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Abstract—Oil palm trees are the world's most efficient and 

economically productive oil bearing crop. It can be processed into 

components needed in various products, such as beauty products 

and biofuel. In Malaysia, the oil palm industry contributes around 

2.2% annually to the nation's GDP. The continuous surge in 

demand for oil palm worldwide has created an awareness among 

the local plantation owner to apply more monitoring standards on 

the trees to increase their yield. However, Malaysia's cultivation 

and monitoring process still mainly depends on the labor force, 

which caused it to be inefficient and expensive. This scenario 

served as a motivation for the owner to innovate the tree 

monitoring process through the use of computer vision techniques. 

This paper aims to develop an object detection model to 

differentiate healthy and unhealthy oil palm trees through aerial 

images collected through a drone on an oil palm plantation. 

Different pre-trained models, such as Faster R-CNN (Region-

Based Convolutional Neural Network) and SSD (Single-Shot 

MultiBox Detector), with different backbone modules, such as 

ResNet, Inception, and Hourglass, are used on the images of palm 

leaves. A comparison will then be made to select the best model 

based on the AP and AR of various scales and total loss to 

differentiate healthy and unhealthy oil palm. Eventually, the 

Faster R-CNN ResNet101 FPN model performed the best among 

the models, with AParea = all of 0.355, ARarea = all of 0.44, and 

total loss of 0.2296 

Keywords—Component oil palm detection; deep learning 

models; object detection; Faster R-CNN; drone imagery analysis 

I. INTRODUCTION 

Palm oil is the most productive oil crop and can be processed 
into various products, such as soap, vegetable oil, beauty 
products, etc. In Malaysia, palm oil has been regarded as 
Malaysia's golden crop. The oil palm industry has always been 
one of the most important agricultural exports for the nation. In 
2022 alone, palm oil contributed 66.1% of the nation's total 
export earnings, which amounted to MYR 44.63 billion this year 
[1]. Besides, the demand for palm oil continues to surge due to 
the growing population and the shortage of sunflower and 
rapeseed oils in recent years. It is estimated that the annual 
production will be quadrupled, reaching 240m tons by 2050 [2]. 
To benefit from this scenario, Malaysia's oil palm industry has 
to be able to increase its yield. As a result, the monitoring 
process of oil palm trees has become important to ensure a 
continuous supply of palm oil. 

One of the main focus or projects involves differentiating 
and detecting healthy and unhealthy oil palms in the plantation. 
This task is particularly important because insects can transmit 
the disease affecting an oil palm tree to its surrounding trees. 
Also, it is important to provide timely treatment to the infected 
unhealthy oil palm trees. 

However, the problem for the Malaysian oil palm industry 
has always been labor shortages as it heavily depends on foreign 
labor to carry out the monitoring task. Nevertheless, the situation 
worsened when coronavirus hit the globe in early 2020, which 
caused the border between countries to close. Foreign laborers 
are not able to enter Malaysia to fulfill the labor shortage faced 
by the industry. Fortunately, this crisis has successfully 
prompted the industry player to innovate and implement some 
automation, such as object detection techniques, to overcome 
the problem. With object detection techniques put in place, it can 
help the plantation owners to shorten the time in detecting 
unhealthy and healthy oil palm trees, thus increasing the 
efficiency of the task as the traditional way of oil palm tree 
monitoring is too labor-intensive and inefficient. Once this 
project is successful, it will provide a reference for other 
researchers to improvise further and develop the detection 
model. Besides, it also acts as a starting point for the companies 
in this industry to utilize this method to overcome the labor 
shortage, further helping them increase their crop yield moving 
forward. Lastly, it is also believed that this project can help to 
share awareness and gather the attention of other companies of 
different crops, apart from oil palm, to utilize the object 
detection technique in their crop plantation and management 
process. 

Object detection is an important computer vision task that 
detects instances of visual objects of a particular class (such as 
humans, animals, or cars) in digital images [3]. The idea and 
early design of object detection started in the 1900s. In recent 
years, the evolution of GPU architecture and deep learning 
techniques have generalized the usage of object detection 
techniques in many sectors. Autonomous driving, defect 
detection, and traffic monitoring are real-world applications that 
use object detection models. There are two types of object 
detection frameworks, which are region-based, and 
regression/classification based. Region-based frameworks are 
commonly referred to as two-stage detectors, while 
regression/classification-based frameworks are referred to as 
one-stage detectors. 
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Fig. 1. Development of object detection frameworks [4]. 

Two-stage detectors will first generate region-based 
proposals, then classify each proposal into different classes. The 
typical examples of two-stage detectors are R-CNN, SPP-Net, 
Faster R-CNN, and FPN. Meanwhile, one stage detectors view 
object detection as a regression or classification problem, 
adopting a unified framework to achieve final results (categories 
and locations) directly [4]. Single-shot MultiBox Detector 
(SSD), You Only Live Once (YOLO), and CenterNet are some 
of the models that use regression/classification-based 
frameworks. Fig. 1 summarizes the development of two object 
detection frameworks. 

 
Fig. 2. RPN module [5]. 

Faster R-CNN is the abbreviation of Faster Region-based 
Convolutional Neural Network. It combines the algorithm of 
RPN (Region Proposal Network) and Fast R-CNN as shown in 
Fig. 2. It can be viewed as an updated version of Fast R-CNN, 
where, RPN replaces the Selective Search method. RPN is a 
fully convolutional network, which slides over the convolutional 
feature map and simultaneously predicts object boundary and 
object-ness scores at each position [4]. As a result, the model 
performs better in speed and accuracy and consumes fewer 

computational resources. In a paper published in [6], the authors 
applied Faster R-CNN on high resolution imagery for automatic 
detection and health classification of oil palm trees. There are 
two backbones selected for Faster R-CNN, which are ResNet-
50 and VGG 16. The model with ResNet-50 as the backbone 
obtained F1 scores of 95.09%, 92.07%, and 86.96%, 
respectively, for oil palm tree detection, healthy tree 
identification, and unhealthy tree identification. Overall, the 
ResNet-50 model yielded a better F1 score than the VGG-16 
model. 

RetinaNet is a one-stage object detection model first 
published in a paper by Lin et al. The development of RetinaNet 
is aimed at overcoming the problem of class imbalance and 
robust estimation in Single-Shot MultiBox Detector (SSD) 
during training by utilizing a focal loss function. Class 
imbalance problem in SSD leads to many easy negatives 
appearing when the detector is evaluating the object locations, 
overwhelming the loss function and causing a degeneration in 
the model performance. With focal loss function, it helps to 
down-weight those easy negatives and thus focus training on 
hard negatives as shown in Fig. 3. 

 

Fig. 3. RetinaNet architecture [7]. 

An optimized palm tree inventory model based on a 
RetinaNet object detector and high-resolution RGB images is 
proposed in 2021 to classify and locate palm trees in different 
scenes with different appearances and ages [8]. The dataset has 
a spatial resolution of 25cm. The detection model for palm tree 
inventory achieved a precision of 89.3% on the validation 
dataset and 76.9% on the test dataset. Both precision values are 
on the mAP@IoU = 0.50 category. CenterNet is an anchorless 
object detection model published [9], entitled "Objects as 
Points" in 2019. The idea of anchorless in this model is to 
replace Non-Maximum Suppression (NMS) algorithm used in 
SSD or YOLO. NMS algorithm functions as a filter to select one 
single bounding box out of the many overlapping bounding 
boxes in the post process. For example, YOLOv3 generates 
more than 7k bounding boxes in its prediction for each image, 
mostly considered garbage predictions, and the NMS algorithm 
will need to run pairwise checks for those overlapping bounding 
boxes [10]. Fig. 4 shows a CenterNet algorithm. This method 
increases the complexity of the model when the number of 
bounding boxes (predictions) increases. It also forces the model 
to consume more computational power and time in clearing 
those irrelevant predictions. 
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Fig. 4. CenterNet algorithm [10]. 

Meanwhile, CenterNet predicts a box center for an object 
and uses the center point to regress the value for its box 
dimensions and offsets, directly removing irrelevant predictions 
without any decoding process. An anchor-free deep learning 
model, CenterNet, is used to detect individual crown locations 
and regions from dense 3D terrestrial laser scans [11]. There are 
1181 crowns from twelve plots. The author used eight plots for 
training, and four plots for testing. The model is trained over 40k 
iterations. The maximum training F1-score and IoU were 0.881 
and 0.670, while testing result showed a F1-score of 0.754 and 
IoU of 0.583. The result also showed that a taller, larger, 
smoother, less crowded, and less overlapped tree was found 
easier to be detected by the model. Table I shows a comparison 
of object detection models for two stage and one stage of model. 
ResNet, Inception, and HourGlass Network are all 
convolutional neural networks widely used for image 
classification tasks. However, each contains its design 
specification to optimize the deep neural network as it goes 
deeper. 

TABLE I.  COMPARISON OF OBJECT DETECTION MODELS 

Model Innovations Strength Limitations 

Two 

Stage 

Faster R 

CNN 

The RPN module 

helps to generate 

high-quality region 
proposals and saves 

time compared to 

the Selective Search 
method. 

Higher 

accuracy 

Complicated 

training with 

high memory 
consumption 

One 

Stage 
RetinaNet 

Focal loss function 

– down weight the 
easy negatives and 

focus on hard 

negatives 

Stable 

training for 

class 
imbalance 

Lower 

accuracy 
compared to 

a two-stage 

detector 

Before ResNet was invented, researchers tended to design 
deep learning networks by increasing their layers and depth as 
shown in Fig. 5. However, it comes to a limitation where the 
train and test errors increase when it goes even deeper. In a paper 
published by [12], it is believed that this degradation in 
performance is not caused by overfitting, and indicated that not 
all networks could be optimized easily by making it deeper. As 
a result, a deep residual learning framework has been proposed 
by [12] to address the degradation problem. ResNet learns 
residual functions with reference to the layer inputs instead of 
learning unreferenced functions. Thus, it makes it possible to 
train a much deeper network while minimizing the error value. 

Next, Inception Network as shown in Fig. 6 is designed to 
decrease the computational cost and burden to run a deep neural 
network. Besides, it also helps to better optimize parallel 
computing. The network performs max pooling and a 
convolution on an input with three different sizes of filters (1x1, 
3x3, and 5x5), rather than stacking them in sequence. As the 
network progress, it will grow wider and not deeper. This also 
help to reduce vanishing gradient problem [14]. Meanwhile, 
HourGlass Network consists of multiple stacked hourglass 
modules, which allow for repeated bottom-up, top-down 
inference [15]. It is specially designed for predicting human 
poses. The advantage of this network is that it captures and 
consolidates information across all scales of the image [15]. 

 
Fig. 5. Residual learning [12]. 

 
Fig. 6. Inception module [13]. 

 

Fig. 7. Building block of FPN [16]. 

The Feature Pyramid Network is published by Lin et al. in 
2017. FPN can be seen as an updated version of ConvNet's 
pyramidal feature hierarchy. FPN takes a single-scale image of 
an arbitrary size as input, and outputs proportionally sized 
feature maps at multiple levels, in a fully convolutional fashion. 
This process is independent of the backbone convolutional 
architecture [16]. As shown in Fig. 7, the building block 
involves a bottom-up pathway, a top-down pathway, and lateral 
connections. The result from the paper showed that average 
precision of a Faster R-CNN ResNet50 with FPN, goes up by 
7.6%, from 26.3% to 33.9%. The evaluation of the model is 
made on COCO minival set. 
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A standard implementation, which can be used as a 
benchmark among different datasets is published in 2020. One 
of the famous metrics used for model evaluation is called 
average precision (AP) and average recall (AR). Before going 
deeper into how metrics works, it is also wise to understand the 
concept of intersection over union (IOU). It is a measurement 
based on Jaccard Index, a coefficient of similarity for two sets 
of data [17]. For object detection model, IOU measures the 
overlapped area between two bounding boxes, one from 
prediction, and one of ground-truth, divided by the area of union 
between them. With a given threshold, if the IOU is bigger than 
the threshold, then the detection is considered valid and vice 
versa. With IOU in place, AP and AR can be evaluated in 
different variations as mentioned in Table II. 

TABLE II.  PERFORMANCE METRICS [17] 

Metrics Meaning 

AP@50:5:95 
AP of 10 IOUs varying from range of 50% to 95% with 

steps of 5%. 

AP50 AP of IOU of 50% 

AP75 AP of IOU of 75% 

AP-S AP for small sized objects (area < 322 pixels) 

AP-M AP for medium sized objects (322 < area < 962 pixels) 

AP-L AP for large sized objects (area > 962 pixels) 

AR@50:5:95 
AR of 10 IOUs varying from range of 50% to 95% with 

steps of 5%. 

AR-S AR for small sized objects (area < 322 pixels) 

AR-M AR for medium sized objects (322 < area < 962 pixels) 

AR-L AR for large sized objects (area > 962 pixels) 

The loss function is a common but essential metric in deep 
learning. It provides a numerical representation of how well a 
model performs on a particular task. It helps the researchers to 
evaluate and fine-tune the model to achieve a better result. If the 
model predicts poorly, the loss function will output a higher 
number and vice versa. In object detection, the loss function can 
be categorized into two parts; one is classification loss, another 
one is localization loss. The former is applied to train the 
classification head for determining the target object type, and the 
latter is used to train another head for regressing a rectangular 
box to locate the target object [18]. Once these two categories 
adds on, it is called a total loss for the object detection model. 

II. RESEARCH METHOD 

A standard object detection workflow has been presented to 
create a deep learning-based object detector in a paper published 
in [19] and the workflow as shown in Fig. 8. The workflow starts 
with the dataset acquisition process, followed by data 
annotation. The images will then be augmented into different 
sizes and split into training and test sets according to a selected 
ratio. Next, the training and test set will be fitted and trained in 
an object detection algorithm. Once the training is done, the best 
model will be saved. Finally, the best model will be used to infer 
the test dataset or new images for evaluation purposes. The 
evaluation process will be based on the selected metrics, such as 
mAP, AP, and AR. If the model performs well, it can be 
deployed into a real-case scenario. 

 
Fig. 8. Workflow for object detection project [19]. 

Fig. 9 illustrates the overall lifecycle of the object detection 
project, and it will only cover performance evaluation. The 
model's deployment for real-case scenarios will depend on the 
client's needs. The cycle consists of 6 stages: problem 
understanding, data collection, data annotation and 
augmentation, data transformation, modelling, and model 
evaluation. During the early stage of the problem understanding, 
one discussion session was held with the client, and the problem 
faced was identified. The problem is due to the client's lack of 
domain knowledge to develop a proper object detection model. 
Next, several meetings were held to discuss the desired outcome 
and expectations from the client. The goal was then set: to 
develop a prototype model which can make a good prediction 
on healthy and unhealthy oil palm trees on aerial images 
captured by drone. 

The next stage in the project lifecycle is data collection. It is 
also known as data acquisition in the object detection workflow. 
The client provides the image dataset for this project. It consists 
of 90 images, which are collected from an oil palm plantation in 
Perak, based on the coordination stored in the metadata of the 
image. The images are collected during sunny and cloudy 
weather with different aerial angles. Multiple trees can be seen 
in an image with tree crowns overlapping each other. Some are 
unhealthy trees as shown in Fig. 10, and some are healthy trees 
as shown on Fig. 11. The health of the oil palm trees can be 
differentiated using crown color. Most healthy trees have green 
crowns, while the unhealthy ones tend to have yellow and brown 
crowns [20]. All the images are captured through a drone and 
stored in 32-bit PNG format. The image size ranges from 8 MB 
to 12 MB, while the image size is fixed at 2982-pixel x 1694-
pixel. All the images have a resolution of 144 dots per inch 
(DPI). 

 
Fig. 9. Project lifecycle. 
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Fig. 10. Tree crown of unhealthy oil palm tree. 

 

Fig. 11. Tree crown of healthy oil palm tree. 

Next, the images were manually annotated using an open-
source tool called 'Labellmg' as shown in Fig. 12. The software 
is written in Python format and uses Qt for its graphical interface 
[21]. The bounding box was drawn on the visible objects. Each 
bounding box represents the object's coordinate in the image 
with four axis: xmin, xmax, ymin, and ymax. Two classes, 
'Healthy' and 'Unhealthy', are used to annotate each object in the 
images. The annotations are saved in Pascal VOC XML format. 

 
Fig. 12. LabelImg. 

The images were once trained using one of the selected 
object detection models. However, the image size is too big for 
the GPU to handle. The GPU on Google Colab is the Nvidia 
Tesla T4, which has 16GB of memory. As a result, the images 
must be rescaled and reduced in size. The images were 
augmented or rescaled to 1024 x 1024 pixels. The bounding 
boxes also shrank according to the rescale ratio using a python 
script found in a GitHub repository. Italo José codes the script 
[22]. 

The image dataset is then split randomly into training and 
validation sets with a ratio of 8:2 as shown in Fig. 13. Once the 
splitting process is complete, the respective annotations are split 
into two folders, training and validation set accordingly. The 
dataset will need to train in different models. Some models are 
stored in different model zoos of different platforms, such as 
TensorFlow, PyTorch, and Detectron2. The model zoo is a 
repository where companies or open-source institutions store 

machine learning and deep learning models. Object detection 
models, stored in TensorFlow and PyTorch model zoo, are 
developed by Google and Linux Foundation (previously Meta 
AI). Those models are trained on the PASCAL VOC dataset, 
and the annotation needs to be in XML format. Meanwhile, 
models in the Detectron2 platform are maintained by Meta AI, 
and the models are trained on the COCO dataset. Thus, the 
annotation needs to be in JSON format. As a result, the 
annotations in XML format are converted into JSON format 
using a script found in the GitHub repository. A person develops 
the script with a pseudonym called fam_taro [23]. Meanwhile, a 
script developed by Dat Tran in GitHub is being used to generate 
TFRecord format for TensorFlow object detection models [24]. 
The Fig. 14 shows the dataset directory structure for the project. 

 
Fig. 13. Original size image vs resized image. 

 
Fig. 14. Dataset directory structure. 

TABLE III.  MODEL SPECIFICATION 

Specificat

ion 
Faster R-CNN RetinaNet 

CenterN

et 

Model Zoo 
TensorFl

ow 

Detectro

n2 

TensorFl

ow 

Detectro

n2 

TensorFl

ow 

Annotatio
n Format 

XML JSON XML, JSON XML 

Backbone 
Inception

-ResNet 

ResNet-

50/101 
ResNet-50/101 

HourGlas

s 

FPN No Yes Yes No 

Anchor Yes Yes No 

Input 

Image Size 
640 x 640 640 x 640 512 x 512 

Several models are being selected for training. The 
justification of the advantages and disadvantages of each model 
is written in previous discussion. Table III summarizes the 
specification of the selected models. 
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Besides, several settings need to be configured in the config 
file of each model before the training process starts. Table IV 
summarizes the basic settings in the config file. 

TABLE IV.  CONFIG SETTINGS 

Settings Options 

num_classes 2/3* 

Path to train_images/ 

test_images/ labelmap 
Path to the working directory in Google Drive 

fine_tune_checkpoint 
Checkpoint of pre-trained model downloaded 

from the model zoo of the respective platform 

fine_tune_checkpoint_ty
pe 

Detection 

batch_size 2/4 

num_steps/iter/epoch 50000/3600/100 

Many pre-trained object detection models are available in 
the model zoo of different platforms. However, every platform 
requires a library version to be installed before the model can be 
trained on the custom dataset. In addition, the TensorFlow 
library, Colab, and Drive are all developed by Google. As a 
beginner, it is reasonable to consider models from the 
TensorFlow library as the first choice due to compatibility 
issues. Unfortunately, TensorFlow models are computationally 
expensive to train and consume much time. A Faster R-CNN 
model took up to 9 hours to train. Due to cost concerns, other 
alternatives, such as PyTorch's TorchVision library and 
Detectron2 library, are being considered. The models in 
PyTorch take much lesser time and are easier to train. PyTorch's 
Faster R-CNN model only took an hour to train on the same 
model. However, only a limited variety of models are available 
to train on the platform, which is the main disadvantage of the 
PyTorch platform. 

For Detectron2 library, it contains a variety of models that 
are available for training. Most models are trained with the 3x 
schedule (~37 COCO epochs). A Faster R-CNN model only 
takes an hour to train on the same dataset. It has much more 
model variation and consumes less time in training. As a result, 
the Detectron2 library is selected for the rest of the training 
process to produce a standardized result. 

Object detection has recently been deemed feasible due to 
the rapid development of GPU parallel computing. GPU parallel 
computing allows the model to split the training process into 
thousands of tasks and process it simultaneously. It is much 
more efficient and timesaving than the CPU, which only 
processes one task simultaneously. Unfortunately, there is no 
GPU hardware available on the laptop. Specification of project 
setup as shown in Table V. One of the alternatives available 
online is the Cloud GPU Platform. Some examples of these 
platforms are Google Colaboratory, Paperspace, Microsoft 
Azure, and Kaggle. 

In order to stay competitive, every platform offers similar 
GPU devices and only differs by the subscription plan. As a 
result, it is really up to user preferences and usage. For this 
project, Google Colaboratory has been selected due to several 
reasons. The user interface is also not much different from 
Jupyter Notebook. Lastly, it allows the users to link to their 
Google Cloud storage, keeping the whole process on the cloud. 
Thus, it is easier and more flexible for beginners and students. 

TABLE V.  SPECIFICATION OF PROJECT SETUP 

Types Specification 

CPU Nvidia Tesla T4 (16GB memory) 

Storage Google Drive (100GB) 

IDE Google Colab (Python) 

RAM/ Disk Space 12.7 GB/ 107.7 GB 

III. RESULTS AND DISCUSSION 

The models selected are CenterNet HourGlass104 512x512 
and Faster R-CNN Inception ResNet V2 640x640. The basic 
settings of the model as shown in Table VI and Table VII, the 
results, and the inference images as shown in Fig. 15 and Fig. 
16. 

TABLE VI.  BASIC SETTINGS FOR TENSORFLOW MODELS 

Settings Options 

num_classes 2 

fine_tune_checkpoint_type Detection 

batch_size 2 

num_steps 50000 

TABLE VII.  RESULT FOR CENTERNET & FASTER R-CNN 

Model 

CenterNet 

HourGlass104 

512x512 

Faster R-CNN 

Inception 

ResNet V2 640x640 

Average Precision (AP) @ 

[loU-0.50:0.95 | area= all] 
0.372 0.351 

Average Precision (AP) @ 
[loU=0.50:0.95 | area= small] 

-1 -1 

Average Precision (AP) @ 

[loU=0.50:0.95 | area= medium] 
0.194 0.157 

Average Precision (AP) @ 

[loU=0.50:0.95 | area= large] 
0.408 0.405 

Average Recall (AR) @ 

[loU=0.50:0.95 | area= all] 
0.542 0.475 

Average Recall (AR) @ 
[loU=0.50:0.95 | area= small] 

-1 -1 

Average Recall (AR) @ 

[loU=0.50:0.95 | area= medium] 
0.366 0 275 

Average Recall (AR) @ 

[loU=0.50:0.95 | area= large] 
0.576 0.516 

Total Loss 5.196 1.788 

 
Fig. 15. Inference image of centernet hourglass104. 
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Fig. 16. Inference image of faster R-CNN inception ResNet V2. 

In this evaluation, the inference image is a new test image 
with an image size of 3840 x 2160 pixels. In the image, most of 
the oil palm trees are considered medium or large objects, as the 
area of the big tree crown is above 962 pixels, and the medium 
one is around 322 and 962 pixels. In Table VI, the evaluation 
metrics shows that CenterNet with HourGlass104 backbone 
achieved a higher average precision (AP) for all, medium and 
large area categories, compared to Faster R-CNN with Inception 
ResNet backbone. A higher value of AP indicates that when the 
algorithm detects an object as healthy or unhealthy, it has a high 
possibility that it is correct. Furthermore, the metrics also show 
that the average recall rate (AR) of all, medium, and large area 
categories are higher in the CenterNet model than in the Faster 
R-CNN model. It means that the CenterNet model has fewer 
false negative predictions. Meanwhile, there are no small tree 
crowns under 322 pixels in the image that can be detected. Thus, 
the metrics show a value of 1 in both AP and AR for the small 
area category. Lastly, CenterNet achieved 5.196 in total loss, 

while the Faster R-CNN model only achieved 1.788. This 
problem can be seen in the inference image as well. Many tree 
crowns are left undetected in CenterNet's inference image, 
compared to the one in the Faster R-CNN model. This scenario 
also means that the CenterNet failed to predict many tree 
crowns, which means fewer false negative instances are being 
predicted (higher AR). However, those predicted ones are highly 
likely to be correct (higher AP). Thus, the metrics proved that 
the CenterNet model is not robust enough to locate the tree 
crowns and has a high localization loss compared to Faster 
R- CNN. In conclusion, both models did not produce a 
satisfactory result and took a very long time to train around 5 
hours. As a result, a decision has been made to stop the training 
process for other TensorFlow models. The models in the 
Dectectron2 platform will be used as an alternative. 

Four pre-trained models are being selected from the 
Detectron2 Model Zoo. The models selected are RetinaNet 
ResNet-50, RetinaNet ResNet-101 FPN, Faster R-CNN ResNet-
50 FPN, and Faster R-CNN ResNet-101 FPN. The basic settings 
of the model as shown in Table VIII and Table IX, the result, 
and the inference images as shown in Fig. 17, Fig. 18 and Fig. 
19. 

TABLE VIII.  BASIC SETTINGS FOR DETECTRON2 MODELS 

Settings Options 

num_classes 2 

inns_per_batch (batch_size) 2 

max_iter 3600 
 

TABLE IX.  RESULT FOR DETECTRON2 MODELS 

Model 
RetinaNet  

ResNet50 FPN 

RetinaNet  

ResNet101 FPN 

Faster R CNN  

ResNet50 FPN 

Faster R CNN  

ResNet101 FPN 

Average Precision (AP) @ [loU-0.50:0.95 | area= all] 0.23 0217 0.317 0.353 

Average Precision (AP) @ [loU-0.50:0.95 | area= small] -1 -1 -1 -1 

Average Precision (AP) @ [loU-0.50:0.95 | area= medium] 0.050 0.071 0.167 0.145 

Average Precision (AP) @ [loU-0.50:0.95 | area= large] 0.263 0.284 0.388 0.4 

Average Recall (AR) @ [loU-0.50:0.95 | area= all] 0.261 0.284 0.422 0.425 

Average Recall (AR) @ [loU-0.50:0.95 | area= small] -1 -1 -1 -1 

Average Recall (AR) @ [loU-0.50:0.95 | area= medium] 0.062 0.08 0.223 0.196 

Average Recall (AR) @ [loU-0.50:0.95 | area= large] 0.3 0.324 0.466 0.472 

Total Loss 0.3329 0.2768 0.559 0.4414 
 

 
Fig. 17. Inference image of retinaNet ResNet50 FPN. 

 
Fig. 18. Inference image of faster R-CNN ResNet50 FPN. 
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Fig. 19. Inference image of faster R-CNN ResNet101 FPN. 

The batch size and the number of max iterations have been 
selected for the fine tuning process. These two parameters are 

essential and will significantly impact the result if the value is 
fine-tuned correctly. Batch size refers to the number of training 
images utilized in one iteration, while max_iter refers to the 
maximum cycle for the training process. The settings of the 
model as shown in Table X and Table XI, the result and the 
inference images as shown in Fig. 20, Fig. 21, Fig. 22, Fig. 23 
and Fig. 24. 

TABLE X.  FINE-TUNING FOR FASTER R-CNN RESNET101 FPN 

Settings Options 

num_classes 2 

ims_per_batch (batch_size) 2/ 4 

max_iter 3600/ 7200/ 9000/ 10800 
 

TABLE XI.  RESULT UNDER DIFFERENT SETTINGS 

Settings Benchmark 
A: 3600 iter, 

batch size: 4 

B: 7200 iter, 

batch size: 2 

C: 9000 iter, 

batch size: 2 

D: 10800 iter, 

batch size: 2 

Average Precision (AP) @ 

[loU-0.50:0.95 | area= all] 
0.353 0.329 0.342 0.355 0.333 

Average Precision (AP) @ 

[loU-0.50:0.95 | area= small] 
-1 -1 -1 -1 -1 

Average Precision (AP) @ 
[loU-0.50:0.95 | area= medium] 

0.145 0.158 0.165 0.169 0.184 

Average Precision (AP) @ 

[loU-0.50:0.95 | area= large] 
0.4 0.364 0.382 0.393 0.362 

Average Recall (AR) @ 

[loU-0.50:0.95 | area= all] 
0.425 0.393 0.418 0.440 0.421 

Average Recall (AR) @ 
[loU-0.50:0.95 | area= small] 

-1 -1 -1 -1 -1 

Average Recall (AR) @ 

[loU-0.50:0.95 | area= medium] 
0.196 0.206 0.212 0.222 0.259 

Average Recall (AR) @ 

[loU-0.50:0.95 | area= large] 
0.472 0.430 0.463 0.487 0.452 

Total Loss 0.4414 0.3803 0.2853 0.2296 0.2020 
 

 
Fig. 20. Benchmark from preliminary result. 

 
Fig. 21. Batch size of 4 and 3600 iterations. 
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Fig. 22. Batch size of 2 and 7200 iterations. 

 
Fig. 23. Batch size of 2 and 9000 iterations. 

 

Fig. 24. Batch size of 2 and 10800 iterations. 

The fine-tuning process starts with model A by increasing 
the batch size to 4 while maintaining the max_iter value at 3600. 
These settings are made to explore the impact on model 
performance by increasing the batch size. The process is then 
continued with another three models of B, C, and D with 
different iterations, which are 7200, 9000, and 10800, while the 
batch size is kept constant at 2. The reason is to understand the 
effect of different numbers of max iteration on the model 
performance. Table X shows the performance metrics of a 
benchmark model from the preliminary stage and four other 
fine-tuned models. The model did not perform significantly 
better by increasing the batch size to 4. The performance metrics 
show that model A has a lower total loss and a slight increase in 
value for AP and AR in the medium area category, while the 
other metrics of model A dropped when compared with the 
benchmark model. The inference image also did not show any 

significant improvement in detection, as there is still a false 
positive detection on the top right corner of the image. Next, 
model B has settings of 7200 iterations and batch size of 2. The 
table shows that there is only a slight increase in value for AP 
and AR in the medium area category and a lower value of total 
loss (0.2853). Besides that, it did not show any significant 
increase in other performance metrics. However, there is an 
improvement in model B when comparing the inference image 
with the one of the benchmark model. It is shown with an arrow 
at the area of improvement. The false positive detection on the 
top right corner of the image is gone, and the undetected trees at 
the left side and the bottom part of the image are now detected. 
For model C, the max iteration is increased to 9000 iterations, 
and the batch size is kept constant at 2. The result shows that 
model C achieved the highest AP value of 0.355 for all area 
category, and the highest AR value of 0.44 and 0.487 for all and 
large area categories, respectively. Meanwhile, the total loss of 
model C is 0.2296, which is the second lowest among the 
models. The inference image of model C has no differences 
when compared to the one of model B. Lastly, the max iteration 
is set to 10800, and the batch size is kept constant at 2 for model 
D. Even though model D achieved the lowest value of total loss 
and the highest value in AP and AR for the medium area 
category, the value for other performance metrics dropped 
compared to model C of 9000 iterations. The value of AP for all 
and large area categories hits the lowest among all models. The 
inference image of model D also started to show the symptoms 
of overfitting as the false positive detection reappeared in the top 
right corner of the image. In conclusion, the Faster R-CNN 
ResNet101 FPN model with 9000 iterations and batch size of 4 
performs the best. This experiment also shows that a two-stage 
detector, like the Faster R-CNN model, is better at classifying 
and locating the object than a one-stage detector, like RetinaNet 
and CenterNet. In addition, it also proved that a deeper backbone 
module would yield a better result. 

There are some challenges throughout the project execution. 
The data annotation process was a challenging one. The oil palm 
trees are tough to label as it contains much ambiguity. Some tree 
crowns are yellowish because of sunlight reflection, but it does 
not mean the tree is unhealthy. Besides, oil palm tree crowns 
overlap, making it hard to determine the correct boundary for 
each crowns during annotation. Thus, constant communication 
is made with the clients on this issue so that a standardized 
dataset can be produced. Lastly, another challenge is the time 
consumption in training the TensorFlow models. The longest 
time to train a TensorFlow is around nine hours for the Faster 
R- CNN model. It is also tough to train the model as the training 
process disconnected from the server several times, and it will 
be retrained again. Thus, object detection models from 
alternative platforms like PyTorch and Detectron2 are being 
used and the training time significantly reduces to less than two 
hours. 

IV. CONCLUSION 

As mentioned in Section III, the Faster R-CNN ResNet101 
FPN model performed the best among all the models. It is then 
fine-tuned to achieve a better result. Batch size and max iteration 
are the parameters used to fine tune the model. As a result, the 
Faster R-CNN ResNet101 FPN model with 9000 iterations and 
batch size of 2 achieved the best performance compared to its 
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benchmark model with 3600 iterations and batch size of 2. 
Suggestion for future work, to explore the method of taking a 
picture by combine using multi modal fusion and sensor. The 
data might be useful by combining sensors such as lidar, 
hyperspectral, and SAR (Synthetic Aperture Radar) with RGB 
imagery to improve detection under varying the environment 
from different perspectives. 
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