight data quality efforts 
provided in different layers in the network. 

A. Data Pre-analyzis and Data Quality Check 

1) Accuracy: To monitor bin filling level, gathered data 

from different sensors should be reliable. A sensor hardware or 

software failure may cause a reduced number of observations 

or may flood the system with observation signals. Table II 

shows such abnormal behavior from sensors that need to be 

checked. The column “Bin Number” is an identifier of bins; 

“Num of measurements during 10 days” represents the sum of 

observations during the supervision period, while the other 

columns show the number of observations for each day of the 

year (194 refers to 13th July, 195 to 14th July..). 

2) Completeness: The server discards incomplete frames 

and missing values; incomplete ones will lead to a « Null » 

value that will be discarded in our data pre-treatment program. 

3) Timeliness: Data age is an essential parameter; old data 

do not reflect reality and cannot be used to make a decision. The 

time difference between the server and sensors data 

measurement can indicate rows to exclude from data analysis; 

this offset will be considered in our program. 

 Bins 495 and 529 sent 60982 messages during the ten 
days. 

 Bin 529 sent 33959 during the ten days (33506 during 3 
days). 

 Bin 495 sent 27007 during 3 days. 

 Bins 266, 271, 20, 274, and 274 sent 2 messages each 
during the whole ten days. Other indicators may help to 
find faulty devices: 391 reported only 8 measurement 
values during the 10 days and passed from 10% to 100% 
within 12 seconds between 2024-07-20 08:58:53 and 
2024-07-20 08:59:05. 

A normal bin’s data are also included; « bin 28 » sent 1102 
observations well spread over the monitored period, with 
different filling level values; those observations were 
continually sent to the server, with a minimum of 58 and a 
maximum of 143 observations per day. 

B. Outlier Detection 

In this subsection, we will present the result of the 
computational program that aims to sort out outliers that need to 
be analyzed and take actions accordingly. Python with machine 
learning libraries such us Sickit Learn, Pandas, Matplotlib, and 
PyOD are used to develop our computation software. After data 
cleanup, training, testing, and evaluation, our model detects 
outliers. KNN is used since it has the best performing metrics: 
accuracy, recall, F1-score, and precision, as it is highlighted in 
Table III. 

Found outliers contain a few bins that are 100% filled up and 
that are mentioned in the above subsections (bin numbers: 121, 
516, 304, 503, 200, and 352). Other bins need to be highlighted 
and studied (bin numbers: 312, 2, 494, 452, 511, 201, 465, 376, 
208, 536, 539, 545, 547, 518, 13) as per Fig. 6. More 
investigations need to be done to check why each of those 
locations represents an outlier and different stakeholders have to 
be involved to take a decision according to the analysis results. 
Other outlier methods with parameter tuning need to be used for 
more accurate data analysis. 
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TABLE II.  NUMBER OF MEASUREMENTS PER SENSOR DURING THE SUPERVISION PERIOD 

Bin Number 

Number of 

measurements 

  during 10 days 

Day of the year 
195 196 197 198 199 200 201 202 203 204 

194 

Bin_Number_352 8402 6 2 4 2 1099 2658 0 0 1653 0 2978 

Bin_Number_495 27023 6 2 4 2 4015 9831 13161 0 0 0 2 

Bin_Number_529 33959 6 2 4 2 439 0 0 0 9978 11937 11591 

Bin_Number_266 2 0 0 0 0 0 0 0 0 0 0 2 

Bin_Number_271 2 0 0 0 0 0 0 0 0 0 0 2 

Bin_Number_20 2 0 0 0 0 0 0 0 0 0 0 2 

Bin_Number_274 2 0 0 0 0 0 0 0 0 0 0 2 

Bin_Number_273 2 0 0 0 0 0 0 0 0 0 0 2 

Bin_Number_391 8 0 0 0 0 0 0 0 0 6 0 2 

Bin_Number_307 16 6 2 4 2 0 0 0 0 0 0 2 

Bin_Number_42 16 6 2 4 2 0 0 0 0 0 0 2 

Bin_Number_198 16 6 2 4 2 0 0 0 0 0 0 2 

Bin_Number_219 16 6 2 4 2 0 0 0 0 0 0 2 

Bin_Number_435 16 6 2 4 2 0 0 0 0 0 0 2 

Bin_Number_414 20 6 2 4 2 0 0 0 0 4 0 2 

Bin_Number_28 1102 72 75 114 104 116 143 124 108 92 96 58 

TABLE III.  BEST PERFORMING OUTLIER DETECTION ALGORITHMS 

Model  Accuracy(3) AUC(4) Recall(5) Prec.(6) F1(7) Kappa MCC TT (Sec) 

knn K Neighbors Classifier 0.3516 0.7917 0.3516 0.3441 0.342 0.3263 0.327 8.58 

nb Naive Bayes 0.2339 0.7486 0.2339 0.1494 0.174 0.1905 0.196 4.027 

dummy Dummy Classifier 0.108 0.5 0.108 0.0117 0.021 0 0 2.499 

svm SVM - Linear Kernel 0.0826 0 0.0826 0.1335 0.077 0.0697 0.102 787.618 

qda Quadratic Discriminant Analysis 0.0087 0 0.0087 0.001 0.0210 0 0 4.073 
 

 

Fig. 6. Outlier bins pertaining to fill level. 

The outlier detection can be used as a first step; more 
analysis follow to check the reasons behind those bins to be 
outliers. Checking outliers reduces computational resources and 
filters bins and sensors to monitor. 

C. Slowest Filling Up Bins 

Bins that fill up slowly can be deprioritized during waste 
collection. Unnecessary travels to those bins can be avoided. 

Table IV shows multiple bins that did not exceed 30% of their 
capacity during 2024-07-12. These bins do not require 
immediate emptying and can be excluded from daily routes. 
During this day Bin_451 and Bin_225 recorded a 0% fill level, 
Bin_456, Bin_151, and Bin_44 stayed below 10% and most bins 
listed remained under 25%. 

Table V highlights bins that remained underused over a 10-
day period. Specifically, it shows the number of days during 
which each bin did not reach a 50% fill level. 

Bin_Number_44 never reached half capacity during the 
entire 10-day period, Bin_Number_533, 532, 310, and 120 
exceeded 50% capacity only once. Several other bins stayed 
below the threshold for 6 or 7 days. 

Concerned bin sizes and places should be reviewed. 

Table VI presents the maximum daily fill levels recorded for 
Bin_Number_514 over an 11-day supervision period. During 6 
of these 11 days, the bin did not exceed the 50% fill threshold. 
Only between Days 201 and 203 did the fill level rise above 
60%, with a peak of 74%. On Day 204, the fill level dropped 
sharply to 22%, reflecting a possible irregular usage pattern or 
external intervention such as manual emptying. 
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TABLE IV.  BINS NOT REACHING 30% FILL-UP LEVEL ON 2024-07-12 

bin_num max_fill up level bin_num max_fill up level bin_num maxfill_up level bin_num max_fill up level 

Bin_451 0 Bin_412 17 Bin_395 22 Bin_382 24 

Bin_225 0 Bin_532 20 Bin_533 22 Bin_365 24 

Bin_456 2 Bin_495 20 Bin_493 22 Bin_524 25 

Bin_151 3 Bin_224 21 Bin_217 23 Bin_479 25 

Bin_44 9 Bin_386 21 Bin_508 23 Bin_355 25 

Bin_204 10 Bin_363 21 Bin_481 23 Bin_360 25 

Bin_467 11 Bin_380 21 Bin_34 23 Bin_417 25 

Bin_215 11 Bin_188 21 Bin_414 24 Bin_369 25 

Bin_405 14 Bin_316 21 Bin_529 24 Bin_361 26 

Bin_69 16 Bin_498 21 Bin_388 24 Bin_120 27 

Bin_439 17 Bin_368 22 Bin_497 24 Bin_375 29 
 

TABLE V.  NUMBER OF DAYS /10 THE MAXIMUM FILL LEVEL DID NOT 

REACH 50% 

Bin Number N of occurrences Bin Number N of occurrences 

44 10 343 7 

533 9 515 7 

532 9 350 7 

310 9 412 7 

120 9 40 7 

488 8 417 6 

506 8 182 6 

535 7 456 6 

467 7 514 6 

Fig. 7 illustrates the fill level evolution for Bin N44, N532, 
and N533 over the supervision period. These bins display 
consistently low filling patterns. Although short spikes are 
observed, the majority of values remain below the 50% 
threshold. Bin N44, for instance, shows extended periods near 
zero. Bin N532 briefly exceeds 60%, then stabilizes below 30%. 
Bin N533 presents a single peak but quickly returns to lower 
levels. These trends confirm the underuse highlighted in Table 
V. They suggest that these bins may not require daily collection. 
However, the accuracy of the recorded values must be verified 
before operational adjustments are made. 

The map below (Fig. 8) shows the geospatial distribution of 
bins that consistently reported low fill levels during the 10-day 
monitoring period in the city of Tangier. These bins, highlighted 
on the map, rarely exceeded 50% capacity. 

 

Fig. 7. Bins with a low filling level during the supervision period. 

TABLE VI.  MAXIMUM FILL LEVEL DURING SUPERVISION PERIOD FOR N514 

day Bin Num level newla newlo date time 

194 514 34 35.767506 -5.800178 12/07/2024 21:06:47 

195 514 37 35.767506 -5.800178 13/07/2024 23:30:21 

196 514 37 35.767506 -5.800178 14/07/2024 21:04:33 

197 514 54 35.767506 -5.800178 15/07/2024 19:19:16 

198 514 52 35.767506 -5.800178 16/07/2024 21:10:16 

199 514 48 35.767506 -5.800178 17/07/2024 21:02:31 

200 514 40 35.767506 -5.800178 18/07/2024 18:56:37 

201 514 64 35.767506 -5.800178 19/07/2024 18:49:52 

202 514 68 35.767506 -5.800178 20/07/2024 18:42:25 

203 514 74 35.767506 -5.800178 21/07/2024 12:36:42 

204 514 22 35.767506 -5.800178 22/07/2024 13:50:17 
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Fig. 8. Bins with a low filling level during the supervision period. 

D. Fastest Filling up Bins 

A filled-up bin can emit an unpleasant odor, which impacts 
the life quality of citizens. In this subsection, we will sort out the 
fastest-filling bins. 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. (a) Bins with abnormal filling level for N121 and N516, (b) Bins with 

abnormal filling level for N121 and N516, (c) Bins with abnormal filling level 

for N304 and N503. 

Data analysis indicates the following results: Bins 121, 516, 
304, 503, 200, and 352, exhibited a constant filling level of 
100% throughout the supervision period, following a small 
number of initial readings below that threshold. For example, 
Bin 352 recorded only 14 initial values below 100%, followed 
by 8,388 consecutive values at 100% as per Fig. 9(a), 9(b), and 
9(c) which indicates a device failure that needs to be fixed. 

The list below presents the quickest filled up bins; Fig. 10 
shows their geolocations; those bins should be replaced with 
bins having a bigger capacity to answer citizens demand: [bin 
numbers: '121', '516', '312', '200', '304', '2', '503', '494', '452', 
'511', '201', '465', '376', '208', '536', '539', '545', '547', '518', '13', 
'541', '542']. 

 

Fig. 10. Bins with a high filling level during the supervision period. 

The map below combines both types of bins Fig. 11. 

 
Fig. 11. Bins with a high filling level and the ones with a low filling level. 
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Fig. 11 presents a combined geospatial representation of 
waste bins with contrasting usage patterns during the 
supervision period. Red markers indicate bins with consistently 
high fill levels, while blue markers represent underused bins 
with persistently low fill levels. 

This dual-layered view enables rapid identification of 
mismatches between bin capacity and local waste generation 
dynamics. High-fill bins highlight priority zones for: 

 Capacity increase 

 Additional bin deployment 

 More frequent collection schedules 

Low-fill bins suggest potential for: 

 Relocation 

 Downsizing 

 Reduced collection frequency 

Such spatial insights are essential for optimizing operational 
efficiency, minimizing collection costs, and maintaining service 
quality across the city. Nevertheless, sensor reliability must be 
verified before implementing adjustments to avoid decisions 
based on inaccurate data. 

E. Discussion 

Provided data offers valuable insights about the functional 
state of LoRaWan sensors, indeed: 

 Several IoT-based technologies communicate filling 
levels via GSM texting. The expense of communication 
is therefore unsustainable. In just 10 days, 
Bin_Number_529 sent 33,959 messages. The GSM 
[1]method is very costly because, at 0.05 USD each 
SMS, for instance, that amounts to 1,697.95 USD for a 
single bin. Over the course of 10 days, bins 529, 495, and 
352 sent 69384 messages.  Scaled to a citywide network, 
the cost becomes huge, the proposed solution is 
performing better than [1] and [33] using GSM 
especially that LoRaWan uses free transmission band.  

 Synchronization state of sensors: the dataset shows a big 
time offset between the server and sensors clock which 
may lead to incorrect observation. 

 Unreliable information as demonstrate by bins 121, 516, 
and 352 in Fig. 9(a), Fig. 9(b) which were 100% filled up  
throughout the duration or a brutal filling level from 10 
to 100% within 12 seconds. Fig. 9(b)  indicating a faulty 
measure or faulty device: such behavior indicates a faulty 
device which facilitate the maintenance process. 

 An erroneous GPS location of a sensor indicates a 
displacement of the bin or a faulty device measurement, 
which allows tracking bins in real time. 

 Data control helps to maintain sensors in a healthy state 
and keeps transmitted data frames accurate. Maintaining 
IOT devices is easier by measuring data quality and 
avoiding traffic outage. Suspected faulty devices should 

be checked which allows a continuous bin fill level 
check. 

 Truck trips can be significantly reduced by avoiding 
travels to bins not reaching a predefined filling threshold 
level; this impacts also travel time and man hours; fuel 
consumption and its impact on the environment can be 
reduced; more than that, transportation trucks can be 
reused and their number reduced. 

 Hot seasons and special events are another critical 
context where waste collection efficiency directly 
impacts service quality and citizen satisfaction.  During 
these periods, waste generation increases rapidly, and 
delayed responses can degrade urban hygiene and public 
perception. Monitoring the fill level of all bins in real 
time, while ensuring data quality, enables timely 
emptying of full bins. This optimizes collection routes, 
avoids emptying bins that are not yet full, and reduces 
unnecessary trips, fuel consumption, and human 
resource usage. 

Supervising the filling level of bins for long periods indicates 
less used ones; a rarely used bin does not have to be emptied on 
a daily basis, which minimizes resource usage. The above-listed 
bin geolocations mentioned in the previous subsection should be 
reviewed; indeed, it can be displaced to more demanded 
locations. 

On the other hand, dimensions of bins with a high level of 
fill-up should be resized; bigger bin sizes are needed to answer 
citizens’ demand. Above parameters, among others, are keys of 
bin geolocation optimization. 

There is a limitation to this study in receiving data; indeed, 
the analysis is impossible without valid and accurate data. 

V. CONCLUSION 

This study has enabled us to implement a program that 
controls IoT data quality, especially the most important 
dimensions such as timeliness, completeness, and accuracy. 

By processing observations collected by the various devices, 
a full operational IoT network is maintained by early detecting 
faulty devices. It is possible to reduce the distance covered by 
bin collection trucks and reduce collection time, as well as fuel 
consumption and its impact on the environment. 

As the location of bins is a key element in the service 
provided to citizens, this program allows to detect locations that 
are underused and that need to be displaced to a more demanded 
area; it also detects bins that are frequently overloaded and for 
which the size needs to be increased or enhances the emptying 
frequency, especially in hot seasons or during special events 
where the demand increases substantially and the service quality 
KPIs should be higher. 

To optimize bin geolocation positions, long-term 
supervision needs to be put in place. Outlier method results can 
sort out locations that need to be highlighted. Deeper 
investigations regarding each outlier needed to be performed to 
take actions, by either increasing the bin's size, displacing the 
bin, or keeping the bin under surveillance. 
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This study focused on optimizing household waste 
collections based on real-time sensor data and bin usage 
patterns. Future work will focus on automating recycling 
integration at waste deposit points. 
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