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Abstract—Generic Code Clone Detection (GCCD) is a code 

clone detection model that use distance measure equation, 

enabling detection of all types of code clones, naming clone Type-

1, Type-2, Type-3 and Type-4 in Java programming language 

applications. However, the detection process of GCCD did not 

focus on detecting clones of Type-3 and Type-4. Hence, this paper 

suggested two experiments to incorporate enhancements to the 

GCCD in order to improve the detection rate of clone Type-3 and 

clone Type-4. The implementation of Chi-square distance in the 

match detection process produced a significant result increase in 

the experiment specifically on clones Type-3 and Type-4, in 

comparison with the Euclidean distance in GCCD, which allows 

the increase of detection rate due to the dissimilarity of the 

distance measures. Based on the results, the suggested 

enhancement using Chi-square distance on match detection 

process outperforms GCCD in terms of improving code clone 

detection results based on clone Type-3 and Type-4, as the 

objectives for each experiment are carried, contributes to the 

research on improving the code clone detection result. 

Keywords—Code clone detection; distance measure; Java 

language; Chi-square; computational intelligence 

I. INTRODUCTION 

The practice of copying code is known as code cloning  and 
the clone being duplicated is a code clone [1]–[3]. 60%  
developers went on searching code examples every day as to 
reduce the development time process [4] and which leads to 
code cloning. However, the integrity of certain developer 
cannot be underestimated as code examples could be 
implemented to the system instead of coding a new code 
fragment which lead to code cloning. Cost and programmer's 
limitation, templating and many more could also be the reasons 
for code cloning [4]–[6]. These reasons for code cloning could 
lead to drawbacks on software development and maintenance. 
The increase of maintenance cost, bug propagation, 
computational complexity and vulnerability proneness [5]–[8]. 
The inadequacy of programming language could also affect the 
code cloning [9], [10].  Java is a free programming language 
that developed open-source software applications. A study 
mentioned that 6% of 512000 lines of codes in Java 
applications are code clones [11]. The study concluded that the 
reason of code clones was the stake-holder’s demand and 
deficiency in Java generic modules. 

Code clones are generally categorized into four distinct 
types [12]–[14]; Type-1, Type-2, Type-3 and Type-4 (Fig. 1). 
Clone Type-1 is known for exact matches. These are code 
fragments that are identical, except for differences in 
whitespace and comments. Type-1 clones are the simplest to 
detect since they involve straightforward duplication without 
any modifications to the actual code logic. Clone Type-2 is 
renamed clones. In these clones, the code fragments are 
identical except for variations in identifiers, literals, types, or 
other superficial changes. While the overall structure and logic 
remain the same, these changes can make detection more 
complex than Type-1 clones. Clone Type-3 is modified clones. 
These are more complex clones where the duplicated code has 
undergone modifications such as adding or removing lines of 
code, altering control structures, or making other significant 
changes. Despite these modifications, the underlying logic or 
functionality of the code remains similar, making Type-3 
clones challenging to detect. Finally, clone Type-4, the 
semantic clones. The most difficult to detect, Type-4 clones 
involve code fragments that perform the same functionality but 
are implemented using entirely different syntax or structures. 
These clones require deep semantic analysis to identify, as they 
do not share visible structural similarities with the original 
code. 

Several major code clone approaches are prior to 
undertaking. The six major code clone approaches include text-
based approaches, token-based approaches, metric-based 
approaches, tree-based approaches, graph-based approaches, 
and hybrid approaches. However, most approaches are 
incapable of recognizing all code clones [15]. For instance, 
token-based approach code detection tool such as NiCad 
[16],[17] detect the lexical part of the source code  without 
considering the semantic information, which then prompted a 
poor detection result of clone Type-3 [18]. As a response, a 
code clone detection model was built for detecting code clones 
effectively. A model for the detection of the code clone 
incorporates structural process that combine several 
approaches or tools for the detection of clones. Several models 
that have existing in the code clone domain are the Generic 
Clone Model [19], the Generic Pipeline Model [20], Unified 
Clone Model [21], as well as the Generic Code Clone 
Detection (GCCD) Model [11]. Multiple researchers studied 
these four models in order to develop an effective code clone 
detection model. For instance, an enhancement was made in a 
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study on Generic Pipeline Model whereby they concatenated 
the source code file through Divide and Conquer method to 
enhance the load processing speed, by dividing the file into sub 
files [22]. They managed to decrease the model’s runtime 
performance and increase the model’s performance fully. 
Another study is on the GCCD model where they enhanced the 
pre-processing and parameterization process of GCCD [9], 
[23]. They managed to reduce the pre-processing rules and 
finding the best weightage to produce a better code clone 
detection model. 

If (a>b)

{

   b++;

   a=1;

}

If (a>b)

{

   b++;

   a=1;

}

If (i>j)

{

   j++;

   i=0;

}

Clone Type-1 Clone Type-2

Original code

Clone Type-3 Clone Type-4

If (i>j)

{

   c=i+j;

   j++;

   i=1;

}

if (j<i){

    j=j+1;

    i=1;

}

 

Fig. 1. Example of code clone Type-1, Type-2, Type-3 and Type-4. 

The preliminary goal of this work is for enhancing the 
GCCD in order to produce a reliable code clone detection 
result, specifically Type-3 and Type-4. Therefore, this work 
will focus on; 

 The experiment is an enhancement on match detection 
process using different distance measure equation such 
as Manhattan distance, Squared Euclidean distance, 
Half-squared Euclidean distance, Chi-square distance, 
in order to find the highest detection result of Type-3 
and Type-4.  

 The comparative analysis of the result between GCCD 
as an existing model and the proposed enhancement 
towards GCCD in terms of Type-3 and Type-4. 

II. RELATED WORKS 

Generic Code Clone Detection (GCCD) is a tool 
commenced for an aim to detect code clones in Java language 
application [11]. This model was developed targeting to detect 
code clone Type-1, Type2, Type-3 and Type-4. The purpose of 
GCCD is to provide a generality approach for identifying all 
sorts of code clone. GCCD is constructed with a structure of 
five processes (Fig. 2). The processes are pre-processing 

process, transformation process, parameterization process, 
categorization process and match detection process. 

A. Pre-Processing Process 

This process standardizes the source code as input for the 
detection process. There are five pre-processing rules applied 
to the source code in order to remove unnecessary elements 
that may conflict with the code clone detection result. The first 
pre-processing rule removes packages and import statements 
from the source code. Then, the second pre-processing rule is 
followed by removing comment lines as the comments are 
considered as instruction or guidance to the programmer only, 
which is not conflicting with the source code. The third pre-
processing rule removes empty lines, which normally do not 
hold any source code and act as a method to visualize a clean 
look in coding. After that, the code is then regularized in the 
fourth pre-processing rule by replacing all function access 
modifier to public access modifier. This part of the rule act as a 
constant value for producing metrics in parameterization 
process. The fifth rule is to convert all uppercase letters in the 
original source code to lowercase letters for reducing the 
difference for detecting code clones. The essence of the source 
code has been filtered and the source code has become source 
unit. 

B. Transformation Process 

This process converts the source units into measurable units 
by substituting the source units with numerical value. The 
source unit is substituted one by one based on the position of 
alphabets. For instance, the alphabet p is substituted to 16 as 
the numerical value. Taking an example of word of the source 
unit from the Fig. 3, we can see that ‘public’ is substituted with 
value 162102120903. 

GCCD

Pre-Processing

Processing the source code with five pre-processing rules.

Transformation
Transforms the source units into quantifiable form as well 

as dividing the source units into header and body.

Parameterization

 Create parameters or metrics for Categorization process.

 Parameters used is header average ratio and body average 

ratio.

Categorization
Source units are categorized and grouped based on the pre-

defined criteria to create three sets of pool.

Match Detection

Code clone detection process. The process is in two stages:

 Exact matching

 Euclidean distance calculation

 

Fig. 2. Structure process of GCCD. 
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This substitution method allows the source unit to be 
valued as measurable unit. After that, the measurable source 
units are divided into header (h) and body (b) to become a 
transformed source unit. Header is the first line of a function 
source code and body is the next line of a function source code 
after the first line. In the Fig. 3, the lines of source unit public 
boolean hasmoreelements is the first line of function where this 
line is considered as the header. The rest of the lines are 
considered as body. This unit will become transformed source 
unit which is the output of this process. 

Transformed source unit

Header (h): 162102120903 
02151512050114 
080119131518050512051305142019

Body (b): 180520211814 
031521142003151404092009151419 
0321181805142005120513051420

measurable unit

162102120903 02151512050114 
080119131518050512051305142019 
180520211814 
031521142003151404092009151419 
0321181805142005120513051420

source unit

public boolean 

hasmoreelements return 

countconditions 

currentelement

 
Fig. 3. Snippets of source unit is substituted and grouped to become a 

transformed source unit. 

C. Parameterization Process 

This stage will set up the parameters that would be utilized 
throughout the categorization process from the transformed 
source unit (TSU). The TSUs are in the form of transformed 
source unit header (TSUh) and transformed source unit body 
(TSUb). The parameters involved are average ratio header and 
average ratio body. Table I shows the parameters involved in 
getting the average ratio header and body and its description. In 
order to gain average ratio header and average ratio body, 
TSUs are calculated to gain ratio header along with ratio body. 
Both ratios require TSU to be calculated using this: 

𝑇𝑆𝑈ℎ𝑛 =  𝐴1 +  𝐴2 + 𝐴3 + ⋯ + 𝐴𝑛        (1) 

𝑇𝑆𝑈𝑏𝑛 =  𝐵1 +  𝐵2 + 𝐵3 + ⋯ + 𝐵𝑛 

Since all functions have been transformed into a 
standardize value of public, all the source units have similar 
access modifier value. Therefore, these TSUs are divided with 
public access modifier weightage value (P). The P is gain 
through the substitution of word ‘public’ into162102120903 as 
the weightage value. The calculation of ratio header and ratio 
body can be visualized in equation: 

𝑅ℎ𝑛 =  
𝑇𝑆𝑈ℎ𝑛 

𝑃
 (3) 

𝑅𝑏𝑛 =  
𝑇𝑆𝑈𝑏𝑛

𝑃
  (4) 

where n = 1, 2, 3. After ratio header and ratio body is 
calculated, the process is tried with finding average ratio 
header together with average ratio body for each source unit. 
Ratio header and ratio body is divided with count header as 
well as count body respectively using this equation: 

𝐴𝑉𝑅ℎ𝑛 =  
𝑅ℎ𝑛

𝐶ℎ𝑛
       (5) 

𝐴𝑉𝑅𝑏𝑛 =  
𝑅𝑏𝑛

𝐶𝑏𝑛
       (6) 

From here, the output of transformation process is 
represented in metric form as parameters. 

TABLE I.  DESCRIPTION OF PARAMETERS INVOLVED IN 

PARAMETERIZATION PROCESS 

Parameters Description 

Transformed source unit 

header (TSUh) 

Value of transformed source unit in header 

Transformed source unit 
header (TSUb) 

Value of transformed source unit in body 

Ratio header (Rh) 
The ratio of headers of the transformed 

source units 

Ratio body (Rb) 
The ratio of body of the transformed source 
units 

Count header (Ch) 
Code count of source code header in the 

source units 

Count body (Cb) 
Code count of source code body in the source 
units 

average ratio header (AVRh) The average ratio of header (h) 

average ratio header (AVRb) The average ratio of body (b) 

D. Categorization Process 

The categorization process occurs by comparing between 
two TSU. Assuming there are TSUX and TSUY, they are 
categorized into the first pool as they have the similar AVRh. 
The process of categorizing TSU into the first pool runs until 
every TSU with similar AVRh is grouped. Then, the TSU 
continue its categorization process together with the remaining 
from first pool to group TSU with similar AVRb into the second 
pool. Once the categorization process reaches its ends for the 
second pool, the categorization process moves to the third pool, 
grouping the remainder of TSU that cannot match to the first 
pool and the second pool. This process produces three pools as 
the output, bringing them to the final process which is match 
detection. 

E. Match Detection Process 

Finally, the pools are screened for Type-1, Type-2, Type-3, 
and Type-4 clones using match detection process. There are 
two stages of match detection for detecting code clones. The 
first stage is exact matching where clone Type-1 and clone 
Type-2 are detected from the first two pools. The match is 
considered as Type-1 when two average ratio header and body 
are identical, following the next pair of matches during the first 
two pool is processed. As for clone Type-2, certain pairs 
compared is considered as clone Type-2 when they have 
similar AVRhx and  AVRhy but different AVRbx and AVRby, or 
vice versa. The second stage implements the Euclidean 
distance measure formula to determine the remnants from the 
first two pools and the third pool. Assuming the calculation 
involves two source units’ X and Y. Each source unit consists 
of average ratio header and average ratio body. The formula of 
Euclidean distance (ED) is as follows: 

𝐸𝐷 =  √(𝐴𝑉𝑅ℎ𝑋 − 𝐴𝑉𝑅ℎ𝑌)2 + (𝐴𝑉𝑅𝑏𝑋 − 𝐴𝑉𝑅𝑏𝑌)2(7) 

The outcome from Euclidean distance calculation is then 
determined its value. The value that fits within 0.85 and 1.00 is 
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classified as Type-3, while the remainder value is classified as 
Type-4. 

III. PROPOSED ENHANCEMENT 

The proposed enhancements are focusing on two processes 
from GCCD, which are the match detection process. The 
dataset for these experiments is similar to the dataset from 
GCCD, which is Java applications of Bellon’s benchmark 
dataset [28]. This dataset is a benchmark in code clone domain 
that consists Java applications with medium size to larger size. 
It also provides the details to the four Java applications 
involved. 

Previously in GCCD, the process of match detection 
implements Euclidean distance on to the three pools from the 
categorization process, in order to gain the clone Type-3 and 
clone Type-4. Once calculated, the value that falls between the 
ranges 0.85 to 1.00 is considered as clone Type-3 and suchlike 
is considered as clone Type-4. In comparison to previous 
GCCD outcomes, the aim of the first experiment is to produce 
a greater detection result for code clone Type-3 and code clone 
Type-4, by utilizing different distance measures [24]. Four 
distance measures were discovered for which the parameters 
generated from prior processes of GCCD could be applied to 
achieve. The distance measures are referred in Table II 
Manhattan distance [25], Squared Euclidean distance [26], 
Half-squared Euclidean distance [27], and Chi-square distance 
[28]. 

TABLE II.  EQUATIONS INVOLVED IN EXPERIMENT 1 

Equation Name Equation 

Manhattan distance 𝑑(𝑥, 𝑦) =  ∑ | 𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

Squared Euclidean distance 𝑑2(𝑥, 𝑦) =  ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

Half-squared Euclidean 
distance 

𝑑2(𝑥, 𝑦) =  ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

Chi-square distance 𝜒(𝑥, 𝑦) = √
1

2
∑

(𝑥𝑖 − 𝑦𝑖)2

(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

 

Manhattan distance calculates the absolute difference 
between corresponding components of two vectors, offering a 
simple yet effective way to assess similarity when the changes 
between code fragments are predominantly additive or 
subtractive. Squared Euclidean distance is an extension of the 
standard Euclidean distance, this formula squares the 
differences between corresponding components before 
summing them, placing greater emphasis on larger deviations, 
which may be particularly useful in distinguishing more 
pronounced differences in code structure. Meanwhile, half-
squared Euclidean distance measures halves the squared 
differences, providing a balance between the sensitivity of the 
Squared Euclidean Distance and the simplicity of the 
Manhattan Distance, potentially offering a more nuanced 
assessment of similarity. Finally, Chi-square distance, a 
statistical measure that compares the observed and expected 

frequencies of occurrences, this formula is particularly suited 
for detecting differences in distributions, making it a promising 
candidate for identifying Type-4 clones where the code 
fragments may function similarly but differ significantly in 
their structural composition. The aforementioned equations 
will replace the Euclidean distance in the match detection 
process. The pseudocode 1 shows the pseudocode on the 
implementation of Chi-square distance into GCCD as an 
example. 

Pseudocode: Match Detection Process using Chi-square distance 

Pool 1, PL1 

Pool 2, PL2 

Pool 3, PL3 

Chi-Square Distance, CSD 

Average ratio header, [AVRh1, AVRh2, AVRh3, … AVRhn] 

Average ratio body, [AVRb1, AVRb2, AVRb3, … AVRbn] 

 

1. Read [AVRh1, AVRh2, AVRh3, … AVRhn] and [AVRb1, AVRb2, 
AVRb3, … AVRbn] in PL1 and PL2 

2. Compare AVRh1 and AVRb1 with AVRh2 and AVRb2 using 
exact matching technique 

3. If AVRh1 and AVRb1 are same with AVRh2 and AVRb2 

4. Group as Type-1 

5. Else If AVRh1 and AVRh2 are same but AVRb1 and AVRb2 
are different 

6. Group as Type-2 

7. Else If AVRh1 and AVRh2 are different but AVRb1 and 
AVRb2 are same 

8. Group as Type-2 

9. Else 

10. AVRh1 and AVRh2 are different but AVRb1 and AVRb2 
are different 

11. Move into PL3 

12. Read remaining [AVRh1, AVRh2, AVRh3, … AVRhn] and 
[AVRb1, AVRb2, AVRb3, … AVRbn] in PL3 

13. Apply CSD between the remaining [AVRh1, AVRh2, AVRh3, … 
AVRhn] and [AVRb1, AVRb2, AVRb3, … AVRbn] 

14. If distance is between 0.85 to 1.00 

15. Group as Type-3 

16. Else 

17. Group as Type-4 
 

By using the similar assumption from Section II(E) where 
there are two source units X and Y, the calculation of the match 
detection process can be visualized in the chi-square equation 
where the average ratio header and average ratio body is used: 

𝐶𝑆𝐷 =  √
1

2
(

(𝐴𝑉𝑅ℎ𝑋−𝐴𝑉𝑅ℎ𝑌)2

(𝐴𝑉𝑅ℎ𝑋+𝐴𝑉𝑅ℎ𝑌)
+

(𝐴𝑉𝑅𝑏𝑋−𝐴𝑉𝑅𝑏𝑌)2

(𝐴𝑉𝑅𝑏𝑋+𝐴𝑉𝑅𝑏𝑌)
) (8) 

IV. RESULT ANALYSIS 

The result from the experiment is recorded in two elements 
namely overall total clone pairs in Java applications and total 
clone pairs based on clone types. This section is divided into 
three subsections where the first subsection describes the result 
of overall total clone pairs and the second subsection is about 
the total clone pairs based on clone types, which resulted from 
the experiment. The final subsection analyzes and discusses the 
outcome from the result to pinpoint the difference between the 
existing GCCD and the enhancement made to GCCD. 
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Fig. 4. Overall total clone pairs based on java applications from bellon’s 

benchmark data. 

A. Overall Total Clone Pairs in Java Applications 

Fig. 4 illustrate the results of overall total clone pair in Java 
applications. The first Java application is j2sdk1.4.0-javax-
swing. Based on data presented, Chi-square recorded the most 
total clone pair with 12782 clone pairs. The second most total 
clone pair is from Manhattan distance with a total of 7283 
clone pairs. This puts the difference between the most clone 
pairs and the second-most with a total of 43.02%. Thirds go to 
the Euclidean distance with a total of 7281 clone pairs. This 
total clone pair is lower by 43.04% from the highest total clone 
pair by Chi-square distance. Total clone pair from Half-squared 
Euclidean distance recorded the fourth with a total of 6540 
clone pairs. The difference between Half-squared Euclidean 
distance total clone pairs and the highest total clone pair is 
48.83%. J2sdk1.4.0-javax-swing has lowermost total clone pair 
detected by Squared Euclidean distance with 6368 clone pairs. 
It is 50.18% less than the highest total clone pair by Chi-square 
distance. 

The second Java application for detecting overall total 
clone pair is Eclipse-jdtcore. The top result for total clone pair 
is by the Chi-square distance with a total of 23096 clone pairs. 
The next in order is by Euclidean distance with a total of 11268 
clone pairs. The gap between the highest and the second-
highest overall total clone pair is 51.21%. Manhattan provides 
the third-most total clone pair with 11003 clone pairs. This is 
52.36% lower than the highest overall total clone pair detected 
in Eclipse-jdtcore. The fourth result of total clone pair is Half-
squared Euclidean distance with 10339 clone pairs. The 
difference between overall total clone pair from Half-squared 
Euclidean distance with the most total clone pair from Chi-
square distance is 55.23%. The last from Eclipse-jdtcore is by 
Squared Euclidean distance with a 9659 total of clone pairs. 
This put the difference between the lowest and the highest 
from Eclipse-jdtcore with a difference of 58.18%. 

The third Java application is Eclipse-ant. Overall total clone 
pair by Chi-square distance recorded the highest value with 
6629 clone pairs. The second is followed by Euclidean distance 
where it gained a total of 2688 clone pairs, which left the gap 
of 59.45%. The third for overall total clone pair of Eclipse-ant 

is Manhattan distance which turned in a total of 2666 clone 
pairs. This put a 59.78% difference between the first and the 
third overall total of clone pair in Eclipse-ant. The fourth for 
Eclipse-ant is Half-Squared Euclidean distance, which has a 
total of 1854 clone pairs. This is 72.03% lower than the highest 
overall total clone pair in Eclipse-ant, which is the Chi-square 
distance. The last formula that detects a total of 1677 clone 
pairs is Squared Euclidean distance. This has made a 74.70% 
gap with Chi-square distance, the highest for Eclipse-ant. 

As for Netbeans-javadoc, the most prominent total clone 
pair is by Chi-square distance with 1021 clone pairs. The 
subsequent total clone pair is by Euclidean distance. It recorded 
a total of 595 clone pairs, leaving the gap of 41.72% lower than 
the highest overall total clone pair result in Netbeans-javadoc. 
Next, Manhattan distance set a total of 590 clone pairs. This 
overall total clone pair value is lower than the highest value 
which is 42.21% difference. The fourth total of clone pairs is 
Half-squared Euclidean distance with a total of 563 clone pairs. 
The difference between the fourth and the first value of overall 
total clone pair in Netbeans-javadoc is 44.86%. 561 clone pairs 
are the final overall total clone pair by Squared Euclidean 
distance. The difference between the least and the most overall 
total clone pair detected in Netbeans-javadoc is 45.05%. 

B. Total Clone Pairs Based on Clone Types 

This part of the result is discussed based on each Java 
applications by Bellon’s benchmark data, based on Table III. 

1) j2sdk1.4.0-javax-swing: Table III depicted the result of 

total clone pairs for each Java application. In j2sdk1.4.0-

javax-swing, the detected clone pairs Type-1 is by Half-

Squared Euclidean distance with 892 clone pairs. The second 

highest value of detecting clone Type-1 is by Chi-square 

distance, with 891 clone pairs, preceding about 0.11% 

difference from the highest clone pair Type-1 value. The third 

highest is by Manhattan distance with 889 clone pairs. The 

gap difference from the highest value of clone pair Type-1 

detected in j2sdk1.4.0-javax-swing is 0.34%. The fourth value 

of clone pair Type-1 detected in this application is 888 clone 

pairs by Squared Euclidean distance, with 0.45% gap 

difference. Finally, Euclidean distance recorded the lowest 

value of clone Type-1 detected by 877 clone pairs, leaving 

percentage difference of 1.68%. Code clone Type-2 detection 

clone pair for Half-Squared Euclidean distance keep as highest 

value recorded with 3725 clone pairs. It is then followed by 

Manhattan distance with 3716 clone pairs, leaving a 

percentage difference of 0.24%. The third most value of clone 

pair Type-2 detected in j2sdk1.4.0-javax-swing is by 

Euclidean distance with 3697 clone pairs. The percentage 

difference between Euclidean distance’s value and the highest 

value of clone pair Type-2 is 0.75%. The fourth value is by 

Squared Euclidean distance with 3695 clone pairs and 

percentage difference of 0.81%. The least clone pair Type-2 

detected is by Chi-square distance with 3684 clone pairs. The 

percentage difference is 1.10%. Meanwhile, Chi-square 

distance gained the highest total clone pair Type-3 with 3633 

clone pairs. This was followed by Half-squared Euclidean 

distance with a value of 1773 clone pairs. It is 51.20% less 
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than the Chi-Square distance result. The third and fourth total 

clone pairs Type-3 are Manhattan distance (1727 clone pairs) 

as well as Squared Euclidean distance (1718 clone pairs), with 

each gap difference of 52.46% and 52.71% respectively. The 

lowest total clone pair Type-3 is by Euclidean distance with a 

total of 1710 clone pairs, leaving a 52.93% lower than Chi-

square distance. Next, Chi-square Distance was the highest in 

j2sdk1.4.0-javax-swing code clone Type-4, with a value of 

4574 clone pairs. The Euclidean distance, which detected 997 

clone pairs, is the second highest for clone Type-4. It is 

78.20% lower than the highest value of clone Type-4 detected. 

Manhattan distance is the thirds with 951 clone pairs of Type-

4, a 79.21% lower than Chi-square distance. The fourth value 

is by Half-squared distance with 150 clone pairs (96.72%) and 

the least value is from Squared Euclidean distance with a 

value of 67 clone pairs (98.54%) for clone Type-4. 

TABLE III.  TOTAL CLONE PAIRS BASED ON CLONE TYPES FOR EACH DISTANCE MEASURES 

Bellon’s Benchmark Data Java Applications Clone Type 
Total clone pairs based on clone types 

ED* 

(GCCD) MD* SED* HSED* CSD* 

j2sdk1.4.0-javax-swing 

T-1* 877 889 888 892 891 

T-2* 3697 3716 3695 3725 3684 

T-3* 1710 1727 1718 1773 3633 

T-4* 997 951 67 150 4574 

Eclipse-jdtcore 

T-1* 626 627 627 627 627 

T-2* 2886 2884 2887 2887 2886 

T-3* 4265 3880 3782 4564 7576 

T-4* 3491 3612 2363 2261 12007 

Eclipse-ant 

T-1* 185 185 185 185 185 

T-2* 552 650 650 650 650 

T-3* 581 562 535 585 2061 

T-4* 1370 1269 307 434 3733 

Netbeans-javadoc 

T-1* 99 99 99 99 99 

T-2* 341 338 338 338 338 

T-3* 102 102 102 104 197 

T-4* 53 51 22 23 387 

a. *T-1 = clone Type-1, T-2 = clone Type-2, T-3 = clone Type-3, T-4 = clone Type-4, ED = Euclidean Distance, MD = Manhattan Distance, SED = Square Euclidean Distance, HSED = Half-squared Euclidean 
Distance, CSD = Chi-square Distance 

2) Eclipse-jdtcore: Moving forward with the second Java 

application, which is Eclipse-jdtcore. The overall total clone 

pair Type-1 detected is consistent for each distance measure 

with a value of 627 clone pairs. The exception is from 

Euclidean distance, which detected 626 clone pairs, leaving a 

0.16% gap difference from other distance measure formula. In 

regards to clone Type-2, the highest value went to Squared 

Euclidean distance as well as Half-Squared Euclidean 

distance, with each distance measure, scored a total clone 

pairs of 2887. The second greatest value for Type-2 clone is 

by Chi-square distance and Euclidean distance (2886 clone 

pairs). The lowest value is by Manhattan distance (2884 clone 

pairs). Both with the percentage difference of 0.03% and 

0.10% from the highest value. Next, the Chi-square distance 

gained the highest value of 7576 clone pairs Type-3 for 

Eclipse-jdtcore. Half-squared Euclidean distance recorded the 

second-highest Type-3 value of 4564 clone pairs. It is 39.76% 

lower than Chi-square distance. The next distance measure 

followed is Euclidean distance with 4265 clone pairs of Type-

3, marking a 43.70% gap from Chi-square distance. The fourth 

and the lowest Type-3 clones are Manhattan distance (3880 

clone pairs) together with Squared Euclidean distance (3782 

clone pairs). The Manhattan distance and Squared Euclidean 

distance are 48.79% as well as 50.08% lower than Chi-square 

distance. Then, clone detection for Type-4 by Chi-square 

distance in Eclipse-jdtcore, is the highest with a total of 12007 

clone pairs. This is followed by the second highest with a 

value of 3612 clone pairs Type-4 by using Manhattan 

distance. It is 69.92% lower than Chi-square distance. The 

third and fourth for Type-4 in Eclipse-jdtcore are recorded by 

Euclidean distance (3491 clone pairs) along with Squared 

Euclidean distance (2363 clone pairs). They have 70.93% and 

80.32% lower than Chi-square distance. The lowest value of 

clone pair Type-4 for Eclipse-jdtcore is by Half-squared 

Euclidean distance, with 2261 total clone pairs and 81.17% 

gap difference. 

3) Eclipse-ant: Total clone pairs Type-1 in Eclipse-ant 

showed concordant outcomes for every experimented distance 

measure which is 185 clone pairs along individually. For 

Type-2, the highest clone pair value detected is by each 

distance measure with 650 clone pairs, except for Euclidean 

distance with 552 clone pairs, which is 15.08% lower than the 

highest value. Meanwhile, Chi-square distance showed the 

highest total of 2061 clone pairs Type-3, followed by Half-

squared distance with a total of 585 clone pairs. Half-squared 

distance has 71.62% lower than Chi-square distance. The third 

value for clone Type-3 is by Euclidean distance with a total of 

581 clone pairs and 71.81% gap difference from highest value. 

The fourth value is by Manhattan distance with 562 clone 

pairs. It is 72.73% lower than Chi-square distance. The lowest 

value for Type-3 clones in Eclipse-ant is Squared Euclidean 

distance with 535 clone pairs and 74.04% lower than Chi-

square distance. Next, the Chi-square distance for clone Type-

4 in Eclipse-ant has the greatest value of 3733 clone pairs. The 

second-highest total clone pairs are 1370 clone pairs Type-4 

by Euclidean distance, with 63.30% lower than Chi-square 
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distance. The third and fourth values are shown by Manhattan 

distance (1269 clone pairs) as well as Half-squared Euclidean 

distance (434 clone pairs). Both has 66.01% and 88.37% 

lower than Chi-square distance. The least value of total clone 

pairs Type-4 in Eclipse-ant is by Squared Euclidean distance 

with 307 clone pairs. It is 91.78% lower than the highest value 

by Chi-square distance. 

4) Netbeans-javadoc: The Netbeans-javadoc application 

was also revealed to have concordant outputs when it comes to 

clone Type-1 for each distance measure which is 99 clone 

pairs. Euclidean distance recorded the highest Type-2 value 

with 341 clone pairs. Other distance measures detected 338 

clone pairs, 0.88% lower than Euclidean distance. For Type-3, 

Chi-square distance recorded the highest with 197 clone pairs, 

followed by Half-squared distance with 104 clone pairs. It is 

47.21% lower than Chi-square distance. Euclidean distance, 

Manhattan distance as well as Squared Euclidean distance 

showed the lowest which is 102 clone pairs. It has 48.22% 

lower than Chi-square distance. For Type-4 in Netbeans-

javadoc, the Chi-square distance also showed the highest 

value with 387 total clone pairs. The second highest is by 

Euclidean distance which is 53 clone pairs (86.30%) of Type-

4, followed by the third value by Manhattan distance which is 

51 clone pairs (86.82%). The fourth value is 23 clone pairs by 

Half-squared distance and the lowest Type-4 clone value is 22 

clone pairs by Squared Euclidean distance. Both distances 

have 94.06% and 94.32% gap difference from Chi-square 

distance. 

V. DISCUSSION 

The experiment is concentrating on enhancing match 
detection process of GCCD by substituting the Euclidean 
distance to different distance measures. The enhancement on 
match detection process should be affecting the detection result 
on clone Type-3 and Type-4, as clone pairs is calculated using 
the distance measure formula. In this experiment, Chi-square 
distance has shown a significant increase on the overall total 
clone pairs that is detected in Java applications of Bellon’s 
benchmark data. Moreover, Chi-square distance shows an 
improvement in total clone pairs based on clone types, which 
detected the highest value for each clone Type-3 as well as 
Type-4 in Eclipse-ant and Netbeans-javadoc application, 
respectively. Chi-square distance managed to keep the similar 
value of total clone pairs Type-1 other distance measures in the 
Eclipse-jdtcore, Eclipse-ant and Netbeans-javadoc. Chi-square 
distance also able to maintain the similar clone pairs Type-2 
value with other distance measures for Eclipse-ant and 
Netbeans-javadoc. However, Chi-Square is placed as the 
second highest total clone pairs based on clone Type-1 and the 
least value in j2sdk1.4.0 – javax-swing. Another difference is 
in Eclipse-jdtcore application, where Chi-square distance 
detected the second highest value of clone pair Type-2. Based 
on this experiment, Euclidean distance and Chi-square distance 
both embody the similar structure formula. Nonetheless, Chi-
square distance divides the upper value with a frequency 
inverse using the weightage summation of both header and 
body. As for the difference in result on clone Type-1 and Type-
2 in two of the mentioned Java applications, runtime 

performance during the pre-processing process and 
transformation process might have affected the detection result. 
Thus, Experiment 1 concludes that the implementation of Chi-
square distance increases the clone pair detection result 
specifically in Type-3 and Type-4, respectively. 

VI. CONCLUSION 

In this paper, we introduced an improvement that is to the 
GCCD for detecting code clones in each clone type, 
specifically Type-3 and Type-4, due to the earlier result from 
GCCD implicit the inconsistency of the clone detection result 
in Java applications in Bellon’s benchmark dataset. The 
enhancement that proposed the detection result of clone pair 
Type-3 and Type-4 can be improved by enhancing match 
detection process of GCCD, through modifying the distance 
measures. Result from the experiment revealed that the 
implementation of Chi-Square provides a higher code clone 
detection result as the GCCD is enhanced using Chi-square 
distance in match detection process. The improvement can be 
seen specifically when it has overruled GCCD by detecting the 
highest clone pairs Type-3 and Type-4. 

The model currently supports clone detection within Java 
applications as the dataset is limited to the Bellon’s benchmark 
dataset Java application.  As a future enhancement, experiment 
on detecting and analyzing clone pairs in Python applications 
will be conducted. 
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