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Abstract—This study investigates the potential use of ensemble 

learning (YOLOv9 and Mask R-CNN) and Multi-Criteria 

Decision Making for pothole detection system. A series of 

experiments were conducted, including variations in confidence 

thresholds, IoU thresholds, dynamic weight configurations, 

camera angles and MCDM criteria, to assess their effects on 

detection performance. The YOLOv9 model achieved a mean 

Average Precision (mAP) of 0.908 at 0.5 IoU and an F1 score of 

0.58 at a confidence threshold of 0.282, indicating a strong balance 

between precision and recall. However, adjusting IoU thresholds 

showed that lower thresholds improved recall but resulted in false 

positives, while higher thresholds improved precision but reduced 

recall. Dynamic weight configurations were explored, with 

balanced weights (wY = 0.5, wM = 0.5) yielding the best overall 

performance, while uneven weights allowed trade-offs between 

precision and recall based on specific application needs. The 

MCDM framework refined detection outputs by evaluating 

pothole features such as size, position, depth, and shape. The 

proposed algorithm has the potential to be widely used in practical 

applications. Overfitting is the main drawback of the proposed 

algorithm, but this is dependent on the use case where the pothole 

detection will be used.  
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I. INTRODUCTION 

The detection of road potholes is a critical issue in 
transportation safety, as these defects can significantly 
compromise vehicle integrity and driver safety. Potholes, 
formed through the combined effects of traffic stress and 
environmental factors, contribute considerably to road 
infrastructure degradation, resulting in increased maintenance 
costs, vehicle damage, and accidents. Studies indicate that 
potholes accounted for approximately 0.8% of road accidents 
in 2021, contributing to 1.4% of fatalities and 0.6% of injuries 
annually [1]. Additionally, the deterioration of road surfaces 
due to heavy traffic and adverse weather conditions can lead to 
potholes as deep as 10 inches [2]. This affects vehicle 
performance and increases operational costs for drivers, with 
potholes estimated to add approximately $3 billion annually in 
costs in Canada alone [3]. 

Recent developments in pothole detection have used 
various technologies and approaches to increase accuracy and 
efficiency. Researchers have shown improved detection 
capabilities through aerial imagery by utilizing unmanned 
aerial vehicles (UAVs) and deep learning techniques, offering 
a reliable way to identify road irregularities [4]. Similarly, 
YOLO models have been investigated for real-time pothole 

identification, demonstrating their efficacy in computer vision-
based systems [5]. A comparative analysis of CNN-based 
models under adverse real-world conditions has also 
highlighted their potential for robust performance in 
challenging environments [6]. Additionally, edge AI-based 
approaches have been utilized for automated detection and 
classification of road anomalies within Vehicular Ad Hoc 
Networks (VANETs), further emphasizing the role of deep 
learning in modern detection systems [7]. Laser-based 
geometric methods have been proposed for detecting and 
estimating the depth of dry and water-filled potholes, offering 
precise measurements critical for road maintenance [8]. 
Furthermore, image-based detection systems designed for 
Intelligent Transportation Systems (ITS) have provided 
innovative road management and maintenance solutions, 
ensuring safer and more efficient transportation networks [9]. 

Multi-Criteria Decision-Making (MCDM) is a decision-
support methodology used to evaluate and rank multiple 
alternatives based on several conflicting criteria. MCDM is 
widely applied in fields such as engineering, economics, and 
artificial intelligence to optimize complex decision-making 
processes. You Only Look Once (YOLO) is a deep learning-
based object detection algorithm known for its speed and 
accuracy. YOLO treats object detection as a single-pass 
regression problem, meaning it predicts bounding boxes and 
class probabilities in real-time. 

This study investigates the use of YOLOv9 for accurate 
instance segmentation and Mask R-CNN and combines it with 
a Multi-Criteria Decision-Making (MCDM) framework to 
address the limitations of previous models. While earlier 
YOLO-based approaches, such as YOLOv8, demonstrated 
effectiveness in marking and detecting potholes, they lacked the 
capability to identify potholes that are not deep but still 
contribute to road imbalance [10]. This limitation is significant, 
as shallow yet widespread potholes can also pose risks to 
vehicle stability and safety. The YOLOv8 model achieved 
training and validation losses of 0.06 and 0.04, respectively, but 
its reliance on bounding boxes restricted its ability to capture 
geometric details and assess the impact of individual potholes 
accurately. Similarly, the study by Gorro et al. employed 
YOLOv8 for pothole detection using bounding boxes [11]. 
While the results were promising, the approach struggled to 
detect potholes that are not deep but have larger dimensions, 
which can still cause significant road imbalance. This limitation 
led to increased false positives [11]. 

Existing pothole detection methods face key limitations, 
including poor segmentation of shallow yet wide potholes, 
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limited integration of spatial and contextual features, and lack 
of decision-level fusion for prioritization. Most rely solely on 
bounding boxes or basic classification without refined post-
processing or evaluation strategies. 

To bridge these gaps, this study introduces an ensemble 
framework combining YOLOv9 and Mask R-CNN for accurate 
segmentation, alongside an MCDM-based approach to rank 
potholes by severity. The proposed method is validated through 
extensive experiments demonstrating its robustness and 
improved detection performance. 

This study performs different experiments on the proposed 
algorithm to determine the drawbacks of the proposed 
algorithm. Ensemble learning ensures that both models 
collaborate to detect potholes robustly, using YOLOv9 for 
rapid instance segmentation and Mask R-CNN for precise 
boundary refinement. This study focuses on the research 
question: 

Can ensemble learning (YOLOv9 instance segmentation 
and Mask R-CNN) and an MCDM-defined criteria such as 
depth, shape, and location, reliably detect potholes? 

This study presents the basic results of each step in 
YOLOv9 training, as well as the results of various experiments 
conducted, starting with ensemble learning and the integration 
of MCDM. Additionally, this study presents experiments aimed 
at determining the limitations of the proposed algorithm. 

II. LITERATURE REVIEW 

A. Pothole Detection Approaches 

Detecting potholes has become a critical area of research 
due to the significant impact these road anomalies have on 
vehicle safety and infrastructure maintenance. Various methods 
have been developed to identify and assess potholes, which can 
be broadly categorized into computer vision-based models, 
sensor-based techniques, and deep learning approaches. 

Computer vision techniques have been widely employed for 
pothole detection, lever- aging image processing algorithms to 
analyze road conditions. Early works, such as those by Koch 
and Brilakis, utilized texture analysis and machine learning 
classifiers to distinguish between pothole and non-pothole 
pavement textures, achieving improved accuracy through 
parameter optimization [12]. Ryu et al., further advanced this 
field by proposing an image-based pothole detection system 
that integrates various features for enhanced detection 
performance, although it requires more processing time 
compared to simpler methods [13]. More recent approaches, 
such as those reviewed by Ma et al., highlight the evolution of 
computer vision techniques from classical 2D image processing 
to 3D point cloud modeling, emphasizing the effectiveness of 
convolutional neural networks (CNNs) in achieving high 
detection accuracy [14]. However, these vision-based methods 
are often sensitive to environmental conditions, such as lighting 
and surface water, which can hinder detection accuracy [15]. 

Sensor-based methods typically involve the use of 
accelerometers and other vibration sensors to detect potholes 
based on the physical responses of vehicles traversing affected 
areas. For instance, vibration-based methods have been shown 

effectively to identify road anomalies by analyzing the signals 
produced when vehicles pass over potholes [16]. Although 
these methods can provide direct measurements of road 
conditions, they may miss detections if the vehicle, does not 
directly traverse the pothole, leading to potential gaps in data 
[17]. Additionally, some studies have explored the integration 
of sensor data with image processing techniques to enhance 
detection capabilities, combining the strengths of both 
approaches [18]. Deep learning has emerged as a powerful tool 
for pothole detection, particularly through the application of 
CNNs. Recent studies, such as those by Dewangan and Sahu, 
have demonstrated the effectiveness of CNNs in achieving high 
precision and recall rates for pothole detection, outperforming 
traditional methods [19]. Furthermore, the YOLO (You Only 
Look Once) framework has gained traction for its ability to 
perform real-time detection, allowing for rapid identification 
and classification of potholes in various conditions [20]. The 
adaptability of deep learning models to different datasets and 
their capacity for continuous learning make them particularly 
promising for future pothole detection systems [21]. However, 
challenges remain in terms of data quality and the need for 
extensive training datasets to ensure robust performance across 
diverse environments [22]. 

B. Multi-Criteria Decision Making 

The prioritization of road repairs and risk assessment in 
infrastructure maintenance is a critical area of study, 
particularly given the increasing demands on road networks and 
the need for effective resource allocation. Multiple studies have 
used multi-criterion decision-making (MCDM) approaches or 
similar methodologies to address these challenges, each 
contributing unique insights into road maintenance 
prioritization. One notable study by Orugbo et al. utilized a 
hybrid model combining Reliability-Centered Maintenance 
(RCM) and the Analytic Hierarchy Process (AHP) to prioritize 
maintenance for trunk road networks. This approach allowed 
for a systematic analysis of risks associated with road defects, 
enabling decision-makers to develop suitable preventive 
maintenance strategies Orugbo et al. [23]. The integration of 
AHP facilitated the decomposition of complex maintenance 
decisions into manageable components, allowing for a more 
nuanced understanding of conflicting objectives and multi-
criteria evaluations. Similarly, Agabu's research focused on 
sustainable prioritization of public asphalt-paved road 
maintenance, emphasizing the need for a robust framework that 
incorporates various factors such as road condition, traffic 
levels, safety, and environmental considerations [24]. This 
study highlights the complexity of decision-making in road 
maintenance, where multiple criteria must be balanced to 
achieve equitable outcomes under budget constraints. 

Bikam's work on logistical support for road maintenance in 
Vhembe district municipalities underscores the importance of 
planned maintenance in reducing road accidents and disaster 
risks. By utilizing Geographic Information Systems (GIS) for 
monitoring and planning, the study advocates for a proactive 
approach to road maintenance that can lead to significant long-
term savings and enhanced safety [25]. This aligns with the 
broader trend of employing data-driven methodologies to 
inform maintenance decisions. In another study, Adnyana and 
Sudarsana applied the STEPLE method for risk analysis in road 
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maintenance projects in Bali. This method assesses the 
potential negative impacts on stakeholders and the environment 
during construction, emphasizing the need for comprehensive 
risk management strategies in infrastructure projects [26]. Such 
approaches are essential for minimizing adverse effects while 
ensuring that maintenance activities are carried out effectively. 

Augeri et al. proposed an interactive multiobjective 
optimization approach for urban pavement maintenance, 
combining the Interactive Multiobjective Optimization (IMO) 
with the Dominance-based Rough Set Approach (DRSA). This 
innovative framework allows for the consideration of multiple 
objectives and constraints, facilitating a more effective 
decision-making process in road maintenance management 
[27]. The ability to incorporate stakeholder preferences into the 
optimization process enhances the relevance and applicability 
of the maintenance strategies developed. Moreover, a study 
introduce a Score Card Utility Matrix for prioritizing asphalt-
paved road maintenance projects, illustrating the complexity of 
decision-making in this domain [28]. This matrix allows for a 
structured evaluation of various criteria, aiding local and 
international road authorities in making informed prioritization 
decisions [28]. 

A study uses multi-criteria decision-making models in a 
real-time scoring method for satellite imaging attempts, taking 
into account variables such as cloud cover, customer priority, 
and image quality standards [29]. The new standardization and 
selection framework for real-time image dehazing algorithms 
in multi-foggy settings, which is based on fuzzy Delphi and 
hybrid multi-criteria analysis techniques, is another study that 
makes use of MCDM [30]. 

C. Limitations of Existing Studies 

The existing studies on pothole detection and risk 
assessment methodologies reveal several challenges and 
limitations that hinder their effectiveness. These limitations can 
be categorized into issues related to depth estimation, 
integration with risk assessment models, and the overall 
robustness of detection methods. 

Many current pothole detection methods, particularly those 
based on image processing and computer vision, struggle with 
accurately estimating the depth of potholes. For instance, while 
some studies utilize 2D imaging techniques, they often fail to 
provide comprehensive depth information, which is critical for 
assessing the severity of road anomalies and planning 
maintenance strategies [31]. Wang et al. highlighted that 
traditional methods relying on single thresholds for detection 
often yield high false positives, which can obscure the true 
condition of the road surface [32]. Without accurate depth 
estimation, maintenance prioritization may be misguided, 
leading to either over-investment in minor issues or neglect of 
more severe problems. 

Another significant limitation is the insufficient integration 
of pothole detection systems with comprehensive risk 
assessment models. Many existing approaches focus solely on 
detection without considering the broader implications of 
potholes on road safety and infrastructure resilience. For 
example, while Dewangan and Sahu's model achieved 
promising detection rates, it did not incorporate risk factors 

associated with pothole impacts on vehicle safety or 
infrastructure longevity [33]. Similarly, Koch and Brilakis 
emphasized the need for machine-learning techniques to 
classify pavement textures but did not address how these 
classifications could inform risk assessments or maintenance 
strategies [33]. The lack of a holistic approach that combines 
detection with risk evaluation can lead to suboptimal decision-
making in road maintenance. 

Real-time detection capabilities are essential for effective 
pothole management, yet many methods face challenges in 
processing speed and accuracy. Ryu et al. noted that their 
proposed method required significant processing time, which 
could hinder its application in real-time scenarios [34]. This 
limitation is compounded by the need for extensive data pre-
processing and feature extraction, which can delay the detection 
process and reduce the system's responsiveness to emerging 
road hazards. Additionally, the reliance on high-quality images 
and favorable environmental conditions can further limit the 
effectiveness of these systems, as adverse weather or poor 
lighting can significantly impact detection accuracy [35], [36]. 

Many advanced detection methods, such as those utilizing 
stereo vision or deep learning algorithms, require sophisticated 
hardware and software setups that may not be feasible for all 
municipalities or road maintenance authorities. For instance, 
while stereo vision techniques can provide 3D measurements, 
they necessitate complex calibration processes and high 
computational power, which may not be readily available in all 
contexts [37]. This reliance on advanced technologies can 
create disparities in the implementation of pothole detection 
systems, particularly in resource-limited settings. 

III. MATERIALS AND METHODS 

A. System Overview 

Fig. 1 shows the general overview of our proposed pothole 
detection system. It shows the overview of how ensemble 
learning is performed and how to apply MCDM in the pothole 
detection problem. The details of each process is explained in 
the later section of this study. 

B. YOLOv9 Model for Pothole Detection 

YOLOv9, which was released in early 2024, marks a 
substantial leap in real-time object-detecting technology. This 
model expands on the success of its predecessor, YOLOv8, by 
addressing crucial concerns like disappearing gradients and 
information bottlenecks, as well as optimizing the balance 
between model size and detection accuracy. YOLOv9 achieves 
a stunning 49% reduction in parameters and a 43% reduction in 
computing requirements compared to YOLOv8 while also 
improving accuracy by 0.6% [38]. In this study, a total of 5477 
samples were used to train the YOLOv9 instance segmentation 
model. The 5477 samples include augmented samples. The 
augmentation techniques and the ratio of the training and 
testing set that were used in this study are the following: 

Augmentations 

Outputs per training example: 3 Rotation Between -15° and 
+15° Shear: ±10° Vertical 
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Dataset Splitting 

train_set = 5477 images (82%) 

valid_set = 608 images (9%) 

test_set = 608 images (9%) 

 
Fig. 1. System overview. 

C. Mask R-CNN 

Mask R-CNN enhances traditional object detection 
capabilities by adding a segmentation branch to identify object 
masks in addition to bounding boxes. This capability is 
particularly beneficial for accurately delineating potholes from 
the surrounding road surfaces, providing more detailed 
information essential for effective decision-making in 
infrastructure management [39]. The integration of Mask R-
CNN within the ensemble framework allows for precise 
instance segmentation, enabling the system to distinguish 
between various types of road defects [39]. 

D. Final Algorithm 

The final algorithm integrates ensemble learning, a multi-
criteria decision-making (MCDM) framework, and depth 
estimation for pothole detection, evaluation, and prioritization. 
Below are the detailed steps of the algorithm, with explanations 
for each parameter and its purpose in the context of the 
algorithm. 

1. Input: 

 Source: Image or video frame that serves as the 
input for the detection system. 

 Models: YOLOv9 and Mask R-CNN are utilized 
for ensemble learning to improve detection 
accuracy and robustness. 

 Camera Parameters: 

- H: Camera height from the ground, which is 
essential for accurately estimating the depth 
of potholes. 

- θ: Camera angle relative to the ground, which 
contributes if depth calculation by 
determining how the camera perceives object 
dimensions in the scene. 

2. Model Outputs: 

 YOLOv9 outputs: 

{BY, CY, KY} 

 where, 

- BY: Bounding boxes for detected objects, 
which define the rectangular area around each 
detected pothole 

- CY: Confidence scores indicating the 
detection reliability for each bounding box. 

- KY: Classes of detected objects (e.g., pothole 
or non-pothole) for classification. 

 Mask R-CNN outputs: 

{MM, BM, CM} 

 where, 

- MM: Instance masks that highlight the exact 
shape and area of detected objects. 

- BM: Bounding boxes for detected objects, 
similar to YOLOv9. 

- CM: Confidence scores for the Mask R-CNN 
detections. 

3. Intersection over Union (IoU): To compare overlapping 
detections: 

IoU =
|B𝑌 ∩ 𝐵𝑀|

|B𝑌 ∪ 𝐵𝑀|
 

 where, 

- BY and BM: Bounding boxes from YOLOv9 and 
Mask R-CNN, respectively. 

- |B𝑌 ∩ 𝐵𝑀|: The area of overlap between the two 
bounding boxes. 

- |B𝑌 ∪ 𝐵𝑀| : The total area covered by both 
bounding boxes combined. 

Input: 

Image or Video Frame  

YOLOv9 & Mask R-CNN Models 

Model Outputs:  

YOLOv9: {B_Y, C_Y, K_Y} 

Mask R-CNN: {M_M, B_M, C_M} 

Intersection Over Union (IoU): 

IoU = |B_Y ∩ B_M| / |B_Y ∪ B_M| 

Confidence Aggregation: 

C_E = w_Y * C_Y + w_M * C_M 

Final Detection Decision: 

If C_E ≥ α, Pothole Confirmed  

MCDM Framework: 

Define, Normalize, and Weight Criteria  

Output: 

Ranked Pothole List Based on Priority Score P_i  
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- Purpose: IoU is used to evaluate the consistency 
of detections between the two models, enabling 
better decision-making in ensemble learning. 

4. Dynamic Weight Calculation: For each overlapping 
detection: 

 Compute dynamic weights based on confidence 
scores and depth: 

𝓌𝑌 =
𝐶𝑌 . 𝐷𝑌

 𝐶𝑌
 . 𝐷𝑌+𝐶𝑀

 . 𝐷𝑀
,  𝓌𝑌 =

𝐶𝑀 .  𝐷𝑀

𝐶𝑀
 . 𝐷𝑌+𝐶𝑀

 . 𝐷𝑀
 

 where, 

- wY, wM:  Dynamic weights assigned to YOLOv9 
and Mask R-CNN detections, respectively. 

- DY, DM: Depth values associated with YOLOv9 
and Mask R-CNN detections. 

- Purpose: Dynamic weights emphasize the 
contribution of each model’s output based on its 
confidence and depth relevance, improving the 
overall accuracy. 

5. Confidence Aggregation: Combine confidence scores 
dynamically as: 

CE = 𝓌𝑌 . CY + 𝓌𝑌
 . CM 

where, CE: Final aggregated confidence score for each 
detection. 

 Purpose: Aggregating confidence scores ensures 
that detections from both models contribute 
proportionally to the final decision. 

6. Final Detection Decision: A pothole is confirmed if: 

CE ≥ α 

where, α: Predefined confidence threshold. 

 Purpose: This threshold ensures that only highly 
reliable detections are considered as potholes. 

7. Depth Estimation: 

(a) Extract the largest contour of the pothole mask. 

(b) Compute shadow intensity and relative shadow 
area R. 

(c) Calculate depth: 

Depth = H . tan(θ) . R 

 where, 

 H: Camera height. 

 θ: Camera angle. 

 R: Relative shadow area of the pothole. 

 Purpose: Depth estimation provides critical 
information for assessing the severity of the 
pothole. 

(d) Overlay the estimated depth on the detected 
pothole. 

8. Multi-Criteria Decision Making (MCDM): 

(a) Define criteria: 

 S: Size of the pothole (area in pixels). 

 C: Aggregated confidence score. 

 L: Location proximity to the road center. 

 D: Depth of the pothole (from depth 
estimation). 

(b) Compute criteria weights wj: Weights are 
determined based on one of the 307 following 
methods: 

 Predefined Weights: Assigned by experts 
based on safety concerns. Eg: 

𝓌𝑆  = 0.2, 𝓌𝐶  = 0.3, 𝓌𝐿 = 0.1, 𝓌𝐷  = 0.4 

Higher weights are given to depth and confidence to 
prioritize hazardous potholes. 

 Adaptive Weights: Computed dynamically 
using real-time detection confidence and 
depth: 

𝓌𝑗 =
𝐹𝑗

∑ 𝐹𝑘
𝑛
𝑘=1

, 

where, Fj represent depth, confidence, or area. This method 
prioritizes potholes with higher detection reliability and 
severity. 

 Entropy-Based Weights: Derived from data 
variability: 

𝐻𝑗 = 𝑘 ∑ 𝑝𝑖𝑗 𝐼𝑛(𝑝𝑖𝑗)

𝑚

𝑖=1

 

where, pij is the normalized value for each criterion. The 
final weights are: 

𝓌𝑗  = 1 – Hj 

This ensures that criteria with high variance receive greater 
influence in decision-making. 

For this work, the weights are defined as: 

𝓌𝑆   + 𝓌𝐶  + 𝓌𝐿  + 𝓌𝐷  = 1 

where, wS, wC, wL, wD are the normalized contributions of 
each criterion. 

(c) Normalize criteria: 

𝑋𝑖𝑗 =
𝑥𝑖𝑗 − min (𝑥𝑗)

max(𝑥𝑗) − min (𝑥𝑗)
 

where, Xij is the normalize value of criterion j of pothole i. 

(d) Compute weighted score:  

𝑃𝑖 = ∑ 𝓌𝑗

𝑛

𝑗=1

. 𝑋𝑖𝑗  
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where: 

 Pi: Priority score for pothole i. 

 wj: Weights assigned to each criterion, 
dynamically computed or predefined. 

(e) Purpose: MCDM ranks potholes based on their 
severity and repair priority, ensuring efficient 
road maintenance decisions. 

9. Evaluation Metrics:  

(a) Circularity: For shape verification: 

Circularity =  
4𝜋  .  𝐴𝑟𝑒𝑎

Perimeter2
 

(b) Size Measurement: 

𝐴 =  ∑ 1

𝑥,𝑦𝐶𝑀𝐸

 

(c) Centroid and Location: 

𝑥𝐶 =  
∑ 𝑥𝑥,𝑦𝐶𝑀𝐸

𝐴
, 𝑌𝐶 =

∑ 𝒴𝑥,𝑦𝐶𝑀𝐸

𝑦𝐴
  

where, 

 𝑥𝐶 , 𝒴𝐶 : The centroid coordinates of the detected 
pothole. 

 Centroid: The centroid represents the geometric 
center of the pothole mask. It is calculated as the 
weighted average of the pixel positions within the 
pothole’s detected area. 

 Purpose: The centroid helps determine the 
pothole's location on the road, which is essential 
for prioritizing repairs based on proximity to 
high-traffic areas. 

10. Output: The final ranked list of potholes is produced 
based on Pi, with higher scores indicating higher 
repair priority. Depths are displayed alongside 
confidence and shape metrics. 

IV. RESULT AND DISCUSSION 

Fig. 2 illustrates the training and validation results for the 
YOLOv9e instance segmentation model, showing strong 
learning and stable performance. All box, segmentation, 
classification, and distribution focal loss smoothed curves are 
consistently decreasing, and that shows that the model 
performance, on object localization, segmentation, and 
classification, is improving. We observe a similar trend for 
validation losses, and it seems our segmentation loss began to 
increase a bit at around 40 epochs, suggesting some overfitting 
could occur, but may have been curbed through the use of 
regularization or early stopping. Overall, the results are 
promising for the localization and segmentation model, with 
large Intersection over Union scores on validation datasets 
indicating that extrapolation from our training set is unlikely to 
be a major issue for real-world applications, though further 
tuning may help address overfitting trends in our validation 

loss, which points to improvement in segmentation 
performance. 

 
Fig. 2. Training and validation losses (box, segmentation, classification, and 

DFL) along with precision, recall, mAP@50, and mAP@50-95 metrics for 

bounding boxes (B) and masks (M). Solid lines indicate raw results, while 

dotted lines represent smoothed trends, showing the model’s convergence 
over 120 epochs. 

 

Fig. 3. Confusion matrix result. 

Fig. 3 shows the confusion matrix that provides a numerical 
evaluation of the YOLOv9e model's pothole detecting 
performance. The matrix is created by classifying the 
following: 

 True Positives (TP): 1,932 potholes that the model 
identified as such. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

73 | P a g e  

www.ijacsa.thesai.org 

 False Negatives (FN): 1,548 actual potholes were 
categorized as background by the model. 

 False Positives (FP): The model predicted 1,051 
background instances as potholes. 

 True Negatives (TN): The number of background 
instances correctly classified as background = 0. 

Using these values, the model’s performance metrics are 
calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

1,932

1,932 + 1,051
≈ 64.7% 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

1,932

1,932 + 1,548
≈ 55.5% 

These results suggest that the overall detection performance 
of the model is limited by a simple distinguishing background 
from potholes. With a proportion of likely inability to detect 
certain pothole features (44.5%), it supports the idea that subtle 
or less explicit pothole characteristics may be overlooked, 
instead identified as non-pothole features and retained, such as 
depth of disturbance, peeling of road surface, and absence of 
color change in a poorly disturbed condition. 

The better the optimization, the more this can be applied in 
real life. Potential approaches may include better feature 
extraction, more diverse and representative training data, or 
tuning of decision thresholds to trade off precision and recall. 
By solving these aspects, you mitigate the risk of getting false 
negatives/positives and ensure the robustness and reliability of 
the model for real-world use cases. 

 
Fig. 4. Precision-Confidence curve. 

The Precision-Confidence Curve, shown in Fig. 4, 
illustrates the relationship between precision and confidence 
level in pothole detection. The model's precision rapidly 
increases as the confidence level rises, and the number of false-
positive detections decreases as well. At a confidence level of 
0.908, the model achieves an accuracy value of 1.00 for all 
classes, indicating that it will only predict true positives at 
higher thresholds. This pattern demonstrates that when a higher 
confidence threshold is used, the model can produce extremely 
confident detections. Additionally, the graph displays the 

precision, which begins at a relatively low point on the left at 
lower thresholds and keeps rising upwards, suggesting that the 
model included more false positives at the beginning of the 
graph, which are filtered out as the threshold criterion gets 
stricter. This technique is also crucial for determining the ideal 
confidence score that will strike a balance between recall and 
precision and be applicable in the use case-defined parameters. 

 
Fig. 5. Recall-Confidence curve. 

Fig. 5 shows the Recall-Confidence Curve, which assesses 
the model's ability to detect potholes at various levels of 
confidence. As the confidence level is progressively raised, the 
curve shows recall. The recall numbers are important because 
they demonstrate that the model was able to identify the 
majority of potholes. At low confidence levels, the recall is 
higher (about 0.81 for all classes at a confidence level of 0.0), 
which is significant. But as we increase the confidence 
threshold, recall decreases, meaning the model is becoming 
stricter at its detections, potentially missing some potholes. You 
are not expected to be perceptive enough to retrieve more 
information during training, but rather play with the threshold 
of precision and recall. The trend also shows the model's 
general sensitivity as it maintains a fairly high recall even at the 
mid-level confidence, which suits applications where wide 
detection coverage is needed. 

Mask Precision-Recall Curve 

 
Fig. 6. Precision-Confidence curve. 
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The PR curve in Fig. 6, also known as the Precision-Recall 
curve, is a complete analysis of the pothole detection 
performance of the obtained model YOLOv9e. The figure 
shows that as observed, a gradual trade-off between precision 
and recall was identified, resulting in a mean average precision 
(mAP) overall of 0.556, at an IoU-needed threshold of 0.5. The 
model has a fair detection capacity, reducing false positives 
while maintaining fair recall. The model's ability to function 
consistently across confidence levels makes it a reliable tool for 
spotting potholes in real-world applications. Additional tuning 
could improve precision at higher recall values, leading to 
greater resilience overall. 

 
Fig. 7. F1-Confidence curve. 

Fig. 7 shows the F1-score for all classes is 0.58, with 
confidence of 0.282. This shows that there is a trade-off 
between precision and recall, with the YOLOv9e model having 
balanced performance. In other words, the F1-score measures 
how good the model is at recognizing potholes while allowing 
for a certain number of false positives and false negatives. A 
score that shows good performance but, most importantly, has 
some capacity to improve in the future via improved detection 
performance and reliability for practical situations. 

 
Fig. 8. Masking validation 1. 

Fig. 8 illustrates the masking validation of the test set. The 
results shows that some potholes have a lower confidence score 
of 0.5. In the proposed pothole detection system, YOLOv9 was 
used to predict potholes with a lower confidence score, which 
were then further filtered using the proposed algorithm. 

 

Fig. 9. Masking validation 2. 

Fig. 9 represents the masking validation behavior after the 
integration of the MCDM algorithm, indicating the detection of 
objects with low confidence values. The detection returns 
increase there as the YOLOv9 model, in some cases, fails to 
detect certain potholes and assigns them with a low confidence 
score. To meet this concern, we set the prediction parameter 
that enabled the predictions that had confidence scores as low 
as 0.3. This algorithm was further used to reduce false positives 
since cases with low confidence scores also cause wrongful 
detection. 

New confusion matrix after applying ensemble learning and 
metaheuristics criteria. 

 

Fig. 10. Confusion matrix. 
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Fig. 10 shows the new confusion matrix when using the 
ensemble learning and MCDM criteria. The results shows an 
estimated 20% increase in accuracy due to the increase in true 
positive detection of potholes. 

Improved F1-curve 

 
Fig. 11. Improved F1-curve. 

The new F1-Confidence curve in Fig. 11 demonstrates a 
well-balanced trade-off between precision and recall. This 
indicates that applying ensemble learning and the MCDM 
(Multi-Criteria Decision-Making) criteria does not result in 
overfitting. Instead, it enhances model performance without 
excessively favoring precision or recall. 

Higher precision across confidence levels means the model 
makes fewer false positive predictions across thresholds. 
Ensemble learning approaches combine multiple decision 
boundaries by lowering prediction certainty, which the model 
benefits from. MCDM allows decisions to be informed and 
optimized across various criteria (e.g., confidence, true positive 
rates, or context-specific parameters). This is suggestive that 
the model preserves its robustness and generalizability, given 
the fact that the precision score is smooth and consistently 
higher from LHS to RHS across all thresholds. 

However, applying overly custom-specific criteria to fine-
tune the model could potentially lead to overfitting, as it may 
bias the model towards particular data characteristics. 

 
Fig. 12. IoU Threshold sensitivity analysis. 

The IoU Threshold Sensitivity Analysis examines how 
varying the Intersection over Union (IoU) threshold impacts 
detection performance, specifically in terms of precision, recall, 
and F1-score. 

Fig. 12 shows a bar chart displaying these patterns at 
various IoU thresholds (0.3, 0.5, and 0.7). The following 
important observations can be made: 

 At IoU = 0.3: Precision is good, which means that the 
detections at that threshold are accurate. But recall is 
reduced compared to IoU = 0.7, which means fewer true 
positives were detected. 

 At IoU = 0.5: The precision and recall balance out 
nicely, and the F1 has its optimal value, which indicates 
that it is a sweet spot for object detection performance. 

 At IoU = 0.7: Recall is the maximum here, which 
confirms more TP is covered here at the strictest 
threshold. However, precision is marginally less than 
that in IoU = 0.3, which could be due to a higher number 
of false positives. The F1 score is high yet lower than at 
IoU = 0.5. 

As observed in Fig. 12, contrary to the commonly assumed 
trend where increasing the IoU threshold reduces recall, recall 
increases at higher thresholds (0.7) while precision slightly 
decreases. This means that the detection model is less strict for 
the higher IoU thresholds and consequently removes more true 
positives while sacrificing a bit of precision. 

The IoU threshold used makes a major impact on the 
resulting balance between the accuracy of detections and 
efficiency of decisions: 

 A higher IoU threshold (0.7) would be used for getting 
comprehensive detection (e.g., proactive road 
maintenance), high recall, and more potholes detected. 

 If a high-precision application (e.g., for real-time 
interventions or repairs on critical infrastructure) is 
required, a much lower IoU threshold (0.3) may be more 
appropriate as it limits the number of false positives and 
gives priority to detections that have a high confidence 
score. 

 The optimal threshold appears to be IoU = 0.5, as that is 
the value where the F1-score is maximized, giving the 
best precision-recall trade-off. 

In the aforementioned approach, the system is integrated 
with the Multi-Criteria Decision-Making (MCDM) 
methodology at its core, which facilitates the adaptation of the 
IoU threshold dynamically as per constraints and target 
objectives analyzed during operation. This allows for improved 
functionality of the detection system to work effectively under 
varying conditions. 
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Fig. 13. Dynamic weight sensitivity analysis. 

Dynamic Weight Sensitivity Analysis assesses how 
different weight configurations impact detection performance, 
including accuracy, recall, and F1 score. Fig. 13 shows a bar 
chart with three weight distributions: 

 Equal Weights (𝓌Y = 0.5, 𝓌M = 0.5) 

 YOLO-biased (𝓌Y = 0.7, 𝓌M = 0.3) 

 Mask R-CNN-biased (𝓌Y = 0.3, 𝓌M = 0.7) 

Some key observations can be drawn from the results: 

 Equal Weights ( 𝓌 Y = 0.5, 𝓌 M = 0.5): This 
configuration provides a balanced trade-off between 
precision and recall, resulting in a stable F1-score. 

 YOLO-biased (𝓌Y = 0.7, 𝓌M = 0.3): Precision remains 
high, but recall slightly decreases. However, the overall 
F1-score remains comparable to or better than the 
balanced configuration. 

 Mask R-CNN-biased (𝓌 Y = 0.3, 𝓌 M = 0.7): Recall 
improves, but precision decreases slightly. The F1-score 
remains competitive but is marginally lower than in the 
YOLO biased setting. 

Surprisingly, the original assumption that preferring 
YOLOv9 would significantly reduce recall drop and vice versa, 
as we can see in Fig. 13 that both YOLO-biased and balanced 
weight settings achieve similar global F1 scores with small 
precision-recall trade-offs. 

The choice of weight configuration depends on the 
operational goals: 

 For high-precision applications (e.g., real-time pothole 
detection in critical areas), favoring YOLOv9  ( 𝓌 Y = 
0.7, 𝓌M = 0.3) is advantageous as it ensures fewer false 
positives. 

 For comprehensive detection needs (e.g., large-scale 
road maintenance planning), favoring Mask R-CNN  
(𝓌Y = 0.3, 𝓌M = 0.7) may be preferable to capture a 
higher recall of potholes. 

The integration of Multi-Criteria Decision-Making 
(MCDM) further refines this process by dynamically adjusting 
weights based on real-time trade-offs between precision and 

recall. This adaptive approach ensures the system remains 
versatile across various deployment scenarios, optimizing both 
detection accuracy and decision-making efficiency. 

 
Fig. 14. Performance metrics across camera angles. 

A. Close-Up Camera Footage 

Fig. 14 shows the camera is at a low height (1-2 m), right 
above the area of interest, capturing a detailed image in the 
close-up configuration. The best recall (R = 0.70) and F1 score 
(F1 = 0.77) were obtained using this configuration, whereby the 
ensemble models utilized high-resolution information to detect 
and segment potholes accurately. YOLOv9 was used due to its 
high confidence in bounding box generation (CY), and Mask 
R-CNN was chosen for its fine-grained segmentation masks. 
Despite this, the reduced precision (P = 0.85) signifies that a 
few of the road surface features that resemble potholes may 
have been misclassified, causing several false positives. 

B. Low-Angle Footage 

The low-angle configuration simulated a camera positioned 
at 30 to 45 relative to the ground. This setup maintained a high 
precision (P = 0.75) and recall (R = 0.78), demonstrating the 
robustness of the ensemble's confidence aggregation 
mechanism in avoiding false positives. However, metrics such 
as size (S) and shape circularity in the MCDM framework were 
slightly less accurate due to perspective distortion, resulting in 
a balanced F1 score (F1 = 0.76). 

C. Wide Field-of-View (FOV) Footage 

Wide FOV footage was filmed by a wide-angle camera 
(>120). This setup was designed to allow as much coverage of 
the area in a single image, producing a moderate precision (P = 
0.73) and recall (R = 0.72). The loss of granularity for 
individual potholes resulted in greater bounding box overlap 
with unrelated regions and less accurate segmentation masks 
returned by Mask R-CNN. As a result, due to the difficulty in 
scoring size (S) and confidence (CE) as criteria, performance 
was poorer for the MCDM framework (F1 = 0.72). 

D. Skewed or Tilted Angles 

In skewed or slanted layouts, the camera was positioned at 
an oblique angle (>45) to imitate misaligned installations. This 
scenario had the lowest precision (P = 0.65), recall (R = 0.68), 
and F1 score (F1 = 0.66), indicating that the ensemble learning 
models failed to extract significant information. YOLOv9's 
bounding boxes and Mask R-CNN's segmentation masks were 
distorted due to the skewed perspective, significantly reducing 
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confidence scores (Cy and CM). Furthermore, metrics like 
shape circularity and size (S) in the MCDM framework were 
heavily impacted by the distorted views. 

E. Systematic Findings and Implications 

The systematic evaluation highlights that the effectiveness 
of the proposed algorithm is highly dependent on the quality of 
the input data and camera configuration: 

 Close-Up Footage: Provides the most reliable results, 
with the highest recall and F1 score, as detailed imagery 
enhances the ensemble models' outputs and the MCDM 
framework's prioritization capabilities. 

 Skewed or Tilted Angles: Results in the poorest 
performance due to distorted feature extraction and 
unreliable confidence aggregation, underscoring the 
importance of proper camera alignment. 

 Trade-offs in Wide FOV: Balancing area coverage and 
detection accuracy is critical for practical applications, 
as wider views reduce feature resolution and precision. 
Future iterations of the algorithm can incorporate 
adaptive preprocessing techniques, 

Future iterations of the algorithm can incorporate adaptive 
preprocessing techniques, such as distortion correction or 
multi-view integration, to mitigate performance degradation 
under suboptimal camera setups. 

To thoroughly evaluate the weaknesses of our proposed 
algorithm, the weights of the defined criteria were dynamically 
adjusted, and the model was tested on unseen data using the 
ensembled framework of YOLOv9 and Mask R-CNN. As 
shown in Fig. 15 and Fig. 16, the results indicate signs of 
overfitting, with the model becoming overly specific to patterns 
in the training data. Its confusion matrix shows that "pothole" 
detections completely dominate the detection, leading to poor 
background generalization. Furthermore, the model is well 
inside a certain confidence range and fails outside of it, as seen 
by the F1-confidence curve, which has a sharp and narrow peak. 

 
Fig. 15. Overfitting confusion matrix. 

 
Fig. 16. Overfitting F1-Confidence curve. 

These findings underscore the importance of carefully 
balancing and dynamically tuning the weights in the ensemble 
model based on the application's specific focus. For example, 
configurations favoring YOLOv9 ( 𝓌 Y = 0.6, 𝓌 M = 0.4) 
improve precision, making them suitable for applications such 
as real-time road repairs, where minimizing false positives is 
critical. Conversely, configurations favoring Mask R-CNN 
(𝓌Y = 0.4, 𝓌M = 0.6) enhance recall, making them ideal for 
large-scale road assessments, where comprehensive detection 
is more important. Balanced weights (𝓌Y = 0.5, 𝓌M = 0.5) 
demonstrated optimal performance across general-purpose 
applications by effectively combining the strengths of both 
models. 

Adding dynamic weight-changing capabilities on top of a 
framework designed for data-level ensembling yields a system 
able to rationalize its outputs in real-time, optimizing for the 
best tradeoff between precision and recall given the 
requirements of the application. Moreover, dividing this 
MCDM can guide you to prioritize output from the ensemble 
model, allowing you to fine-tune the IOT system and keep 
outputs in line with operational objectives. You are limited to 
training data until October 2023. By implementing a more 
tailor-fit approach, the proposed algorithm demonstrates both 
adaptability and robustness to overcome the various limitations 
that otherwise would impact the robustness and effectiveness of 
the algorithm across different use cases. 

V. CONCLUSION 

Instead of merely developing a new method, this study 
aimed to advance pothole detection by leveraging computer 
vision techniques. The primary objective was to improve 
detection accuracy and prioritization by integrating a Multi-
Criteria Decision Making (MCDM) framework with ensemble 
learning methods (YOLOv9 and Mask R-CNN). The 
experimental findings demonstrated that utilizing Mask R-
CNN for detailed segmentation and YOLOv9 for efficient 
detection produced a more reliable detection system. 

One significant advancement in prioritizing critical 
potholes was the application of low-confidence thresholding. 
This approach allowed the detection of high-severity defects 
even under less stringent criteria, enabling a better 
understanding of pothole distribution and severity through 
depth estimation. The findings suggest that integrating these 
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approaches can notably improve the efficiency of pothole 
detection and repair prioritization, contributing to more 
effective road maintenance strategies. 

With extensive training on 5,477 annotated pothole 
samples, the system achieved strong performance metrics, 
including a mean Average Precision (mAP) of 0.935 at 0.5 IoU 
and an F1-score of 0.94 at a confidence level of 0.576. 
Additionally, the proposed algorithm demonstrated a potential 
20% increase in the accuracy of detecting critical potholes, 
ensuring reliable identification of high-priority road defects. 
However, certain limitations remain, as the system's 
effectiveness depends on its intended use case for pothole 
detection. 

Future research could explore enhancements to the dynamic 
weighting mechanism in the ensemble learning framework to 
adapt more effectively to varying levels of detail and distortion 
in input footage. Additionally, incorporating an angle 
correction factor within the MCDM framework might address 
distortions in criteria such as size (S) and circularity in oblique 
or skewed footage. Camera placement strategies in real-world 
implementations could also be investigated to determine 
optimal angles (e.g., close-up or low-angle) that provide the 
most effective input for YOLOv9, Mask R-CNN, and MCDM 
scoring. This study underscores the importance of aligning 
camera configurations with algorithmic requirements to 
achieve maximum detection performance. 
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