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Abstract—The disappearance of Indigenous languages results 

in a decrease in cultural diversity, hence making the preservation 

of these languages extremely important. Conventional methods of 

documentation are lengthy, and the present AI solutions somehow 

do not deliver due to data scarcity, dialectal variation, and poor 

adaptability to low-resource languages. A novel NLP framework 

is being proposed to solve the existing problems. This framework 

intermixes Meta-Learning and Contrastive Learning to counter 

these problems. Thus, adaptation to low-resourced languages 

becomes rapid via meta-learning (MAML), while dialect 

differentiation is enhanced through contrastive learning. The 

model training is carried out on Tatoeba (text) and Mozilla 

Common Voice (speech) datasets to ensure robust performance in 

both text and phonetic tasks. The results indicate that there is a 

reduction of 15% in Word Error Rate (WER), an 18% 

improvement in BLEU score corresponding to translation, and a 

12% improvement in F1-score related to dialect classification. The 

testing was also done with native speakers to assess its practical 

viability. It is a real-time translation, transcription, and language 

documentation system deployed via a cloud-based platform, 

thereby reaching out to Indigenous communities globally. This 

dual-learning framework represents a scalable, adaptive, and 

cost-efficient solution for the revitalization of languages. The 

models proposed have been a game changer for language 

preservation, have set new standards for low-resource NLP, and 

have made some tangible contributions towards the digital 

sustainability of endangered dialects. 

Keywords—Indigenous language preservation; natural 
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I. INTRODUCTION 

The rapid expansion of e-commerce has significantly 
impacted consumers’ shopping behaviors, and augmented 
reality (AR) has been a key technology in optimizing users’ 
interaction and minimizing return charges [1]. Normally, it 
lacks the touch and vision experience of store shopping, leading 
to confusion in consumers’ choices and increased possibilities 
of product returns. AR closes the gap by allowing consumers to 
see products in real-life situations prior to buying, building 
confidence in their purchase decisions [2], [3]. Research has 
established that AR platforms profoundly increase consumer 
trust, interactivity [4] and product value perception, thus 
becoming a valuable tool for e-commerce firms to gain 
optimum sales and customer loyalty [5] [6]. Using AR not only 
optimizes interaction but also overcomes basic problems such 
as product misrepresentation and expectation discrepancies, 
which are leading causes of return rates on online shopping [7]. 

Including AR in online stores transforms online shopping 
by improving consumer engagement using immersive and 
personalized experiences. The technology allows for real-time 
interaction of customers with virtual products, enabling them to 
measure dimensions, touch, and fit, which cannot be done with 
standard images and videos [8] [9]. Besides, the psychological 
impact of trying products through AR significantly impacts 
buying intention as the customer develops a deeper emotional 
connection with the product, reducing hesitation to buy [10]. 
From a business perspective, AR-enabled platforms enhance 
customer satisfaction, increase conversion rates, and lower 
return-related logistics expenses [11]. The reduction in product 
returns not only lowers the financial losses of retailers but also 
enhances environmental sustainability by minimizing waste 
and carbon emissions caused by reverse logistics. As 
competition intensifies in the digital retail landscape, 
companies that invest in AR-based customer experiences gain 
a competitive advantage by instilling greater brand loyalty and 
mitigating post-purchase dissatisfaction [12]. 

Though it has several advantages, e-commerce adoption of 
AR is threatened by several issues, such as technology 
limitations, over-the-top implementation costs, and consumer 
adoption barriers [13]. Its success relies on advanced computer 
vision, AI, and real-time rendering capabilities, which require 
tremendous investment in development and infrastructure[14] 
[15]. Additionally, the adoption of AR technology by users 
varies based on factors such as digital literacy, device 
compatibility, and access to the Internet. There are also privacy 
concerns that arise from the data collection for personalization 
in AR, which raises ethical concerns about data privacy and 
consent. All these concerns have to be addressed through 
collaborative work between technology pioneers, retailers, and 
policymakers to create accessible, affordable, and privacy-
compliant AR solutions as research continues to explore novel 
ways of optimizing [16]. 

The Key Contributions are as follows: 

 It presents a new method combining Meta-Learning 
(MAML) for adaptation in low-resource languages and 
Contrastive Learning for better dialect distinction, 
solving linguistic diversity issues. 

 To develop a strong NLP model-based documentation 
of indigenous languages from limited resources. 

 To incorporate meta-learning for speedy adaptation of 
dialects and integrating contrastive learning for 
identifying dialects. 
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 The presented research provides the basis for a scalable 
and economical AI-oriented framework for endangered 
languages revitalization, permitting equity in digital 
media and preserving culture. 

II. RELATED WORKS 

Pinhanez et al. [17] explored the role of AI and NLP, 
especially large language models, in documenting and 
revitalizing endangered Indigenous languages. The paper 
revealed a global decline in linguistic diversity, along with 
ethical concerns regarding the use of AI in language 
preservation. The authors suggested an AI development cycle 
that should be based on the integration of community 
involvement in real-world deployment that shows fine-tuning 
state-of-the-art translation models on small datasets produces 
promising results for the so-called low-resource languages. 
Prototypes co-developed with Indigenous communities in 
Brazil included spelling checker tools, next-word predictors, 
and other language support functions. The study then suggested 
scalable interactive language models for language preservation 
and offered replicable frameworks to researchers and 
policymakers. 

Zhang et al. [18] deliberated on the role of NLP in restoring 
endangered languages. They observed that over 43% of 
endangered languages in the world today face threats from 
globalization and neocolonialism. The three guidelines 
proposed by the authors as part of their promotion of linguistic 
diversity are for ethical and respectful collaboration with 
Indigenous peoples. The authors also identified three 
applications of NLP: the language learning tech, speech 
recognition, and text systems, and practically illustrated such 
works with the case of the Cherokee language using methods 
machine-in-the-loop in support of language documentation. 

Tan Le et al. [19] proposed a deep learning approach to 
morphological segmentation of polysynthetic Indigenous 
languages, focusing on Innu-Aimun spoken in Canada. Such 
languages have complex morphology and dialect variation, 
with limited resources. The approach differed from rule-based 
methods in that it used an abstract neural encoding of linguistic 
patterns, thereby improving segmentation accuracy and 
showing the potential of AI in handling morphologically rich 
languages. 

Gedeon et al. [20] investigated the applications of NLP and 
AI in the preservation of the Shi language of the DRC, 
endangered with generational language shift. The study 
synthesized existing linguistic resources and outlined a plan in 
support of Shi through transcription, translation, and 
documentation tools, emphasizing the greater mandate of AI in 
language conservation. 

Li et al. [21] proposed the MetaCL meta-learning approach 
that is optimized for few-shot learning in low-resource contexts 
where no complex models or prior knowledge are required. In 
terms of architecture, it consists of distorted sample episodes 
and unsupervised loss functions that utilize soft-whitening and 
soft alignment. CUB and mini-ImageNet experiments revealed 
that this novel approach outperformed other state-of-the-art 
methods, thus making it a simple but effective baseline. 

Tan and Koehn [22] used a contrastive learning framework 
for clean bitext extraction in low-resource languages. They 
have shown how fine-tuning sentence embeddings with 
multiple negative ranking losses can provide better alignment 
and/or less noise in translation pairs. Their work on Khmer and 
Pashto demonstrates that this approach is effective in improving 
machine translation data quality. 

Khatri et al. [23] compared multilingual learning with meta-
learning when training models for new language pairs in low-
resource NMT. Although both methods performed quite well, 
meta-learning was relatively better with a smaller amount of 
data, such as for Oriya-Punjabi, highlighting the way it is used 
in lower-resource settings. 

Zhao et al. [24] proposed MemIML, a meta-learning 
framework to tackle memorization overfitting in low-resource 
NLP tasks. It incorporated task-specific memory and imitation 
modules while making MemIML boost the model’s 
generalization by relying more on support sets. Theoretical 
validation was found effective in sparse data settings. 

Tonja et al. [25] explained how technology renders 
Indigenous language communities obsolete with inducted 
urgency, marking these languages’ cultural importance. It 
advocates incorporating these Indigenous aspirations within 
any NLP development. The paper then looks at the progress of 
NLP made regarding Latin American Indigenous languages, 
outlining challenges such as limited availability of data and 
community participation. 

Vasselli et al. [26] presented a hybrid rule-based with 
prompt-based NLP for generating educational materials in the 
Maya and Bribri languages for the AmericasNLP 2024 Shared 
Task. Such an approach is precisely the answer to the issues of 
small corpora and the surface complexity of morphology. The 
model combined the linguistic accuracy of rule-based 
production with the capabilities of LLMs in contextualness. 
The approach is scalable to other Indigenous languages. 

III. PROBLEM STATEMENT 

The lack of Native languages is a world concern, as many 
languages are threatened with extinction due to globalization, 
urbanization, and linguistic dominance by common languages. 
Loss of languages not only puts cultural heritage at risk but also 
leads to loss of linguistic diversity, which is the foundation of 
human knowledge and identity. Among the primary issues of 
concern in documenting endangered Indigenous languages is 
the lack of adequate linguistic resources, e.g., digitized texts, 
dictionaries, and linguistic corpora. Language documentation 
has historically been time-consuming and labor-intensive and 
generally requires substantial knowledge of linguistics as well 
as the target language. Artificial intelligence (AI) and natural 
language processing (NLP) can mitigate this issue. However, 
state-of-the-art AI models are primarily trained on high-
resource languages and are, therefore, not very effective in 
processing low-resource Indigenous languages with complex 
linguistic structures [27]. Morphological variation, spelling 
variation, phonemic variation, and dialect variation contribute 
to the complexity of developing AI-based language tools [25]. 
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IV. PROPOSED METHODOLOGY 

The suggested NLP solution to Indigenous dialect 
conservation uses a stringent methodology, combining Meta-
Learning and Contrastive Learning for greater flexibility and 
dialect variation modeling. The methodology starts with data 
collection from the Tatoeba Dataset, offering parallel 
translations of low-resource language, and the Mozilla 
Common Voice Dataset, offering speech samples with diversity 
across dialects. Data pre-processing involves text 
normalization, phoneme extraction, and diarylation of speakers 
to provide the model with clean and formatted inputs for 
training. For promoting language flexibility, Meta-Learning 
(MAML) is employed on the Tatoeba dataset so that NLP 
models can effectively adapt to learning low-resource native 
languages quickly. The approach adapts multi-task learning for 

optimal generalization. In contrast, Contrastive Learning is 
applied to the Mozilla Common Voice corpus to learn dialect 
distinctions by minimizing intra-class variation and 
maximizing inter-class difference. It is optimized through 
AdamW with learning rates that adapt to improve convergence. 
BLEU, WER, and F1-score are the evaluation metrics to ensure 
linguistic accuracy and dialect homogeneity. Lastly, 
deployment of the model embeds the trained model in an API-
based platform that provides real-time translation and 
transcription services for aboriginal dialects. The model in 
deployment achieves access across both mobile and web 
interfaces, enhancing language preservation. The approach thus 
presents a scalable, adaptive, and efficient strategy to revive the 
threatened languages utilizing state-of-the-art NLP 
methodologies. The overall architecture of the proposed 
framework is illustrated in Fig. 1. 

 
Fig. 1. Overall architecture. 

A. Data Collection 

The success of an NLP model for Indigenous dialect 
documentation and preservation depends on diverse and high-
quality datasets. Experiment with two popular datasets in this 
research, namely Tatoeba and Mozilla Common Voice, which 
are particularly selected to overcome the limitation of low-
resource languages as well as dialect differences. The Tatoeba 
dataset is a vast multilingual corpus that includes parallel 
sentences for multiple languages, many of which are 
Indigenous and underrepresented dialects. It is especially useful 
for meta-learning when the model learns to generalize across 
many languages and to learn new, low-resource dialects 
rapidly. Tatoeba’s sentence pairs allow cross-lingual learning 
and increase the model’s ability to translate, interpret, and 
understand native colloquialisms regardless of limited training 

data. This data is necessary to expand linguistic variety in NLP 
models and make the proposed framework extensible. 
Alternatively, the Mozilla Common Voice corpus is a large-
scale open-source corpus of donated voice samples from 
speakers worldwide. It is particularly created to recognize 
differences in speech between dialects, and as such, it is a 
perfect dataset for contrastive learning in this scenario. The 
dataset contains audio files of various languages, which enable 
the model to learn phonetic, tonal, and pronunciation 
differences between dialects. Using contrastive learning 
methods, the NLP model is enhanced to recognize nuanced 
linguistic patterns more effectively, enhancing speech 
recognition and language preservation. Mozilla Common Voice 
is at the top when it comes to speech-oriented tool development, 
such as voice assistants and transcription programs, specifically 
for Indigenous tribes [28]. 
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B. Data Pre-processing 

For proper documentation and preservation of indigenous 
languages, pre-processing raw data obtained from Tatoeba and 
Mozilla Common Voice datasets prior to the implementation of 
machine learning algorithms is of utmost importance [29]. The 
Tatoeba project, while not a language itself, has been used in 
this study as a multilingual sentence-level corpus in which few 
shot learning onto languages and dialects that are 
underrepresented can be indirectly added to the documentation 
and preservation process. Pre-processing data involves several 
fundamental steps for training, such as pre-processing text and 
speech data. For text-based Tatoeba data, text pre-processing 
begins with text normalization, such as removing punctuation, 
handling special characters, converting all characters to 
lowercase, and standardizing spelling prevalent in indigenous 
dialects. Because most of these languages do not have 
formalized orthographies, phonetic transcription is used to 
translate words into phonemes, facilitating the model’s 
recognition and processing. It is preceded by tokenization, 
whereby text is broken down into words, sub-words, or 
phonemes in such a way that linguistic integrity is maintained. 
Furthermore, stop word removal and stemming are used 
selectively based on whether they are useful in contributing 
meaningfully to the dialect under processing. For Mozilla 
Common Voice speech-based data, pre-processing is more 
complicated due to differences in pronunciation, ambient noise, 
and speaker accents. Feature extraction methods, including 
Mel-Frequency Cepstral Coefficients (MFCCs) and 
Spectrogram Analysis, are used to convert raw sound into 
numerical values that can be fed to machine learning models. 
Because indigenous languages tend to exhibit tonal differences 
and regional phonetic changes, voice activity detection (VAD) 
is utilized to separate the meaningful speech portions from 
silent or noisy signals. Reduction of background noise is 
achieved by the application of spectral subtraction and Wiener 
filtering only to use clear speech during training. Further, pitch 
and formant analysis aids in preserving finer intonations and 
variations in pronunciation, particularly in every dialect. After 
text and speech are pre-processed, alignment for multimodal 
training occurs with the pairing of corresponding written and 
spoken words, thus enriching the linguistic model. Following 
pre-processing, Meta-Learning is used to fine-tune NLP models 
for low-resource language, in particular, using data from the 
Tatoeba dataset [30]. Meta-learning has also been called 
“learning to learn” as it allows models to generalize over 
several tasks with few examples. The objective is to train the 
model in such a way that it can easily learn new dialects using 
a few labeled examples so that it suits underrepresented 
indigenous languages. The major bottleneck in low-resource 
NLP is that deep models need large sets of data, which do not 
exist for autochthonous dialects. Meta-learning achieves this by 
pre-training across diverse related tasks and optimizing for 
speed of adaptation. The meta-learning framework employed in 
this work is Model-Agnostic Meta-Learning (MAML), which 
enables the model to learn a set of initial parameters that can be 
fine-tuned for a particular dialect by just a few gradient updates. 
The meta-learning objective function is defined as: 

𝜃 = 𝑎𝑟𝑔 min
𝜃

∑ 𝐿(𝑇𝑖 , 𝑓𝜃)𝑖                       (1) 

𝜃  represents the optimal model parameters. 𝑇𝑖  is the task 
distribution, where each task corresponds to learning a different 
indigenous dialect. 𝑓𝜃  is the NLP model. 𝐿(𝑇𝑖 , 𝑓𝜃) is the loss 
function for task i. By iterative tuning, the model acquires 
generalizable representations across several dialects so that it 
can learn to adapt rapidly to new native languages with little 
labeled data. It provides efficient language translation, 
transcription, and preservation despite data paucity challenges. 

 Aside from meta-learning, the research uses Contrastive 
Learning to increase the model’s capacity to identify minor 
dialectal differences present in speech data of Mozilla Common 
Voice. Contrastive learning is a self-supervised method that 
enhances representation learning by teaching the model to 
group similar dialects together while pushing apart those that 
are dissimilar in the feature space. It is particularly crucial for 
native dialects, where geographical differences might occur 
within the same language group. The contrastive learning 
procedure is one of choosing positive pairs (e.g., variations of 
the same dialect) and negative pairs (e.g., variations of other 
dialects) and tuning a contrastive loss function. The contrastive 
loss function is as follows: 

𝐿 = ∑ 𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑓(𝑥𝑖),𝑓(𝑥𝑗))/𝜏)

∑ 𝑒𝑥𝑝(𝑠𝑖𝑚(𝑓(𝑥𝑘),𝑓(𝑥𝑙))/𝜏)(𝑥𝑘,𝑥𝑗)∈𝑁
(𝑥𝑖,𝑥𝑗)∈𝑃         (2) 

P represents positive pairs (e.g., similar dialects 
expressions), and N represents negative pairs (e.g., different 
dialects). Sim () is a similarity function (e.g., cosine similarity). 
𝜏  is the temperature parameter, controlling how strongly 
dissimilar dialects are pushed apart. Using contrastive loss, the 
model picks up on subtle phonetic cues and intonation 
distinctions characteristic of every dialect, improving 
significantly in speech recognition and translation accuracy for 
indigenous languages. Example for the Tatoeba dataset for 
dialect: 

Language/Dialect: Hawaiian Creole English (Pidgin) 
Tatoeba Sentence: “Da keiki stay play outside.” Translation: 
“The child is playing outside.” 

The meta-learning and contrastive learning methods are 
incorporated into an end-to-end NLP model to optimize 
performance. The model includes a two-stream neural 
structure, with one branch handling text embeddings (from 
Tatoeba). The other branch handles speech features (from 
Mozilla Common Voice). 

𝐿𝑀 for efficient adaptation to low-resource dialects.  𝐿𝐶  for 
distinguishing between dialects. The separation among dialects: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑀 + 𝜆1𝐿𝑀                          (3) 

Where 𝜆1𝜆2 are balancing distributed weight coefficients. 

C. Model Application 

Through integration with data pre-processing, meta-
learning, and contrastive learning, the proposed framework 
presents an extensive solution for transcribing and preserving 
indigenous dialects. The Mozilla Common Voice dataset can 
facilitate speech-based learning, while the Tatoeba dataset can 
facilitate text-based adaptation. Together, contrastive learning 
and meta-learning guarantee the adaptability of the model to 
novel dialects as well as differentiating among regional 
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dialects, significantly enhancing automatic conservation, 
transcription, and translation operations. This strategy not only 
transforms language research but also contributes to the 
preservation and revival of endangered native tongues in the 
age of the Internet. With the inclusion of data pre-processing, 
meta-learning, and contrastive learning, this model is a one-stop 
solution for recording and archiving native dialects. The 
unification once the data pre-processing has been carried out, 
the training of the model starts utilizing Meta-Learning (for 
low-resource adaptation based on the Tatoeba dataset) and 
Contrastive Learning (for dialect variation modeling based on 
the Mozilla Common Voice dataset). The training pipeline 
merges these approaches into a unified NLP framework capable 
of handling both speech and text-based dialect preservation. 
The objective is to preserve as little as possible while 
optimizing the model’s generalization ability across many 
dialects with few resources. The Meta-Learning stage uses 
MAML (Model-Agnostic Meta-Learning) to train the model on 
a dialect distribution so that it can learn new languages with few 
examples and adapt rapidly. The Contrastive Learning part 
employs a Siamese neural network to distinguish between 
highly similar dialects by maximizing similarity within pairs of 
the same dialects and minimizing similarity across different-
dialect pairs. The overall training loss function combines these 
two strategies in meta-learning and contrastive learning, 
ensuring the model is not only adaptive towards novel dialects 
but also able to differentiate between regional differences, 
greatly enhancing automated language translation, 
transcription, and preservation activities. This method not only 
enriches linguistic studies but also helps revitalize and sustain 
threatened indigenous languages in the digital age. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑚𝑒𝑡𝑎 + 𝜆2𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + 𝜆3𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛   (4) 

𝐿𝑚𝑒𝑡𝑎  optimizes few-short adaption for low-resource 
dialects. 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒  enforces better dialect differentiation. 
𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛  prevents overfitting and excessive bias, 𝜆1, 𝜆2, 

𝜆3  are hyperparameters balancing each component. To 
maximize model performance, utilize the Adam W optimizer, 
which integrates adaptive gradient estimation together with 
weight decay to enhance stability. The learning rate is 
scheduled using the cosine annealing schedule to avoid abrupt 
drops and ensure a smooth convergence: 

𝑛𝑡 = 𝑛𝑚𝑖𝑛 +
1

2
(𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛)(1 + 𝑐𝑜𝑠 (

𝑡

𝑇
𝜋))      (5) 

𝑛𝑡 is the learning rate at epoch t. n max, n min are the upper 
and lower learning rates. T is the total number of training 
epochs. 

Batch normalization and dropout (at 0.3 probability) are 
used during training to prevent overfitting. Gradient clipping is 
used to prevent exploding gradients and ensure smooth 
backpropagation. Batch size is dynamically set according to 
GPU memory availability for efficiency. 

In order to critically test the model, employ a mix of text-
based NLP metrics, speech recognition metrics, and contrastive 
learning performance metrics. The major evaluation metric is 
BLEU (Bilingual Evaluation Understudy), which evaluates the 
accuracy of dialect translation. Word Error Rate (WER): 
Measures transcription quality for speech-to-text applications. 

Contrastive Accuracy (CA): Measures how well contrasts 
between varieties are identified. F1-score: Preserves a balance 
between precision and recall: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
                       (6) 

Where: Precision: The proportion of correct dialect 
translations among total returned results. Recall: The 
proportion of correctly recalled translations out of the true 
correct outcomes. 

To enhance evaluation strength, we carry out 5-fold cross-
validation to ensure consistency across various dialect samples. 
Human evaluation is also done, where linguists check the 
model’s dialect preservation accuracy. Once there has been 
effective training and testing, the model is actually deployed in 
a cloud-based setting to facilitate real-time dialect 
documentation and translation. The deployment involves these 
major steps: Model Compression & Quantization: To minimize 
the model size, weight pruning, and quantization should be 
applied so that the model is effective for deployment to mobile 
and edge devices by indigenous communities. API 
Development: A RESTful API is developed, allowing users to 
enter text or speech inputs and obtain real-time translations, 
transcriptions, or dialect classifications. Active Learning 
Feedback Loop: Users may give feedback against wrong 
translations to allow for constant improvement via online 
learning. To make it scalable, the model is deployed on a 
serverless platform (e.g., AWS Lambda or Google Cloud 
Functions) with auto-scaling depending on demand. A 
progressive web app (PWA) is also built for low bandwidth 
communities so that dialect preservation is available even in 
remote areas. Additionally, an AI-driven linguistic dashboard 
is developed to monitor dialect usage trends and allow 
researchers to contribute to the growing corpus of indigenous 
dialects. It ensures that not only are the dialects being 
documented but also that the model is supporting their 
revitalization and long-term viability. 

V. RESULT AND DISCUSSION 

The NLP framework for indigenous dialect preservation 
was tested based on the Tatoeba and Mozilla Common Voice 
datasets in terms of how well it would adapt to low-resource 
languages as well as register dialectal variation. The meta-
learning strategy greatly enhanced model generalization for 
under-served dialects by taking advantage of few-shot learning, 
making it possible for the system to adapt to novel linguistic 
data at low supervision costs. Contrastive learning was used to 
identify the fine-grained phonetic and lexical variations among 
dialects with high accuracy, improving the classification of 
dialects. The Word Error Rate, BLEU score, and F1-score 
metrics proved that our model was significantly better than 
baseline models. Specifically, WER went down by 15%, 
indicating improved transcription quality, and BLEU score 
went up by 18%, which resulted in better translation quality. 
F1-score, measuring precision and recall of the model, recorded 
an average 12% increase to prove the system’s reliability in 
detecting dialects. Native speaker real-world testing also 
proved the model to be effective, indicating improved accuracy 
for speech-to-text translation and generation of text using 
various dialects. The outcome demonstrates the system’s 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

820 | P a g e  

www.ijacsa.thesai.org 

scalability, proving its viability for use in linguistic 
documentation and language revitalization. 

A. Experimental Outcome 

Fig. 2 is a graphical representation of the accuracy of a 
classification model in discriminating between four dialects: A, 
B, C, and D. The matrix is a comparison of the predicted dialect 
labels by the model (x-axis) versus the actual dialect labels (y-
axis). Every cell in the matrix is the count of times when the 
model had predicted a certain dialect when the actual dialect 
was different. The off-diagonal cells show misclassifications, 
whereas the diagonal cells (top-left to bottom-right) show the 
correct predictions. The intensity of light, from light to dark 
blue, shows the instances’ magnitude in each cell, with darker 
intensities showing greater counts. The matrix shows that the 
model is best working in correctly classifying Dialect D, as 
shown by the high value (12) on the diagonal. Yet there are 
some instances of misclassification, mostly between Dialects A 
and B, which imply possible similarities or overlaps in their 
characteristics. The matrix presents an overall view of the 
performance of the model’s classification over the four dialects, 
showing where it is strong and possibly confused. 

Fig. 3 shows a training loss of a machine learning model 
over 20 epochs. The y-axis is the epochs, and the x-axis is the 
training loss, a measure of error ranging. The blue dashed circle 
line plots the trajectory of the training loss as the model learns 
from training data. 

Fig. 4 shows a line plot of a machine learning model’s 
training and validation accuracy against 10 epochs. The x-axis 
is for the number of epochs, while the y-axis is for accuracy 
from 0.60 to 0.95. Filled blue circles are the training accuracy, 
which keeps getting better during training. 

 
Fig. 2. Confusion metrics. 

Fig. 5 shows a line plot plotting the training and validation 
loss of a machine learning model on 10 epochs. The x-axis is 
the epochs, and the y-axis is the loss from 0.3 to 1.0. The blue 
solid line with round markers indicates the training loss, which 
always goes down during the training process. This gradual 
decline indicates that the model is successfully learning from 
the training data and decreasing errors step by step. 

 
Fig. 3. Training loss across 20. 

 

Fig. 4. Training and validation accuracy. 

 

Fig. 5. Training and validation loss over epochs. 
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B. Performance Evaluation  

1) Word Error Rate (WER): It estimates speech-to-text 

accuracy in terms of percentage errors (deletions, insertions, 

substitutions) in predicted text relative to the reference text. 

Lower WER implies higher transcription accuracy. 

2) LEU Score (Bilingual Evaluation Understudy): It 

measures the quality of translated text with respect to a 

reference translation. It takes n-gram precision and brevity 

penalty into account. A higher BLEU score implies higher 

translation accuracy. 

3) F1-Score: It calculates the trade-off between recall and 

precision for classification problems. It is the harmonic mean 

between precision and recall so that both false negatives and 

false positives are minimized. The higher the F1 score, the 

better the model performance. 

Table I illustrates that our suggested Meta-Learning + 
Contrastive Learning model performs better than conventional 
approaches in Indigenous dialect processing. It attains the 
lowest Word Error Rate (WER) of 14.2%, lowering 
transcription errors considerably compared to RNN (28.5%), 
Transformer (22.8%), and Fine-Tuned BERT (19.3%). 

The highest BLEU score of 65.8 shows better translation 
quality and linguistic adaptation, outperforming BERT (55.6) 
and Transformer (50.4). Furthermore, the 88.3% F1 score 
attests to its effectiveness in handling dialect variations and 
enhancing recall and precision. The above results support that 
our solution increases speech-to-text accuracy and dialect 
retention and, thus, is a suitable solution for low-resource 
language revival. The figure related to this table is given in the 
Fig. 6. 

 
Fig. 6. Metrics evaluation. 

TABLE I.  PERFORMANCE COMPARISON 

Methods WER BLEU F1-Score 

Proposed Meta-Learning + Contrastive Learning Model 14.2% 65.8 88.3 

Transformer-based Model [31] 22.8% 50.4 76.2 

Fine-Tuned BERT for Dialects [32] 19.3% 55.6 80.5 

Baseline RNN (Recurrent Neural Network) Model [33] 28.5% 42.1 71.3 
 

C. Discussion 

The outputs showcase the proficiency of our recommended 
NLP approach to effectively classifying and preserving 
indigenous dialects. The deployment of Meta-Learning 
(Tatoeba) has enhanced the adaptability of the model greatly 
toward low-resource languages by successfully learning from 
inadequate linguistic data. Moreover, Contrastive Learning 

(Mozilla Common Voice) has supported the model to classify 
dialect variation better, making the misclassification errors 
smaller. A comparison with current models illustrates the better 
performance of our solution, as supported by the smaller WER 
and higher BLEU and F1 metrics. These betterments indicate 
stronger language understanding and dialect identification 
functionality. The reliability of our model guarantees scalability 
in different dialects, and hence, it is a potential solution to 
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linguistic revitalization. Nevertheless, issues like 
computational expense and requiring larger annotated data sets 
are yet to be resolved. Future development will target training 
efficiency optimization and dialect coverage extension to 
support language preservation better. 

VI. CONCLUSION AND FUTURE WORK 

This study proposes an NLP framework for the 
documentation and preservation of Indigenous dialects by 
taking advantage of Meta-Learning (Tatoeba) for low-resource 
language adaptation and Contrastive Learning (Mozilla 
Common Voice) for dialect variation modeling. Our 
experiment results show that our method outperforms other 
approaches in terms of improving language classification 
accuracy with a reduced WER and increased BLEU and F1 
scores. By learning efficiently linguistic patterns from sparse 
data and identifying differences between dialects, the suggested 
framework facilitates the revitalization of endangered 
languages. The integration of deep learning methods improves 
model generalizability to be scalable for different dialects 
globally. Despite this strong performance, the study has 
limitations, including the requirement for large amounts of 
annotated data in its training and high computational demands. 
Future works can be directed towards such solutions, which 
would involve reducing model complexity and investigating 
more unsupervised and multimodal learning techniques to 
improve performance on many underrepresented dialects. For 
future research, we will increase dataset coverage by including 
more indigenous languages and dialects. Second, increasing 
model efficiency through lower computational complexity will 
be a focus area. The addition of self-supervised learning and 
multimodal techniques (e.g., integrating speech-to-text) can 
even enhance dialect detection. Last but not least, integration 
with linguists and native speakers will help fine-tune language 
representations to ensure an improved and culturally adept NLP 
solution. 
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