
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

748 | P a g e

www.ijacsa.thesai.org

Healthy and Unhealthy Oil Palm Tree Detection

Using Deep Learning Method

Kang Hean Heng1, Azman Ab Malik2, Mohd Azam Bin Osman3, Yusri Yusop4, Irni Hamiza Hamzah5

School of Computer Science, Universiti Sains Malaysia, 11800 USM, Gelugor, Malaysia1, 2, 3

Environmental Technology, Universiti Sains Malaysia, School of Industrial Technology, 11800 USM,Gelugor, Malaysia4

Cawangan Pulau Pinang, Universiti Teknologi MARA, Electrical Engineering Studies, College of Engineering, 13500 Pulau

Pinang, Malaysia5

Abstract—Oil palm trees are the world's most efficient and

economically productive oil bearing crop. It can be processed into

components needed in various products, such as beauty products

and biofuel. In Malaysia, the oil palm industry contributes around

2.2% annually to the nation's GDP. The continuous surge in

demand for oil palm worldwide has created an awareness among

the local plantation owner to apply more monitoring standards on

the trees to increase their yield. However, Malaysia's cultivation

and monitoring process still mainly depends on the labor force,

which caused it to be inefficient and expensive. This scenario

served as a motivation for the owner to innovate the tree

monitoring process through the use of computer vision techniques.

This paper aims to develop an object detection model to

differentiate healthy and unhealthy oil palm trees through aerial

images collected through a drone on an oil palm plantation.

Different pre-trained models, such as Faster R-CNN (Region-

Based Convolutional Neural Network) and SSD (Single-Shot

MultiBox Detector), with different backbone modules, such as

ResNet, Inception, and Hourglass, are used on the images of palm

leaves. A comparison will then be made to select the best model

based on the AP and AR of various scales and total loss to

differentiate healthy and unhealthy oil palm. Eventually, the

Faster R-CNN ResNet101 FPN model performed the best among

the models, with AParea = all of 0.355, ARarea = all of 0.44, and

total loss of 0.2296

Keywords—Component oil palm detection; deep learning

models; object detection; Faster R-CNN; drone imagery analysis

I. INTRODUCTION

Palm oil is the most productive oil crop and can be processed
into various products, such as soap, vegetable oil, beauty
products, etc. In Malaysia, palm oil has been regarded as
Malaysia's golden crop. The oil palm industry has always been
one of the most important agricultural exports for the nation. In
2022 alone, palm oil contributed 66.1% of the nation's total
export earnings, which amounted to MYR 44.63 billion this year
[1]. Besides, the demand for palm oil continues to surge due to
the growing population and the shortage of sunflower and
rapeseed oils in recent years. It is estimated that the annual
production will be quadrupled, reaching 240m tons by 2050 [2].
To benefit from this scenario, Malaysia's oil palm industry has
to be able to increase its yield. As a result, the monitoring
process of oil palm trees has become important to ensure a
continuous supply of palm oil.

One of the main focus or projects involves differentiating
and detecting healthy and unhealthy oil palms in the plantation.
This task is particularly important because insects can transmit
the disease affecting an oil palm tree to its surrounding trees.
Also, it is important to provide timely treatment to the infected
unhealthy oil palm trees.

However, the problem for the Malaysian oil palm industry
has always been labor shortages as it heavily depends on foreign
labor to carry out the monitoring task. Nevertheless, the situation
worsened when coronavirus hit the globe in early 2020, which
caused the border between countries to close. Foreign laborers
are not able to enter Malaysia to fulfill the labor shortage faced
by the industry. Fortunately, this crisis has successfully
prompted the industry player to innovate and implement some
automation, such as object detection techniques, to overcome
the problem. With object detection techniques put in place, it can
help the plantation owners to shorten the time in detecting
unhealthy and healthy oil palm trees, thus increasing the
efficiency of the task as the traditional way of oil palm tree
monitoring is too labor-intensive and inefficient. Once this
project is successful, it will provide a reference for other
researchers to improvise further and develop the detection
model. Besides, it also acts as a starting point for the companies
in this industry to utilize this method to overcome the labor
shortage, further helping them increase their crop yield moving
forward. Lastly, it is also believed that this project can help to
share awareness and gather the attention of other companies of
different crops, apart from oil palm, to utilize the object
detection technique in their crop plantation and management
process.

Object detection is an important computer vision task that
detects instances of visual objects of a particular class (such as
humans, animals, or cars) in digital images [3]. The idea and
early design of object detection started in the 1900s. In recent
years, the evolution of GPU architecture and deep learning
techniques have generalized the usage of object detection
techniques in many sectors. Autonomous driving, defect
detection, and traffic monitoring are real-world applications that
use object detection models. There are two types of object
detection frameworks, which are region-based, and
regression/classification based. Region-based frameworks are
commonly referred to as two-stage detectors, while
regression/classification-based frameworks are referred to as
one-stage detectors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

749 | P a g e

www.ijacsa.thesai.org

Fig. 1. Development of object detection frameworks [4].

Two-stage detectors will first generate region-based
proposals, then classify each proposal into different classes. The
typical examples of two-stage detectors are R-CNN, SPP-Net,
Faster R-CNN, and FPN. Meanwhile, one stage detectors view
object detection as a regression or classification problem,
adopting a unified framework to achieve final results (categories
and locations) directly [4]. Single-shot MultiBox Detector
(SSD), You Only Live Once (YOLO), and CenterNet are some
of the models that use regression/classification-based
frameworks. Fig. 1 summarizes the development of two object
detection frameworks.

Fig. 2. RPN module [5].

Faster R-CNN is the abbreviation of Faster Region-based
Convolutional Neural Network. It combines the algorithm of
RPN (Region Proposal Network) and Fast R-CNN as shown in
Fig. 2. It can be viewed as an updated version of Fast R-CNN,
where, RPN replaces the Selective Search method. RPN is a
fully convolutional network, which slides over the convolutional
feature map and simultaneously predicts object boundary and
object-ness scores at each position [4]. As a result, the model
performs better in speed and accuracy and consumes fewer

computational resources. In a paper published in [6], the authors
applied Faster R-CNN on high resolution imagery for automatic
detection and health classification of oil palm trees. There are
two backbones selected for Faster R-CNN, which are ResNet-
50 and VGG 16. The model with ResNet-50 as the backbone
obtained F1 scores of 95.09%, 92.07%, and 86.96%,
respectively, for oil palm tree detection, healthy tree
identification, and unhealthy tree identification. Overall, the
ResNet-50 model yielded a better F1 score than the VGG-16
model.

RetinaNet is a one-stage object detection model first
published in a paper by Lin et al. The development of RetinaNet
is aimed at overcoming the problem of class imbalance and
robust estimation in Single-Shot MultiBox Detector (SSD)
during training by utilizing a focal loss function. Class
imbalance problem in SSD leads to many easy negatives
appearing when the detector is evaluating the object locations,
overwhelming the loss function and causing a degeneration in
the model performance. With focal loss function, it helps to
down-weight those easy negatives and thus focus training on
hard negatives as shown in Fig. 3.

Fig. 3. RetinaNet architecture [7].

An optimized palm tree inventory model based on a
RetinaNet object detector and high-resolution RGB images is
proposed in 2021 to classify and locate palm trees in different
scenes with different appearances and ages [8]. The dataset has
a spatial resolution of 25cm. The detection model for palm tree
inventory achieved a precision of 89.3% on the validation
dataset and 76.9% on the test dataset. Both precision values are
on the mAP@IoU = 0.50 category. CenterNet is an anchorless
object detection model published [9], entitled "Objects as
Points" in 2019. The idea of anchorless in this model is to
replace Non-Maximum Suppression (NMS) algorithm used in
SSD or YOLO. NMS algorithm functions as a filter to select one
single bounding box out of the many overlapping bounding
boxes in the post process. For example, YOLOv3 generates
more than 7k bounding boxes in its prediction for each image,
mostly considered garbage predictions, and the NMS algorithm
will need to run pairwise checks for those overlapping bounding
boxes [10]. Fig. 4 shows a CenterNet algorithm. This method
increases the complexity of the model when the number of
bounding boxes (predictions) increases. It also forces the model
to consume more computational power and time in clearing
those irrelevant predictions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

750 | P a g e

www.ijacsa.thesai.org

Fig. 4. CenterNet algorithm [10].

Meanwhile, CenterNet predicts a box center for an object
and uses the center point to regress the value for its box
dimensions and offsets, directly removing irrelevant predictions
without any decoding process. An anchor-free deep learning
model, CenterNet, is used to detect individual crown locations
and regions from dense 3D terrestrial laser scans [11]. There are
1181 crowns from twelve plots. The author used eight plots for
training, and four plots for testing. The model is trained over 40k
iterations. The maximum training F1-score and IoU were 0.881
and 0.670, while testing result showed a F1-score of 0.754 and
IoU of 0.583. The result also showed that a taller, larger,
smoother, less crowded, and less overlapped tree was found
easier to be detected by the model. Table I shows a comparison
of object detection models for two stage and one stage of model.
ResNet, Inception, and HourGlass Network are all
convolutional neural networks widely used for image
classification tasks. However, each contains its design
specification to optimize the deep neural network as it goes
deeper.

TABLE I. COMPARISON OF OBJECT DETECTION MODELS

Model Innovations Strength Limitations

Two

Stage

Faster R

CNN

The RPN module

helps to generate

high-quality region
proposals and saves

time compared to

the Selective Search
method.

Higher

accuracy

Complicated

training with

high memory
consumption

One

Stage
RetinaNet

Focal loss function

– down weight the
easy negatives and

focus on hard

negatives

Stable

training for

class
imbalance

Lower

accuracy
compared to

a two-stage

detector

Before ResNet was invented, researchers tended to design
deep learning networks by increasing their layers and depth as
shown in Fig. 5. However, it comes to a limitation where the
train and test errors increase when it goes even deeper. In a paper
published by [12], it is believed that this degradation in
performance is not caused by overfitting, and indicated that not
all networks could be optimized easily by making it deeper. As
a result, a deep residual learning framework has been proposed
by [12] to address the degradation problem. ResNet learns
residual functions with reference to the layer inputs instead of
learning unreferenced functions. Thus, it makes it possible to
train a much deeper network while minimizing the error value.

Next, Inception Network as shown in Fig. 6 is designed to
decrease the computational cost and burden to run a deep neural
network. Besides, it also helps to better optimize parallel
computing. The network performs max pooling and a
convolution on an input with three different sizes of filters (1x1,
3x3, and 5x5), rather than stacking them in sequence. As the
network progress, it will grow wider and not deeper. This also
help to reduce vanishing gradient problem [14]. Meanwhile,
HourGlass Network consists of multiple stacked hourglass
modules, which allow for repeated bottom-up, top-down
inference [15]. It is specially designed for predicting human
poses. The advantage of this network is that it captures and
consolidates information across all scales of the image [15].

Fig. 5. Residual learning [12].

Fig. 6. Inception module [13].

Fig. 7. Building block of FPN [16].

The Feature Pyramid Network is published by Lin et al. in
2017. FPN can be seen as an updated version of ConvNet's
pyramidal feature hierarchy. FPN takes a single-scale image of
an arbitrary size as input, and outputs proportionally sized
feature maps at multiple levels, in a fully convolutional fashion.
This process is independent of the backbone convolutional
architecture [16]. As shown in Fig. 7, the building block
involves a bottom-up pathway, a top-down pathway, and lateral
connections. The result from the paper showed that average
precision of a Faster R-CNN ResNet50 with FPN, goes up by
7.6%, from 26.3% to 33.9%. The evaluation of the model is
made on COCO minival set.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

751 | P a g e

www.ijacsa.thesai.org

A standard implementation, which can be used as a
benchmark among different datasets is published in 2020. One
of the famous metrics used for model evaluation is called
average precision (AP) and average recall (AR). Before going
deeper into how metrics works, it is also wise to understand the
concept of intersection over union (IOU). It is a measurement
based on Jaccard Index, a coefficient of similarity for two sets
of data [17]. For object detection model, IOU measures the
overlapped area between two bounding boxes, one from
prediction, and one of ground-truth, divided by the area of union
between them. With a given threshold, if the IOU is bigger than
the threshold, then the detection is considered valid and vice
versa. With IOU in place, AP and AR can be evaluated in
different variations as mentioned in Table II.

TABLE II. PERFORMANCE METRICS [17]

Metrics Meaning

AP@50:5:95
AP of 10 IOUs varying from range of 50% to 95% with

steps of 5%.

AP50 AP of IOU of 50%

AP75 AP of IOU of 75%

AP-S AP for small sized objects (area < 322 pixels)

AP-M AP for medium sized objects (322 < area < 962 pixels)

AP-L AP for large sized objects (area > 962 pixels)

AR@50:5:95
AR of 10 IOUs varying from range of 50% to 95% with

steps of 5%.

AR-S AR for small sized objects (area < 322 pixels)

AR-M AR for medium sized objects (322 < area < 962 pixels)

AR-L AR for large sized objects (area > 962 pixels)

The loss function is a common but essential metric in deep
learning. It provides a numerical representation of how well a
model performs on a particular task. It helps the researchers to
evaluate and fine-tune the model to achieve a better result. If the
model predicts poorly, the loss function will output a higher
number and vice versa. In object detection, the loss function can
be categorized into two parts; one is classification loss, another
one is localization loss. The former is applied to train the
classification head for determining the target object type, and the
latter is used to train another head for regressing a rectangular
box to locate the target object [18]. Once these two categories
adds on, it is called a total loss for the object detection model.

II. RESEARCH METHOD

A standard object detection workflow has been presented to
create a deep learning-based object detector in a paper published
in [19] and the workflow as shown in Fig. 8. The workflow starts
with the dataset acquisition process, followed by data
annotation. The images will then be augmented into different
sizes and split into training and test sets according to a selected
ratio. Next, the training and test set will be fitted and trained in
an object detection algorithm. Once the training is done, the best
model will be saved. Finally, the best model will be used to infer
the test dataset or new images for evaluation purposes. The
evaluation process will be based on the selected metrics, such as
mAP, AP, and AR. If the model performs well, it can be
deployed into a real-case scenario.

Fig. 8. Workflow for object detection project [19].

Fig. 9 illustrates the overall lifecycle of the object detection
project, and it will only cover performance evaluation. The
model's deployment for real-case scenarios will depend on the
client's needs. The cycle consists of 6 stages: problem
understanding, data collection, data annotation and
augmentation, data transformation, modelling, and model
evaluation. During the early stage of the problem understanding,
one discussion session was held with the client, and the problem
faced was identified. The problem is due to the client's lack of
domain knowledge to develop a proper object detection model.
Next, several meetings were held to discuss the desired outcome
and expectations from the client. The goal was then set: to
develop a prototype model which can make a good prediction
on healthy and unhealthy oil palm trees on aerial images
captured by drone.

The next stage in the project lifecycle is data collection. It is
also known as data acquisition in the object detection workflow.
The client provides the image dataset for this project. It consists
of 90 images, which are collected from an oil palm plantation in
Perak, based on the coordination stored in the metadata of the
image. The images are collected during sunny and cloudy
weather with different aerial angles. Multiple trees can be seen
in an image with tree crowns overlapping each other. Some are
unhealthy trees as shown in Fig. 10, and some are healthy trees
as shown on Fig. 11. The health of the oil palm trees can be
differentiated using crown color. Most healthy trees have green
crowns, while the unhealthy ones tend to have yellow and brown
crowns [20]. All the images are captured through a drone and
stored in 32-bit PNG format. The image size ranges from 8 MB
to 12 MB, while the image size is fixed at 2982-pixel x 1694-
pixel. All the images have a resolution of 144 dots per inch
(DPI).

Fig. 9. Project lifecycle.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

752 | P a g e

www.ijacsa.thesai.org

Fig. 10. Tree crown of unhealthy oil palm tree.

Fig. 11. Tree crown of healthy oil palm tree.

Next, the images were manually annotated using an open-
source tool called 'Labellmg' as shown in Fig. 12. The software
is written in Python format and uses Qt for its graphical interface
[21]. The bounding box was drawn on the visible objects. Each
bounding box represents the object's coordinate in the image
with four axis: xmin, xmax, ymin, and ymax. Two classes,
'Healthy' and 'Unhealthy', are used to annotate each object in the
images. The annotations are saved in Pascal VOC XML format.

Fig. 12. LabelImg.

The images were once trained using one of the selected
object detection models. However, the image size is too big for
the GPU to handle. The GPU on Google Colab is the Nvidia
Tesla T4, which has 16GB of memory. As a result, the images
must be rescaled and reduced in size. The images were
augmented or rescaled to 1024 x 1024 pixels. The bounding
boxes also shrank according to the rescale ratio using a python
script found in a GitHub repository. Italo José codes the script
[22].

The image dataset is then split randomly into training and
validation sets with a ratio of 8:2 as shown in Fig. 13. Once the
splitting process is complete, the respective annotations are split
into two folders, training and validation set accordingly. The
dataset will need to train in different models. Some models are
stored in different model zoos of different platforms, such as
TensorFlow, PyTorch, and Detectron2. The model zoo is a
repository where companies or open-source institutions store

machine learning and deep learning models. Object detection
models, stored in TensorFlow and PyTorch model zoo, are
developed by Google and Linux Foundation (previously Meta
AI). Those models are trained on the PASCAL VOC dataset,
and the annotation needs to be in XML format. Meanwhile,
models in the Detectron2 platform are maintained by Meta AI,
and the models are trained on the COCO dataset. Thus, the
annotation needs to be in JSON format. As a result, the
annotations in XML format are converted into JSON format
using a script found in the GitHub repository. A person develops
the script with a pseudonym called fam_taro [23]. Meanwhile, a
script developed by Dat Tran in GitHub is being used to generate
TFRecord format for TensorFlow object detection models [24].
The Fig. 14 shows the dataset directory structure for the project.

Fig. 13. Original size image vs resized image.

Fig. 14. Dataset directory structure.

TABLE III. MODEL SPECIFICATION

Specificat

ion
Faster R-CNN RetinaNet

CenterN

et

Model Zoo
TensorFl

ow

Detectro

n2

TensorFl

ow

Detectro

n2

TensorFl

ow

Annotatio
n Format

XML JSON XML, JSON XML

Backbone
Inception

-ResNet

ResNet-

50/101
ResNet-50/101

HourGlas

s

FPN No Yes Yes No

Anchor Yes Yes No

Input

Image Size
640 x 640 640 x 640 512 x 512

Several models are being selected for training. The
justification of the advantages and disadvantages of each model
is written in previous discussion. Table III summarizes the
specification of the selected models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

753 | P a g e

www.ijacsa.thesai.org

Besides, several settings need to be configured in the config
file of each model before the training process starts. Table IV
summarizes the basic settings in the config file.

TABLE IV. CONFIG SETTINGS

Settings Options

num_classes 2/3*

Path to train_images/

test_images/ labelmap
Path to the working directory in Google Drive

fine_tune_checkpoint
Checkpoint of pre-trained model downloaded

from the model zoo of the respective platform

fine_tune_checkpoint_ty
pe

Detection

batch_size 2/4

num_steps/iter/epoch 50000/3600/100

Many pre-trained object detection models are available in
the model zoo of different platforms. However, every platform
requires a library version to be installed before the model can be
trained on the custom dataset. In addition, the TensorFlow
library, Colab, and Drive are all developed by Google. As a
beginner, it is reasonable to consider models from the
TensorFlow library as the first choice due to compatibility
issues. Unfortunately, TensorFlow models are computationally
expensive to train and consume much time. A Faster R-CNN
model took up to 9 hours to train. Due to cost concerns, other
alternatives, such as PyTorch's TorchVision library and
Detectron2 library, are being considered. The models in
PyTorch take much lesser time and are easier to train. PyTorch's
Faster R-CNN model only took an hour to train on the same
model. However, only a limited variety of models are available
to train on the platform, which is the main disadvantage of the
PyTorch platform.

For Detectron2 library, it contains a variety of models that
are available for training. Most models are trained with the 3x
schedule (~37 COCO epochs). A Faster R-CNN model only
takes an hour to train on the same dataset. It has much more
model variation and consumes less time in training. As a result,
the Detectron2 library is selected for the rest of the training
process to produce a standardized result.

Object detection has recently been deemed feasible due to
the rapid development of GPU parallel computing. GPU parallel
computing allows the model to split the training process into
thousands of tasks and process it simultaneously. It is much
more efficient and timesaving than the CPU, which only
processes one task simultaneously. Unfortunately, there is no
GPU hardware available on the laptop. Specification of project
setup as shown in Table V. One of the alternatives available
online is the Cloud GPU Platform. Some examples of these
platforms are Google Colaboratory, Paperspace, Microsoft
Azure, and Kaggle.

In order to stay competitive, every platform offers similar
GPU devices and only differs by the subscription plan. As a
result, it is really up to user preferences and usage. For this
project, Google Colaboratory has been selected due to several
reasons. The user interface is also not much different from
Jupyter Notebook. Lastly, it allows the users to link to their
Google Cloud storage, keeping the whole process on the cloud.
Thus, it is easier and more flexible for beginners and students.

TABLE V. SPECIFICATION OF PROJECT SETUP

Types Specification

CPU Nvidia Tesla T4 (16GB memory)

Storage Google Drive (100GB)

IDE Google Colab (Python)

RAM/ Disk Space 12.7 GB/ 107.7 GB

III. RESULTS AND DISCUSSION

The models selected are CenterNet HourGlass104 512x512
and Faster R-CNN Inception ResNet V2 640x640. The basic
settings of the model as shown in Table VI and Table VII, the
results, and the inference images as shown in Fig. 15 and Fig.
16.

TABLE VI. BASIC SETTINGS FOR TENSORFLOW MODELS

Settings Options

num_classes 2

fine_tune_checkpoint_type Detection

batch_size 2

num_steps 50000

TABLE VII. RESULT FOR CENTERNET & FASTER R-CNN

Model

CenterNet

HourGlass104

512x512

Faster R-CNN

Inception

ResNet V2 640x640

Average Precision (AP) @

[loU-0.50:0.95 | area= all]
0.372 0.351

Average Precision (AP) @
[loU=0.50:0.95 | area= small]

-1 -1

Average Precision (AP) @

[loU=0.50:0.95 | area= medium]
0.194 0.157

Average Precision (AP) @

[loU=0.50:0.95 | area= large]
0.408 0.405

Average Recall (AR) @

[loU=0.50:0.95 | area= all]
0.542 0.475

Average Recall (AR) @
[loU=0.50:0.95 | area= small]

-1 -1

Average Recall (AR) @

[loU=0.50:0.95 | area= medium]
0.366 0 275

Average Recall (AR) @

[loU=0.50:0.95 | area= large]
0.576 0.516

Total Loss 5.196 1.788

Fig. 15. Inference image of centernet hourglass104.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

754 | P a g e

www.ijacsa.thesai.org

Fig. 16. Inference image of faster R-CNN inception ResNet V2.

In this evaluation, the inference image is a new test image
with an image size of 3840 x 2160 pixels. In the image, most of
the oil palm trees are considered medium or large objects, as the
area of the big tree crown is above 962 pixels, and the medium
one is around 322 and 962 pixels. In Table VI, the evaluation
metrics shows that CenterNet with HourGlass104 backbone
achieved a higher average precision (AP) for all, medium and
large area categories, compared to Faster R-CNN with Inception
ResNet backbone. A higher value of AP indicates that when the
algorithm detects an object as healthy or unhealthy, it has a high
possibility that it is correct. Furthermore, the metrics also show
that the average recall rate (AR) of all, medium, and large area
categories are higher in the CenterNet model than in the Faster
R-CNN model. It means that the CenterNet model has fewer
false negative predictions. Meanwhile, there are no small tree
crowns under 322 pixels in the image that can be detected. Thus,
the metrics show a value of 1 in both AP and AR for the small
area category. Lastly, CenterNet achieved 5.196 in total loss,

while the Faster R-CNN model only achieved 1.788. This
problem can be seen in the inference image as well. Many tree
crowns are left undetected in CenterNet's inference image,
compared to the one in the Faster R-CNN model. This scenario
also means that the CenterNet failed to predict many tree
crowns, which means fewer false negative instances are being
predicted (higher AR). However, those predicted ones are highly
likely to be correct (higher AP). Thus, the metrics proved that
the CenterNet model is not robust enough to locate the tree
crowns and has a high localization loss compared to Faster
R- CNN. In conclusion, both models did not produce a
satisfactory result and took a very long time to train around 5
hours. As a result, a decision has been made to stop the training
process for other TensorFlow models. The models in the
Dectectron2 platform will be used as an alternative.

Four pre-trained models are being selected from the
Detectron2 Model Zoo. The models selected are RetinaNet
ResNet-50, RetinaNet ResNet-101 FPN, Faster R-CNN ResNet-
50 FPN, and Faster R-CNN ResNet-101 FPN. The basic settings
of the model as shown in Table VIII and Table IX, the result,
and the inference images as shown in Fig. 17, Fig. 18 and Fig.
19.

TABLE VIII. BASIC SETTINGS FOR DETECTRON2 MODELS

Settings Options

num_classes 2

inns_per_batch (batch_size) 2

max_iter 3600

TABLE IX. RESULT FOR DETECTRON2 MODELS

Model
RetinaNet

ResNet50 FPN

RetinaNet

ResNet101 FPN

Faster R CNN

ResNet50 FPN

Faster R CNN

ResNet101 FPN

Average Precision (AP) @ [loU-0.50:0.95 | area= all] 0.23 0217 0.317 0.353

Average Precision (AP) @ [loU-0.50:0.95 | area= small] -1 -1 -1 -1

Average Precision (AP) @ [loU-0.50:0.95 | area= medium] 0.050 0.071 0.167 0.145

Average Precision (AP) @ [loU-0.50:0.95 | area= large] 0.263 0.284 0.388 0.4

Average Recall (AR) @ [loU-0.50:0.95 | area= all] 0.261 0.284 0.422 0.425

Average Recall (AR) @ [loU-0.50:0.95 | area= small] -1 -1 -1 -1

Average Recall (AR) @ [loU-0.50:0.95 | area= medium] 0.062 0.08 0.223 0.196

Average Recall (AR) @ [loU-0.50:0.95 | area= large] 0.3 0.324 0.466 0.472

Total Loss 0.3329 0.2768 0.559 0.4414

Fig. 17. Inference image of retinaNet ResNet50 FPN.

Fig. 18. Inference image of faster R-CNN ResNet50 FPN.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

755 | P a g e

www.ijacsa.thesai.org

Fig. 19. Inference image of faster R-CNN ResNet101 FPN.

The batch size and the number of max iterations have been
selected for the fine tuning process. These two parameters are

essential and will significantly impact the result if the value is
fine-tuned correctly. Batch size refers to the number of training
images utilized in one iteration, while max_iter refers to the
maximum cycle for the training process. The settings of the
model as shown in Table X and Table XI, the result and the
inference images as shown in Fig. 20, Fig. 21, Fig. 22, Fig. 23
and Fig. 24.

TABLE X. FINE-TUNING FOR FASTER R-CNN RESNET101 FPN

Settings Options

num_classes 2

ims_per_batch (batch_size) 2/ 4

max_iter 3600/ 7200/ 9000/ 10800

TABLE XI. RESULT UNDER DIFFERENT SETTINGS

Settings Benchmark
A: 3600 iter,

batch size: 4

B: 7200 iter,

batch size: 2

C: 9000 iter,

batch size: 2

D: 10800 iter,

batch size: 2

Average Precision (AP) @

[loU-0.50:0.95 | area= all]
0.353 0.329 0.342 0.355 0.333

Average Precision (AP) @

[loU-0.50:0.95 | area= small]
-1 -1 -1 -1 -1

Average Precision (AP) @
[loU-0.50:0.95 | area= medium]

0.145 0.158 0.165 0.169 0.184

Average Precision (AP) @

[loU-0.50:0.95 | area= large]
0.4 0.364 0.382 0.393 0.362

Average Recall (AR) @

[loU-0.50:0.95 | area= all]
0.425 0.393 0.418 0.440 0.421

Average Recall (AR) @
[loU-0.50:0.95 | area= small]

-1 -1 -1 -1 -1

Average Recall (AR) @

[loU-0.50:0.95 | area= medium]
0.196 0.206 0.212 0.222 0.259

Average Recall (AR) @

[loU-0.50:0.95 | area= large]
0.472 0.430 0.463 0.487 0.452

Total Loss 0.4414 0.3803 0.2853 0.2296 0.2020

Fig. 20. Benchmark from preliminary result.

Fig. 21. Batch size of 4 and 3600 iterations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

756 | P a g e

www.ijacsa.thesai.org

Fig. 22. Batch size of 2 and 7200 iterations.

Fig. 23. Batch size of 2 and 9000 iterations.

Fig. 24. Batch size of 2 and 10800 iterations.

The fine-tuning process starts with model A by increasing
the batch size to 4 while maintaining the max_iter value at 3600.
These settings are made to explore the impact on model
performance by increasing the batch size. The process is then
continued with another three models of B, C, and D with
different iterations, which are 7200, 9000, and 10800, while the
batch size is kept constant at 2. The reason is to understand the
effect of different numbers of max iteration on the model
performance. Table X shows the performance metrics of a
benchmark model from the preliminary stage and four other
fine-tuned models. The model did not perform significantly
better by increasing the batch size to 4. The performance metrics
show that model A has a lower total loss and a slight increase in
value for AP and AR in the medium area category, while the
other metrics of model A dropped when compared with the
benchmark model. The inference image also did not show any

significant improvement in detection, as there is still a false
positive detection on the top right corner of the image. Next,
model B has settings of 7200 iterations and batch size of 2. The
table shows that there is only a slight increase in value for AP
and AR in the medium area category and a lower value of total
loss (0.2853). Besides that, it did not show any significant
increase in other performance metrics. However, there is an
improvement in model B when comparing the inference image
with the one of the benchmark model. It is shown with an arrow
at the area of improvement. The false positive detection on the
top right corner of the image is gone, and the undetected trees at
the left side and the bottom part of the image are now detected.
For model C, the max iteration is increased to 9000 iterations,
and the batch size is kept constant at 2. The result shows that
model C achieved the highest AP value of 0.355 for all area
category, and the highest AR value of 0.44 and 0.487 for all and
large area categories, respectively. Meanwhile, the total loss of
model C is 0.2296, which is the second lowest among the
models. The inference image of model C has no differences
when compared to the one of model B. Lastly, the max iteration
is set to 10800, and the batch size is kept constant at 2 for model
D. Even though model D achieved the lowest value of total loss
and the highest value in AP and AR for the medium area
category, the value for other performance metrics dropped
compared to model C of 9000 iterations. The value of AP for all
and large area categories hits the lowest among all models. The
inference image of model D also started to show the symptoms
of overfitting as the false positive detection reappeared in the top
right corner of the image. In conclusion, the Faster R-CNN
ResNet101 FPN model with 9000 iterations and batch size of 4
performs the best. This experiment also shows that a two-stage
detector, like the Faster R-CNN model, is better at classifying
and locating the object than a one-stage detector, like RetinaNet
and CenterNet. In addition, it also proved that a deeper backbone
module would yield a better result.

There are some challenges throughout the project execution.
The data annotation process was a challenging one. The oil palm
trees are tough to label as it contains much ambiguity. Some tree
crowns are yellowish because of sunlight reflection, but it does
not mean the tree is unhealthy. Besides, oil palm tree crowns
overlap, making it hard to determine the correct boundary for
each crowns during annotation. Thus, constant communication
is made with the clients on this issue so that a standardized
dataset can be produced. Lastly, another challenge is the time
consumption in training the TensorFlow models. The longest
time to train a TensorFlow is around nine hours for the Faster
R- CNN model. It is also tough to train the model as the training
process disconnected from the server several times, and it will
be retrained again. Thus, object detection models from
alternative platforms like PyTorch and Detectron2 are being
used and the training time significantly reduces to less than two
hours.

IV. CONCLUSION

As mentioned in Section III, the Faster R-CNN ResNet101
FPN model performed the best among all the models. It is then
fine-tuned to achieve a better result. Batch size and max iteration
are the parameters used to fine tune the model. As a result, the
Faster R-CNN ResNet101 FPN model with 9000 iterations and
batch size of 2 achieved the best performance compared to its

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

757 | P a g e

www.ijacsa.thesai.org

benchmark model with 3600 iterations and batch size of 2.
Suggestion for future work, to explore the method of taking a
picture by combine using multi modal fusion and sensor. The
data might be useful by combining sensors such as lidar,
hyperspectral, and SAR (Synthetic Aperture Radar) with RGB
imagery to improve detection under varying the environment
from different perspectives.

REFERENCES

[1] A. Azuar, “Malaysia’s palm oil, products exports up 55.2% for 6M22,”
The Malaysian Reserve, Aug. 9, 2022. [Online]. Available:
https://themalaysianreserve.com/2022/08/09/malaysias-palm-oil-
products-exports-up-55-2-for-6m22/ Accessed: Dec. 27, 2024.

[2] P. Tullis, “How the world got hooked on palm oil,” The Guardian, Feb.
19, 2019. [Online]. Available:
https://www.theguardian.com/news/2019/feb/19/palm-oil-ingredient-
biscuits-shampoo-environmental Accessed: Dec. 27, 2024

[3] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years:
A survey,” arXiv preprint, arXiv:1905.05055, pp. 1–22, May 2019. doi:
10.48550/arXiv.1905.05055

[4] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, pp.
3212–3232, Dec. 2019, doi: 10.1109/TNNLS.2018.2876865.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” arXiv preprint,
arXiv:1506.01497v3, pp. 1–14, Jan. 2016. doi:
10.48550/arXiv.1506.01497

[6] K. Yarak, A. Witayangkurn, K. Kritiyutanont, C. Arunplod, and R.
Shibasaki, “Oil palm tree detection and health classification on high-
resolution imagery using deep learning,” Agriculture, vol. 183, 2021.

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” arXiv preprint, arXiv:1708.02002v2, pp. 1–10,
Jan. 2018. doi: 10.48550/arXiv.1708.02002

[8] M. Culman, S. Delalieux, and K. Van Tricht, “Palm tree inventory from
aerial images using RetinaNet,” in Proc. 2020 Mediterranean and Middle-
East Geoscience and Remote Sensing Symp. (M2GARSS), Tunis, 2020,
pp. 314–317, doi: 10.1109/M2GARSS.2020.317.

[9] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv
preprint, arXiv:1904.07850, 2019. doi: 10.48550/arXiv.1904.07850

[10] U. Almog, “CenterNet, explained,” Towards Data Science, Apr. 10, 2021.
[Online]. Available: https://towardsdatascience.com/a7386f368962.
Accessed: Dec. 27, 2024.

[11] Z. Xi and C. Hopkinson, “Detecting individual-tree crown regions from
terrestrial laser scans with an anchor-free deep learning model,” Can. J.
Remote Sens., vol. 46, pp. 228–242, 2020.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint, arXiv:1512.03385v1, pp. 1–12, Dec. 2015.
doi: 10.48550/arXiv.1512.03385

[13] C. Szegedy et al., “Going deeper with convolutions,” arXiv preprint,
arXiv:1409.4842v1, pp. 1–12, Sep. 2014. doi: 10.48550/arXiv.1409.4842

[14] DeepAI, “Inception module,” DeepAI, Jan. 5, 2023. [Online]. Available:
https://deepai.org/machine-learning-glossary-and-terms/inception-
module. Accessed: Dec. 27, 2024.

[15] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human
pose estimation,” arXiv preprint, arXiv:1603.06937v2, pp. 1–17, Apr.
2016. doi: 10.48550/arXiv.1603.06937

[16] T.-Y. Lin et al., “Feature pyramid networks for object detection,” arXiv
preprint, arXiv:1612.03144v2, pp. 1–10, Mar. 2017. doi:
10.48550/arXiv.1612.03144

[17] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance
metrics for object-detection algorithms,” in Proc. 2020 Int. Conf. Syst.,
Signals and Image Process. (IWSSIP), Niterói, 2020, pp. 237–242, doi:
10.1109/IWSSIP.2020.347.

[18] S. Jiang, H. Qin, B. Zhang, and J. Zheng, “Optimized loss functions for
object detection: A case study on nighttime vehicles,” arXiv preprint,
arXiv:2011.05523v2, pp. 1–15, Nov. 2020. doi:
10.48550/arXiv.2011.05523

[19] A. Casado and J. Heras, “Guiding the creation of deep learning-based
object detectors,” arXiv preprint, arXiv:1809.03322v1, pp. 1–6, Sep.
2018. doi: 10.48550/arXiv.1809.03322

[20] K. Yarak, A. Witayangkurn, K. Kritiyutanont, C. Arunplod, and R.
Shibasaki, “Oil palm tree detection and health classification on high-
resolution imagery using deep learning,” Agriculture, vol. 183, 2021.

[21] L. Studio, “labelImg,” GitHub, Jan. 5, 2023. [Online]. Available:
https://github.com/heartexlabs/labelImg. Accessed: Dec. 27, 2024.

[22] I. Jose, “Resize_dataset_pascalvoc,” GitHub, Jan. 1, 2023. [Online].
Available: https://github.com/italojs/resize_dataset_pascalvoc. Accessed:
Dec. 27, 2024.

[23] fam_taro, “voc2coco,” GitHub, Jan. 1, 2023. [Online]. Available:
https://github.com/yukkyo/voc2coco. Accessed: Dec. 27, 2024.

[24] D. Tran, “generate_tfrecord.py,” GitHub, Jan. 1, 2023. [Online].
Available:
https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecor
d.py. Accessed: Dec. 27, 2024.

