
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

777 | P a g e

www.ijacsa.thesai.org

Enhancing Match Detection Process Using

Chi-Square Equation for Improving Type-3 and

Type-4 Clones in Java Applications

Noormaizzattul Akmaliza Abdullah1, Al-Fahim Mubarak-Ali2, Mohd Azwan Mohamad Hamza3, Siti Salwani Yaacob4

Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia1, 3, 4

Centre For Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil,

Yaakob, 26300 Gambang, Kuantan, Pahang2

Abstract—Generic Code Clone Detection (GCCD) is a code

clone detection model that use distance measure equation,

enabling detection of all types of code clones, naming clone Type-

1, Type-2, Type-3 and Type-4 in Java programming language

applications. However, the detection process of GCCD did not

focus on detecting clones of Type-3 and Type-4. Hence, this paper

suggested two experiments to incorporate enhancements to the

GCCD in order to improve the detection rate of clone Type-3 and

clone Type-4. The implementation of Chi-square distance in the

match detection process produced a significant result increase in

the experiment specifically on clones Type-3 and Type-4, in

comparison with the Euclidean distance in GCCD, which allows

the increase of detection rate due to the dissimilarity of the

distance measures. Based on the results, the suggested

enhancement using Chi-square distance on match detection

process outperforms GCCD in terms of improving code clone

detection results based on clone Type-3 and Type-4, as the

objectives for each experiment are carried, contributes to the

research on improving the code clone detection result.

Keywords—Code clone detection; distance measure; Java

language; Chi-square; computational intelligence

I. INTRODUCTION

The practice of copying code is known as code cloning and
the clone being duplicated is a code clone [1]–[3]. 60%
developers went on searching code examples every day as to
reduce the development time process [4] and which leads to
code cloning. However, the integrity of certain developer
cannot be underestimated as code examples could be
implemented to the system instead of coding a new code
fragment which lead to code cloning. Cost and programmer's
limitation, templating and many more could also be the reasons
for code cloning [4]–[6]. These reasons for code cloning could
lead to drawbacks on software development and maintenance.
The increase of maintenance cost, bug propagation,
computational complexity and vulnerability proneness [5]–[8].
The inadequacy of programming language could also affect the
code cloning [9], [10]. Java is a free programming language
that developed open-source software applications. A study
mentioned that 6% of 512000 lines of codes in Java
applications are code clones [11]. The study concluded that the
reason of code clones was the stake-holder’s demand and
deficiency in Java generic modules.

Code clones are generally categorized into four distinct
types [12]–[14]; Type-1, Type-2, Type-3 and Type-4 (Fig. 1).
Clone Type-1 is known for exact matches. These are code
fragments that are identical, except for differences in
whitespace and comments. Type-1 clones are the simplest to
detect since they involve straightforward duplication without
any modifications to the actual code logic. Clone Type-2 is
renamed clones. In these clones, the code fragments are
identical except for variations in identifiers, literals, types, or
other superficial changes. While the overall structure and logic
remain the same, these changes can make detection more
complex than Type-1 clones. Clone Type-3 is modified clones.
These are more complex clones where the duplicated code has
undergone modifications such as adding or removing lines of
code, altering control structures, or making other significant
changes. Despite these modifications, the underlying logic or
functionality of the code remains similar, making Type-3
clones challenging to detect. Finally, clone Type-4, the
semantic clones. The most difficult to detect, Type-4 clones
involve code fragments that perform the same functionality but
are implemented using entirely different syntax or structures.
These clones require deep semantic analysis to identify, as they
do not share visible structural similarities with the original
code.

Several major code clone approaches are prior to
undertaking. The six major code clone approaches include text-
based approaches, token-based approaches, metric-based
approaches, tree-based approaches, graph-based approaches,
and hybrid approaches. However, most approaches are
incapable of recognizing all code clones [15]. For instance,
token-based approach code detection tool such as NiCad
[16],[17] detect the lexical part of the source code without
considering the semantic information, which then prompted a
poor detection result of clone Type-3 [18]. As a response, a
code clone detection model was built for detecting code clones
effectively. A model for the detection of the code clone
incorporates structural process that combine several
approaches or tools for the detection of clones. Several models
that have existing in the code clone domain are the Generic
Clone Model [19], the Generic Pipeline Model [20], Unified
Clone Model [21], as well as the Generic Code Clone
Detection (GCCD) Model [11]. Multiple researchers studied
these four models in order to develop an effective code clone
detection model. For instance, an enhancement was made in a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

778 | P a g e

www.ijacsa.thesai.org

study on Generic Pipeline Model whereby they concatenated
the source code file through Divide and Conquer method to
enhance the load processing speed, by dividing the file into sub
files [22]. They managed to decrease the model’s runtime
performance and increase the model’s performance fully.
Another study is on the GCCD model where they enhanced the
pre-processing and parameterization process of GCCD [9],
[23]. They managed to reduce the pre-processing rules and
finding the best weightage to produce a better code clone
detection model.

If (a>b)

{

 b++;

 a=1;

}

If (a>b)

{

 b++;

 a=1;

}

If (i>j)

{

 j++;

 i=0;

}

Clone Type-1 Clone Type-2

Original code

Clone Type-3 Clone Type-4

If (i>j)

{

 c=i+j;

 j++;

 i=1;

}

if (j<i){

 j=j+1;

 i=1;

}

Fig. 1. Example of code clone Type-1, Type-2, Type-3 and Type-4.

The preliminary goal of this work is for enhancing the
GCCD in order to produce a reliable code clone detection
result, specifically Type-3 and Type-4. Therefore, this work
will focus on;

 The experiment is an enhancement on match detection
process using different distance measure equation such
as Manhattan distance, Squared Euclidean distance,
Half-squared Euclidean distance, Chi-square distance,
in order to find the highest detection result of Type-3
and Type-4.

 The comparative analysis of the result between GCCD
as an existing model and the proposed enhancement
towards GCCD in terms of Type-3 and Type-4.

II. RELATED WORKS

Generic Code Clone Detection (GCCD) is a tool
commenced for an aim to detect code clones in Java language
application [11]. This model was developed targeting to detect
code clone Type-1, Type2, Type-3 and Type-4. The purpose of
GCCD is to provide a generality approach for identifying all
sorts of code clone. GCCD is constructed with a structure of
five processes (Fig. 2). The processes are pre-processing

process, transformation process, parameterization process,
categorization process and match detection process.

A. Pre-Processing Process

This process standardizes the source code as input for the
detection process. There are five pre-processing rules applied
to the source code in order to remove unnecessary elements
that may conflict with the code clone detection result. The first
pre-processing rule removes packages and import statements
from the source code. Then, the second pre-processing rule is
followed by removing comment lines as the comments are
considered as instruction or guidance to the programmer only,
which is not conflicting with the source code. The third pre-
processing rule removes empty lines, which normally do not
hold any source code and act as a method to visualize a clean
look in coding. After that, the code is then regularized in the
fourth pre-processing rule by replacing all function access
modifier to public access modifier. This part of the rule act as a
constant value for producing metrics in parameterization
process. The fifth rule is to convert all uppercase letters in the
original source code to lowercase letters for reducing the
difference for detecting code clones. The essence of the source
code has been filtered and the source code has become source
unit.

B. Transformation Process

This process converts the source units into measurable units
by substituting the source units with numerical value. The
source unit is substituted one by one based on the position of
alphabets. For instance, the alphabet p is substituted to 16 as
the numerical value. Taking an example of word of the source
unit from the Fig. 3, we can see that ‘public’ is substituted with
value 162102120903.

GCCD

Pre-Processing

Processing the source code with five pre-processing rules.

Transformation
Transforms the source units into quantifiable form as well

as dividing the source units into header and body.

Parameterization

 Create parameters or metrics for Categorization process.

 Parameters used is header average ratio and body average

ratio.

Categorization
Source units are categorized and grouped based on the pre-

defined criteria to create three sets of pool.

Match Detection

Code clone detection process. The process is in two stages:

 Exact matching

 Euclidean distance calculation

Fig. 2. Structure process of GCCD.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

779 | P a g e

www.ijacsa.thesai.org

This substitution method allows the source unit to be
valued as measurable unit. After that, the measurable source
units are divided into header (h) and body (b) to become a
transformed source unit. Header is the first line of a function
source code and body is the next line of a function source code
after the first line. In the Fig. 3, the lines of source unit public
boolean hasmoreelements is the first line of function where this
line is considered as the header. The rest of the lines are
considered as body. This unit will become transformed source
unit which is the output of this process.

Transformed source unit

Header (h): 162102120903
02151512050114
080119131518050512051305142019

Body (b): 180520211814
031521142003151404092009151419
0321181805142005120513051420

measurable unit

162102120903 02151512050114
080119131518050512051305142019
180520211814
031521142003151404092009151419
0321181805142005120513051420

source unit

public boolean

hasmoreelements return

countconditions

currentelement

Fig. 3. Snippets of source unit is substituted and grouped to become a

transformed source unit.

C. Parameterization Process

This stage will set up the parameters that would be utilized
throughout the categorization process from the transformed
source unit (TSU). The TSUs are in the form of transformed
source unit header (TSUh) and transformed source unit body
(TSUb). The parameters involved are average ratio header and
average ratio body. Table I shows the parameters involved in
getting the average ratio header and body and its description. In
order to gain average ratio header and average ratio body,
TSUs are calculated to gain ratio header along with ratio body.
Both ratios require TSU to be calculated using this:

𝑇𝑆𝑈ℎ𝑛 = 𝐴1 + 𝐴2 + 𝐴3 + ⋯ + 𝐴𝑛 (1)

𝑇𝑆𝑈𝑏𝑛 = 𝐵1 + 𝐵2 + 𝐵3 + ⋯ + 𝐵𝑛

Since all functions have been transformed into a
standardize value of public, all the source units have similar
access modifier value. Therefore, these TSUs are divided with
public access modifier weightage value (P). The P is gain
through the substitution of word ‘public’ into162102120903 as
the weightage value. The calculation of ratio header and ratio
body can be visualized in equation:

𝑅ℎ𝑛 =
𝑇𝑆𝑈ℎ𝑛

𝑃
 (3)

𝑅𝑏𝑛 =
𝑇𝑆𝑈𝑏𝑛

𝑃
 (4)

where n = 1, 2, 3. After ratio header and ratio body is
calculated, the process is tried with finding average ratio
header together with average ratio body for each source unit.
Ratio header and ratio body is divided with count header as
well as count body respectively using this equation:

𝐴𝑉𝑅ℎ𝑛 =
𝑅ℎ𝑛

𝐶ℎ𝑛
 (5)

𝐴𝑉𝑅𝑏𝑛 =
𝑅𝑏𝑛

𝐶𝑏𝑛
 (6)

From here, the output of transformation process is
represented in metric form as parameters.

TABLE I. DESCRIPTION OF PARAMETERS INVOLVED IN

PARAMETERIZATION PROCESS

Parameters Description

Transformed source unit

header (TSUh)

Value of transformed source unit in header

Transformed source unit
header (TSUb)

Value of transformed source unit in body

Ratio header (Rh)
The ratio of headers of the transformed

source units

Ratio body (Rb)
The ratio of body of the transformed source
units

Count header (Ch)
Code count of source code header in the

source units

Count body (Cb)
Code count of source code body in the source
units

average ratio header (AVRh) The average ratio of header (h)

average ratio header (AVRb) The average ratio of body (b)

D. Categorization Process

The categorization process occurs by comparing between
two TSU. Assuming there are TSUX and TSUY, they are
categorized into the first pool as they have the similar AVRh.
The process of categorizing TSU into the first pool runs until
every TSU with similar AVRh is grouped. Then, the TSU
continue its categorization process together with the remaining
from first pool to group TSU with similar AVRb into the second
pool. Once the categorization process reaches its ends for the
second pool, the categorization process moves to the third pool,
grouping the remainder of TSU that cannot match to the first
pool and the second pool. This process produces three pools as
the output, bringing them to the final process which is match
detection.

E. Match Detection Process

Finally, the pools are screened for Type-1, Type-2, Type-3,
and Type-4 clones using match detection process. There are
two stages of match detection for detecting code clones. The
first stage is exact matching where clone Type-1 and clone
Type-2 are detected from the first two pools. The match is
considered as Type-1 when two average ratio header and body
are identical, following the next pair of matches during the first
two pool is processed. As for clone Type-2, certain pairs
compared is considered as clone Type-2 when they have
similar AVRhx and AVRhy but different AVRbx and AVRby, or
vice versa. The second stage implements the Euclidean
distance measure formula to determine the remnants from the
first two pools and the third pool. Assuming the calculation
involves two source units’ X and Y. Each source unit consists
of average ratio header and average ratio body. The formula of
Euclidean distance (ED) is as follows:

𝐸𝐷 = √(𝐴𝑉𝑅ℎ𝑋 − 𝐴𝑉𝑅ℎ𝑌)2 + (𝐴𝑉𝑅𝑏𝑋 − 𝐴𝑉𝑅𝑏𝑌)2(7)

The outcome from Euclidean distance calculation is then
determined its value. The value that fits within 0.85 and 1.00 is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

780 | P a g e

www.ijacsa.thesai.org

classified as Type-3, while the remainder value is classified as
Type-4.

III. PROPOSED ENHANCEMENT

The proposed enhancements are focusing on two processes
from GCCD, which are the match detection process. The
dataset for these experiments is similar to the dataset from
GCCD, which is Java applications of Bellon’s benchmark
dataset [28]. This dataset is a benchmark in code clone domain
that consists Java applications with medium size to larger size.
It also provides the details to the four Java applications
involved.

Previously in GCCD, the process of match detection
implements Euclidean distance on to the three pools from the
categorization process, in order to gain the clone Type-3 and
clone Type-4. Once calculated, the value that falls between the
ranges 0.85 to 1.00 is considered as clone Type-3 and suchlike
is considered as clone Type-4. In comparison to previous
GCCD outcomes, the aim of the first experiment is to produce
a greater detection result for code clone Type-3 and code clone
Type-4, by utilizing different distance measures [24]. Four
distance measures were discovered for which the parameters
generated from prior processes of GCCD could be applied to
achieve. The distance measures are referred in Table II
Manhattan distance [25], Squared Euclidean distance [26],
Half-squared Euclidean distance [27], and Chi-square distance
[28].

TABLE II. EQUATIONS INVOLVED IN EXPERIMENT 1

Equation Name Equation

Manhattan distance 𝑑(𝑥, 𝑦) = ∑ | 𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

Squared Euclidean distance 𝑑2(𝑥, 𝑦) = ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

Half-squared Euclidean
distance

𝑑2(𝑥, 𝑦) = ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

Chi-square distance 𝜒(𝑥, 𝑦) = √
1

2
∑

(𝑥𝑖 − 𝑦𝑖)2

(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

Manhattan distance calculates the absolute difference
between corresponding components of two vectors, offering a
simple yet effective way to assess similarity when the changes
between code fragments are predominantly additive or
subtractive. Squared Euclidean distance is an extension of the
standard Euclidean distance, this formula squares the
differences between corresponding components before
summing them, placing greater emphasis on larger deviations,
which may be particularly useful in distinguishing more
pronounced differences in code structure. Meanwhile, half-
squared Euclidean distance measures halves the squared
differences, providing a balance between the sensitivity of the
Squared Euclidean Distance and the simplicity of the
Manhattan Distance, potentially offering a more nuanced
assessment of similarity. Finally, Chi-square distance, a
statistical measure that compares the observed and expected

frequencies of occurrences, this formula is particularly suited
for detecting differences in distributions, making it a promising
candidate for identifying Type-4 clones where the code
fragments may function similarly but differ significantly in
their structural composition. The aforementioned equations
will replace the Euclidean distance in the match detection
process. The pseudocode 1 shows the pseudocode on the
implementation of Chi-square distance into GCCD as an
example.

Pseudocode: Match Detection Process using Chi-square distance

Pool 1, PL1

Pool 2, PL2

Pool 3, PL3

Chi-Square Distance, CSD

Average ratio header, [AVRh1, AVRh2, AVRh3, … AVRhn]

Average ratio body, [AVRb1, AVRb2, AVRb3, … AVRbn]

1. Read [AVRh1, AVRh2, AVRh3, … AVRhn] and [AVRb1, AVRb2,
AVRb3, … AVRbn] in PL1 and PL2

2. Compare AVRh1 and AVRb1 with AVRh2 and AVRb2 using
exact matching technique

3. If AVRh1 and AVRb1 are same with AVRh2 and AVRb2

4. Group as Type-1

5. Else If AVRh1 and AVRh2 are same but AVRb1 and AVRb2
are different

6. Group as Type-2

7. Else If AVRh1 and AVRh2 are different but AVRb1 and
AVRb2 are same

8. Group as Type-2

9. Else

10. AVRh1 and AVRh2 are different but AVRb1 and AVRb2
are different

11. Move into PL3

12. Read remaining [AVRh1, AVRh2, AVRh3, … AVRhn] and
[AVRb1, AVRb2, AVRb3, … AVRbn] in PL3

13. Apply CSD between the remaining [AVRh1, AVRh2, AVRh3, …
AVRhn] and [AVRb1, AVRb2, AVRb3, … AVRbn]

14. If distance is between 0.85 to 1.00

15. Group as Type-3

16. Else

17. Group as Type-4

By using the similar assumption from Section II(E) where
there are two source units X and Y, the calculation of the match
detection process can be visualized in the chi-square equation
where the average ratio header and average ratio body is used:

𝐶𝑆𝐷 = √
1

2
(

(𝐴𝑉𝑅ℎ𝑋−𝐴𝑉𝑅ℎ𝑌)2

(𝐴𝑉𝑅ℎ𝑋+𝐴𝑉𝑅ℎ𝑌)
+

(𝐴𝑉𝑅𝑏𝑋−𝐴𝑉𝑅𝑏𝑌)2

(𝐴𝑉𝑅𝑏𝑋+𝐴𝑉𝑅𝑏𝑌)
) (8)

IV. RESULT ANALYSIS

The result from the experiment is recorded in two elements
namely overall total clone pairs in Java applications and total
clone pairs based on clone types. This section is divided into
three subsections where the first subsection describes the result
of overall total clone pairs and the second subsection is about
the total clone pairs based on clone types, which resulted from
the experiment. The final subsection analyzes and discusses the
outcome from the result to pinpoint the difference between the
existing GCCD and the enhancement made to GCCD.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

781 | P a g e

www.ijacsa.thesai.org

7281

11268

2688

595

7283

11003

2666

590

6368

9659

1677

561

6540

10339

1854

563

12782

23096

6629

1021

0 5000 10000 15000 20000 25000

j2sdk1.4.0-javax-swing

Eclipse-jdtcore

Eclipse-ant

Netbeans-Javadoc

Overall Total Clone Pairs Gouped by Java Applications

Chi-square Distance Half-squared Euclidean Distance

Squared Euclidean Distance Manhattan Distance

Euclidean Distance (GCCD)

Fig. 4. Overall total clone pairs based on java applications from bellon’s

benchmark data.

A. Overall Total Clone Pairs in Java Applications

Fig. 4 illustrate the results of overall total clone pair in Java
applications. The first Java application is j2sdk1.4.0-javax-
swing. Based on data presented, Chi-square recorded the most
total clone pair with 12782 clone pairs. The second most total
clone pair is from Manhattan distance with a total of 7283
clone pairs. This puts the difference between the most clone
pairs and the second-most with a total of 43.02%. Thirds go to
the Euclidean distance with a total of 7281 clone pairs. This
total clone pair is lower by 43.04% from the highest total clone
pair by Chi-square distance. Total clone pair from Half-squared
Euclidean distance recorded the fourth with a total of 6540
clone pairs. The difference between Half-squared Euclidean
distance total clone pairs and the highest total clone pair is
48.83%. J2sdk1.4.0-javax-swing has lowermost total clone pair
detected by Squared Euclidean distance with 6368 clone pairs.
It is 50.18% less than the highest total clone pair by Chi-square
distance.

The second Java application for detecting overall total
clone pair is Eclipse-jdtcore. The top result for total clone pair
is by the Chi-square distance with a total of 23096 clone pairs.
The next in order is by Euclidean distance with a total of 11268
clone pairs. The gap between the highest and the second-
highest overall total clone pair is 51.21%. Manhattan provides
the third-most total clone pair with 11003 clone pairs. This is
52.36% lower than the highest overall total clone pair detected
in Eclipse-jdtcore. The fourth result of total clone pair is Half-
squared Euclidean distance with 10339 clone pairs. The
difference between overall total clone pair from Half-squared
Euclidean distance with the most total clone pair from Chi-
square distance is 55.23%. The last from Eclipse-jdtcore is by
Squared Euclidean distance with a 9659 total of clone pairs.
This put the difference between the lowest and the highest
from Eclipse-jdtcore with a difference of 58.18%.

The third Java application is Eclipse-ant. Overall total clone
pair by Chi-square distance recorded the highest value with
6629 clone pairs. The second is followed by Euclidean distance
where it gained a total of 2688 clone pairs, which left the gap
of 59.45%. The third for overall total clone pair of Eclipse-ant

is Manhattan distance which turned in a total of 2666 clone
pairs. This put a 59.78% difference between the first and the
third overall total of clone pair in Eclipse-ant. The fourth for
Eclipse-ant is Half-Squared Euclidean distance, which has a
total of 1854 clone pairs. This is 72.03% lower than the highest
overall total clone pair in Eclipse-ant, which is the Chi-square
distance. The last formula that detects a total of 1677 clone
pairs is Squared Euclidean distance. This has made a 74.70%
gap with Chi-square distance, the highest for Eclipse-ant.

As for Netbeans-javadoc, the most prominent total clone
pair is by Chi-square distance with 1021 clone pairs. The
subsequent total clone pair is by Euclidean distance. It recorded
a total of 595 clone pairs, leaving the gap of 41.72% lower than
the highest overall total clone pair result in Netbeans-javadoc.
Next, Manhattan distance set a total of 590 clone pairs. This
overall total clone pair value is lower than the highest value
which is 42.21% difference. The fourth total of clone pairs is
Half-squared Euclidean distance with a total of 563 clone pairs.
The difference between the fourth and the first value of overall
total clone pair in Netbeans-javadoc is 44.86%. 561 clone pairs
are the final overall total clone pair by Squared Euclidean
distance. The difference between the least and the most overall
total clone pair detected in Netbeans-javadoc is 45.05%.

B. Total Clone Pairs Based on Clone Types

This part of the result is discussed based on each Java
applications by Bellon’s benchmark data, based on Table III.

1) j2sdk1.4.0-javax-swing: Table III depicted the result of

total clone pairs for each Java application. In j2sdk1.4.0-

javax-swing, the detected clone pairs Type-1 is by Half-

Squared Euclidean distance with 892 clone pairs. The second

highest value of detecting clone Type-1 is by Chi-square

distance, with 891 clone pairs, preceding about 0.11%

difference from the highest clone pair Type-1 value. The third

highest is by Manhattan distance with 889 clone pairs. The

gap difference from the highest value of clone pair Type-1

detected in j2sdk1.4.0-javax-swing is 0.34%. The fourth value

of clone pair Type-1 detected in this application is 888 clone

pairs by Squared Euclidean distance, with 0.45% gap

difference. Finally, Euclidean distance recorded the lowest

value of clone Type-1 detected by 877 clone pairs, leaving

percentage difference of 1.68%. Code clone Type-2 detection

clone pair for Half-Squared Euclidean distance keep as highest

value recorded with 3725 clone pairs. It is then followed by

Manhattan distance with 3716 clone pairs, leaving a

percentage difference of 0.24%. The third most value of clone

pair Type-2 detected in j2sdk1.4.0-javax-swing is by

Euclidean distance with 3697 clone pairs. The percentage

difference between Euclidean distance’s value and the highest

value of clone pair Type-2 is 0.75%. The fourth value is by

Squared Euclidean distance with 3695 clone pairs and

percentage difference of 0.81%. The least clone pair Type-2

detected is by Chi-square distance with 3684 clone pairs. The

percentage difference is 1.10%. Meanwhile, Chi-square

distance gained the highest total clone pair Type-3 with 3633

clone pairs. This was followed by Half-squared Euclidean

distance with a value of 1773 clone pairs. It is 51.20% less

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

782 | P a g e

www.ijacsa.thesai.org

than the Chi-Square distance result. The third and fourth total

clone pairs Type-3 are Manhattan distance (1727 clone pairs)

as well as Squared Euclidean distance (1718 clone pairs), with

each gap difference of 52.46% and 52.71% respectively. The

lowest total clone pair Type-3 is by Euclidean distance with a

total of 1710 clone pairs, leaving a 52.93% lower than Chi-

square distance. Next, Chi-square Distance was the highest in

j2sdk1.4.0-javax-swing code clone Type-4, with a value of

4574 clone pairs. The Euclidean distance, which detected 997

clone pairs, is the second highest for clone Type-4. It is

78.20% lower than the highest value of clone Type-4 detected.

Manhattan distance is the thirds with 951 clone pairs of Type-

4, a 79.21% lower than Chi-square distance. The fourth value

is by Half-squared distance with 150 clone pairs (96.72%) and

the least value is from Squared Euclidean distance with a

value of 67 clone pairs (98.54%) for clone Type-4.

TABLE III. TOTAL CLONE PAIRS BASED ON CLONE TYPES FOR EACH DISTANCE MEASURES

Bellon’s Benchmark Data Java Applications Clone Type
Total clone pairs based on clone types

ED*

(GCCD) MD* SED* HSED* CSD*

j2sdk1.4.0-javax-swing

T-1* 877 889 888 892 891

T-2* 3697 3716 3695 3725 3684

T-3* 1710 1727 1718 1773 3633

T-4* 997 951 67 150 4574

Eclipse-jdtcore

T-1* 626 627 627 627 627

T-2* 2886 2884 2887 2887 2886

T-3* 4265 3880 3782 4564 7576

T-4* 3491 3612 2363 2261 12007

Eclipse-ant

T-1* 185 185 185 185 185

T-2* 552 650 650 650 650

T-3* 581 562 535 585 2061

T-4* 1370 1269 307 434 3733

Netbeans-javadoc

T-1* 99 99 99 99 99

T-2* 341 338 338 338 338

T-3* 102 102 102 104 197

T-4* 53 51 22 23 387

a. *T-1 = clone Type-1, T-2 = clone Type-2, T-3 = clone Type-3, T-4 = clone Type-4, ED = Euclidean Distance, MD = Manhattan Distance, SED = Square Euclidean Distance, HSED = Half-squared Euclidean
Distance, CSD = Chi-square Distance

2) Eclipse-jdtcore: Moving forward with the second Java

application, which is Eclipse-jdtcore. The overall total clone

pair Type-1 detected is consistent for each distance measure

with a value of 627 clone pairs. The exception is from

Euclidean distance, which detected 626 clone pairs, leaving a

0.16% gap difference from other distance measure formula. In

regards to clone Type-2, the highest value went to Squared

Euclidean distance as well as Half-Squared Euclidean

distance, with each distance measure, scored a total clone

pairs of 2887. The second greatest value for Type-2 clone is

by Chi-square distance and Euclidean distance (2886 clone

pairs). The lowest value is by Manhattan distance (2884 clone

pairs). Both with the percentage difference of 0.03% and

0.10% from the highest value. Next, the Chi-square distance

gained the highest value of 7576 clone pairs Type-3 for

Eclipse-jdtcore. Half-squared Euclidean distance recorded the

second-highest Type-3 value of 4564 clone pairs. It is 39.76%

lower than Chi-square distance. The next distance measure

followed is Euclidean distance with 4265 clone pairs of Type-

3, marking a 43.70% gap from Chi-square distance. The fourth

and the lowest Type-3 clones are Manhattan distance (3880

clone pairs) together with Squared Euclidean distance (3782

clone pairs). The Manhattan distance and Squared Euclidean

distance are 48.79% as well as 50.08% lower than Chi-square

distance. Then, clone detection for Type-4 by Chi-square

distance in Eclipse-jdtcore, is the highest with a total of 12007

clone pairs. This is followed by the second highest with a

value of 3612 clone pairs Type-4 by using Manhattan

distance. It is 69.92% lower than Chi-square distance. The

third and fourth for Type-4 in Eclipse-jdtcore are recorded by

Euclidean distance (3491 clone pairs) along with Squared

Euclidean distance (2363 clone pairs). They have 70.93% and

80.32% lower than Chi-square distance. The lowest value of

clone pair Type-4 for Eclipse-jdtcore is by Half-squared

Euclidean distance, with 2261 total clone pairs and 81.17%

gap difference.

3) Eclipse-ant: Total clone pairs Type-1 in Eclipse-ant

showed concordant outcomes for every experimented distance

measure which is 185 clone pairs along individually. For

Type-2, the highest clone pair value detected is by each

distance measure with 650 clone pairs, except for Euclidean

distance with 552 clone pairs, which is 15.08% lower than the

highest value. Meanwhile, Chi-square distance showed the

highest total of 2061 clone pairs Type-3, followed by Half-

squared distance with a total of 585 clone pairs. Half-squared

distance has 71.62% lower than Chi-square distance. The third

value for clone Type-3 is by Euclidean distance with a total of

581 clone pairs and 71.81% gap difference from highest value.

The fourth value is by Manhattan distance with 562 clone

pairs. It is 72.73% lower than Chi-square distance. The lowest

value for Type-3 clones in Eclipse-ant is Squared Euclidean

distance with 535 clone pairs and 74.04% lower than Chi-

square distance. Next, the Chi-square distance for clone Type-

4 in Eclipse-ant has the greatest value of 3733 clone pairs. The

second-highest total clone pairs are 1370 clone pairs Type-4

by Euclidean distance, with 63.30% lower than Chi-square

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

783 | P a g e

www.ijacsa.thesai.org

distance. The third and fourth values are shown by Manhattan

distance (1269 clone pairs) as well as Half-squared Euclidean

distance (434 clone pairs). Both has 66.01% and 88.37%

lower than Chi-square distance. The least value of total clone

pairs Type-4 in Eclipse-ant is by Squared Euclidean distance

with 307 clone pairs. It is 91.78% lower than the highest value

by Chi-square distance.

4) Netbeans-javadoc: The Netbeans-javadoc application

was also revealed to have concordant outputs when it comes to

clone Type-1 for each distance measure which is 99 clone

pairs. Euclidean distance recorded the highest Type-2 value

with 341 clone pairs. Other distance measures detected 338

clone pairs, 0.88% lower than Euclidean distance. For Type-3,

Chi-square distance recorded the highest with 197 clone pairs,

followed by Half-squared distance with 104 clone pairs. It is

47.21% lower than Chi-square distance. Euclidean distance,

Manhattan distance as well as Squared Euclidean distance

showed the lowest which is 102 clone pairs. It has 48.22%

lower than Chi-square distance. For Type-4 in Netbeans-

javadoc, the Chi-square distance also showed the highest

value with 387 total clone pairs. The second highest is by

Euclidean distance which is 53 clone pairs (86.30%) of Type-

4, followed by the third value by Manhattan distance which is

51 clone pairs (86.82%). The fourth value is 23 clone pairs by

Half-squared distance and the lowest Type-4 clone value is 22

clone pairs by Squared Euclidean distance. Both distances

have 94.06% and 94.32% gap difference from Chi-square

distance.

V. DISCUSSION

The experiment is concentrating on enhancing match
detection process of GCCD by substituting the Euclidean
distance to different distance measures. The enhancement on
match detection process should be affecting the detection result
on clone Type-3 and Type-4, as clone pairs is calculated using
the distance measure formula. In this experiment, Chi-square
distance has shown a significant increase on the overall total
clone pairs that is detected in Java applications of Bellon’s
benchmark data. Moreover, Chi-square distance shows an
improvement in total clone pairs based on clone types, which
detected the highest value for each clone Type-3 as well as
Type-4 in Eclipse-ant and Netbeans-javadoc application,
respectively. Chi-square distance managed to keep the similar
value of total clone pairs Type-1 other distance measures in the
Eclipse-jdtcore, Eclipse-ant and Netbeans-javadoc. Chi-square
distance also able to maintain the similar clone pairs Type-2
value with other distance measures for Eclipse-ant and
Netbeans-javadoc. However, Chi-Square is placed as the
second highest total clone pairs based on clone Type-1 and the
least value in j2sdk1.4.0 – javax-swing. Another difference is
in Eclipse-jdtcore application, where Chi-square distance
detected the second highest value of clone pair Type-2. Based
on this experiment, Euclidean distance and Chi-square distance
both embody the similar structure formula. Nonetheless, Chi-
square distance divides the upper value with a frequency
inverse using the weightage summation of both header and
body. As for the difference in result on clone Type-1 and Type-
2 in two of the mentioned Java applications, runtime

performance during the pre-processing process and
transformation process might have affected the detection result.
Thus, Experiment 1 concludes that the implementation of Chi-
square distance increases the clone pair detection result
specifically in Type-3 and Type-4, respectively.

VI. CONCLUSION

In this paper, we introduced an improvement that is to the
GCCD for detecting code clones in each clone type,
specifically Type-3 and Type-4, due to the earlier result from
GCCD implicit the inconsistency of the clone detection result
in Java applications in Bellon’s benchmark dataset. The
enhancement that proposed the detection result of clone pair
Type-3 and Type-4 can be improved by enhancing match
detection process of GCCD, through modifying the distance
measures. Result from the experiment revealed that the
implementation of Chi-Square provides a higher code clone
detection result as the GCCD is enhanced using Chi-square
distance in match detection process. The improvement can be
seen specifically when it has overruled GCCD by detecting the
highest clone pairs Type-3 and Type-4.

The model currently supports clone detection within Java
applications as the dataset is limited to the Bellon’s benchmark
dataset Java application. As a future enhancement, experiment
on detecting and analyzing clone pairs in Python applications
will be conducted.

ACKNOWLEDGMENT

The authors would also like to thank the Malaysian Higher
Education Ministry and Universiti Malaysia Pahang Al-Sultan
Abdullah for their support for this project through the
Fundamental Research Grant Scheme (FRGS Grant ID:
FRGS/1/2024/ICT01/UMP/02/1).

REFERENCES

[1] B. Van Bladel and S. Demeyer, “A Comparative Study of Code Clone
Genealogies in Test Code and Production Code,” Proc. - 2023 IEEE Int.
Conf. Softw. Anal. Evol. Reengineering, SANER 2023, pp. 913–920,
2023, doi: 10.1109/SANER56733.2023.00110.

[2] M. Nashaat, R. Amin, A. H. Eid, and R. F. Abdel-Kader, “An enhanced
transformer-based framework for interpretable code clone detection,” J.
Syst. Softw., vol. 222, p. 112347, Apr. 2025, doi:
10.1016/J.JSS.2025.112347.

[3] B. Hu, D. Yu, Y. Wu, T. Hu, and Y. Cai, “An empirical study of code
clones: Density, entropy, and patterns,” Sci. Comput. Program., vol.
242, p. 103259, May 2025, doi: 10.1016/J.SCICO.2024.103259.

[4] M. Hammad, O. Babur, H. A. Basit, and M. Van Den Brand, “Clone-
Seeker: Effective Code Clone Search Using Annotations,” IEEE Access,
vol. 10, pp. 11696–11713, 2022, doi: 10.1109/ACCESS.2022.3145686.

[5] H. Zhang and K. Sakurai, “A Survey of Software Clone Detection from
Security Perspective,” IEEE Access, vol. 9, pp. 48157–48173, 2021, doi:
10.1109/ACCESS.2021.3065872.

[6] N. Saini, S. Singh, and Suman, “Code Clones: Detection and
Management,” in Procedia Computer Science, Jan. 2018, vol. 132, pp.
718–727, doi: 10.1016/j.procs.2018.05.080.

[7] YuHao, HuXing, LiGe, LiYing, WangQianxiang, and XieTao,
“Assessing and Improving an Evaluation Dataset for Detecting Semantic
Code Clones via Deep Learning,” ACM Trans. Softw. Eng. Methodol.,
Jul. 2022, doi: 10.1145/3502852.

[8] Z. Zhang and T. Saber, “Assessing the Code Clone Detection Capability
of Large Language Models,” ICCQ 2024 - Proc. 4th Int. Conf. Code
Qual., pp. 75–83, 2024, doi: 10.1109/ICCQ60895.2024.10576803.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

784 | P a g e

www.ijacsa.thesai.org

[9] N. N. Mokhtar, A.-F. Mubarak-Ali, and M. A. Mohamad Hamza,
“Enhanced Pre-processing and Parameterization Process of Generic
Code Clone Detection Model for Clones in Java Applications,”
IJACSA) Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 6, 2020,
Accessed: Jun. 06, 2021. [Online]. Available: www.ijacsa.thesai.org.

[10] C. Tao, Q. Zhan, X. Hu, and X. Xia, “C4: Contrastive Cross-Language
Code Clone Detection,” IEEE Int. Conf. Progr. Compr., vol. 2022-
March, pp. 413–424, 2022, doi: 10.1145/3524610.3527911.

[11] A. F. Mubarak-Ali and S. Sulaiman, “Generic Code Clone Detection
Model for Java Applications,” in IOP Conference Series: Materials
Science and Engineering, Jun. 2020, vol. 769, no. 1, doi: 10.1088/1757-
899X/769/1/012023.

[12] J. Martinez-Gil, “Source Code Clone Detection Using Unsupervised
Similarity Measures,” Lect. Notes Bus. Inf. Process., vol. 505 LNBIP,
pp. 21–37, Jan. 2024, doi: 10.1007/978-3-031-56281-5_2.

[13] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009, doi:
10.1016/j.scico.2009.02.007.

[14] G. Shobha, A. Rana, V. Kansal, and S. Tanwar, “Comparison between
Code Clone Detection and Model Clone Detection,” 2021 9th Int. Conf.
Reliab. Infocom Technol. Optim. (Trends Futur. Dir. ICRITO 2021,
2021, doi: 10.1109/ICRITO51393.2021.9596454.

[15] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “A
Systematic Review on Code Clone Detection,” IEEE Access, vol. 7.
Institute of Electrical and Electronics Engineers Inc., pp. 86121–86144,
2019, doi: 10.1109/ACCESS.2019.2918202.

[16] C. K. Roy and J. R. Cordy, “An empirical study of function clones in
open source software,” in Proceedings - Working Conference on
Reverse Engineering, WCRE, 2008, pp. 81–90, doi:
10.1109/WCRE.2008.54.

[17] M. Mondal, C. K. Roy, and J. R. Cordy, “NiCad: A Modern Clone
Detector,” Code Clone Anal., pp. 45–50, 2021, doi: 10.1007/978-981-
16-1927-4_3.

[18] W. Wang, Z. Deng, Y. Xue, and Y. Xu, “CCStokener: Fast yet accurate
code clone detection with semantic token,” J. Syst. Softw., vol. 199, p.
111618, May 2023, doi: 10.1016/J.JSS.2023.111618.

[19] S. Giesecke, “Generic Modelling of Code Clones,” Duplic. Redundancy,
Similarity Softw., no. 06301, pp. 1–23, 2007, [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2007/960.

[20] B. Biegel and S. Diehl, “Highly Configurable and Extensible Code
Clone Detection,” in Proceedings - Working Conference on Reverse
Engineering, WCRE, 2010, pp. 237–241, doi: 10.1109/WCRE.2010.34.

[21] C. J. Kapser, J. Harder, and I. Baxter, “A Common Conceptual Model
for Clone Detection Results,” in 2012 6th International Workshop on
Software Clones, IWSC 2012 - Proceedings, 2012, pp. 72–73, doi:
10.1109/IWSC.2012.6227870.

[22] A.-F. Mubarak Ali, S. Sulaiman, and S. M. Syed-Mohamad, “An
Enhanced Generic Pipeline Model for Code Clone Detection ,” 2011,
Accessed: Jun. 06, 2021. [Online]. Available: https://ieeexplore-ieee-
org.ezproxy.ump.edu.my/document/6140712.

[23] N. S. Zaidi, A. F. Mubarak-Ali, A. S. Fakhrudin, and R. N. Romli,
“Determining the Best Weightage Feature in Parameterization Process
of GCCD Model for Clone Detection in C-Based Applications,” 8th Int.
Conf. Softw. Eng. Comput. Syst. ICSECS 2023, pp. 280–285, 2023, doi:
10.1109/ICSECS58457.2023.10256395.

[24] N. A. Abdullah, M. Azwan Mohamad Hamza, and A. F. M. Ali, “A
Review on Distance Measure Formula for Enhancing Match Detection
Process of Generic Code Clone Detection Model in Java Application,”
Proc. - 2021 Int. Conf. Softw. Eng. Comput. Syst. 4th Int. Conf.
Comput. Sci. Inf. Manag. ICSECS-ICOCSIM 2021, pp. 285–290, Aug.
2021, doi: 10.1109/ICSECS52883.2021.00058.

[25] A. Muhammad et al., “Distance Measurements Method for the Demite
Pronunciation Assessment,” ICSET 2018 - 2018 IEEE 8th Int. Conf.
Syst. Eng. Technol. Proc., pp. 189–194, Jan. 2019, doi:
10.1109/ICSENGT.2018.8606375.

[26] A. Kazemi, S. Sahay, A. Saxena, M. M. Sharifi, M. Niemier, and X. S.
Hu, “A Flash-Based Multi-Bit Content-Addressable Memory with
Euclidean Squared Distance,” 2021 IEEE/ACM Int. Symp. Low Power
Electron. Des., pp. 1–6, Jul. 2021, doi:
10.1109/ISLPED52811.2021.9502488.

[27] TIBCO Software Inc., “Square Euclidean Distance and Half Square
Euclidean Distance,” stn.spotfire.com, 2012.
https://docs.tibco.com/pub/spotfire/7.0.0/doc/html/hc/hc_square_half_sq
uare_euclidean_distance.htm (accessed Aug. 26, 2021).

[28] M. Majhi and A. K. Pal, “An image retrieval scheme based on block
level hybrid dct-svd fused features,” Multimed. Tools Appl., vol. 80, no.
5, pp. 7271–7312, Oct. 2021, doi: 10.1007/s11042-020-10005-5.

