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Abstract—The early detection of road defects is critical for 

maintaining infrastructure quality and ensuring public safety. 

This research presents a hybrid approach that combines edge 

detection techniques with an enhanced deep learning model for 

efficient and accurate road defect classification. The process 

begins with edge detection to highlight structural irregularities, 

such as cracks and potholes, by emphasizing critical features in 

road surface images. These pre-processed images are then fed into 

a classification model based on MobileNetV3, augmented with an 

attention mechanism to improve feature weighting and model 

focus on defect-prone regions. The proposed system was evaluated 

on a Crack500 dataset of road surface images, achieving a 

classification accuracy of 96.2%. This demonstrates significant 

improvement compared to baseline models without edge detection 

or attention enhancements. The edge detection stage efficiently 

reduces noise, while the attention-augmented MobileNetV3 

ensures robust feature discrimination, making the approach 

suitable for real-time and resource-constrained deployment 

scenarios. This study highlights the effectiveness of combining 

classical image processing with advanced neural network 

techniques. The proposed system has the potential to optimize 

road maintenance workflows, operational costs, and improve road 

safety by enabling early and precise defect identification. 

Keywords—Road defect detection; edge detection; attention 

mechanism; MobileNetV3 

I. INTRODUCTION 

Road infrastructure plays a fundamental role in economic 
development, public safety, and the overall quality of life [1], 
[2]. Properly maintained roads ensure the smooth flow of goods, 
services, and people, contributing to societal efficiency and 
growth. However, road defects such as cracks, potholes, and 
surface deformities are inevitable due to wear and tear, extreme 
weather conditions, and high traffic loads [3], [4]. These defects, 
if not detected and addressed promptly, can escalate, leading to 
costly repairs, increased accident risks, and disruptions to 
transportation systems. Consequently, early and accurate 
detection of road defects is critical to minimize maintenance 
costs and enhance road safety [5]. 

Traditionally, road inspections have relied on manual 
methods or simple imaging systems, which often fall short in 
terms of accuracy, scalability, and efficiency [6]. Manual 
inspections are labor-intensive, subjective, and unsuitable for 

large-scale applications, while basic imaging systems struggle 
with environmental challenges such as poor lighting, shadow 
interference, and complex road textures [7]. This has 
necessitated the development of automated approaches that are 
not only accurate but also adaptable to real-world conditions [8]. 

Despite significant progress in computer vision and deep 
learning, current automated systems still struggle to accurately 
detect small or subtle defects in complex and dynamic 
environments. There remains a clear need to develop lightweight 
and effective models that can maintain high detection accuracy 
without imposing high computational demands, ensuring their 
applicability in real-world settings. This study addresses the 
challenge by investigating how preprocessing techniques, 
particularly edge detection, can be combined with deep learning 
models to enhance road defect detection performance. It also 
explores whether incorporating an attention mechanism into a 
lightweight model such as MobileNetV3 can improve sensitivity 
to defect-specific features and overall classification accuracy. 
Furthermore, the research examines the impact of integrating 
traditional image processing with deep learning to develop a 
more robust and reliable detection framework. 

The objectives of this work are to design and implement a 
hybrid methodology that combines edge detection with an 
attention-augmented MobileNetV3 model, to preprocess road 
surface images by emphasizing defect-relevant features while 
minimizing background noise, and to evaluate the proposed 
framework’s performance against existing methods using 
benchmark datasets. 

In this study, Fig. 1 provides a visual representation of 
various types of road surface cracks, which are critical indicators 
of pavement deterioration. These include common defects such 
as longitudinal, transverse, and block cracks, among others. The 
figure serves to underscore the diverse and complex nature of 
road defects, which necessitate precise and efficient detection 
methodologies. 

By examining these crack types, the paper establishes the 
motivation for adopting a hybrid approach that combines edge 
detection techniques with an attention-augmented MobileNetV3 
model [9]. This innovative framework aims to enhance the 
accuracy and robustness of road defect classification, ensuring 
timely maintenance and improved infrastructure resilience. 
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Fig. 1. Illustration of various types of road surface cracks, highlighting the 

importance of early detection for maintenance and safety. 

This paper proposes a hybrid methodology for road defect 
detection that leverages the strengths of edge detection and a 
deep learning model enhanced with an attention mechanism. 
The process begins with edge detection to preprocess road 
surface images, emphasizing defect-relevant features while 
reducing background noise and redundant information. These 
refined images are then input into a MobileNetV3-based neural 
network, which is augmented with an attention mechanism to 
improve its focus on critical features. The attention mechanism 
dynamically prioritizes defect-specific regions in the feature 
maps, enhancing the model’s ability to detect subtle defects such 
as hairline cracks or small potholes. 

The remainder of this paper is organised as follows. Section 
II provides a detailed overview of related work in road defect 
detection and highlights the gaps that this study aims to address. 
Section III describes the proposed methodology, including the 
integration of edge detection and the MobileNetV3 architecture 
with attention mechanisms. Section IV discusses the 
experimental setup, dataset, and performance metrics. It also 
presents and analyzes the results, while Section V concludes the 
paper with insights, limitations, and potential directions for 
future research. 

This work aims to contribute to the growing field of 
automated infrastructure monitoring by providing a practical, 
scalable, and efficient solution for early road defect detection, 
which can significantly impact road maintenance strategies and 
public safety worldwide. 

II. RELATED WORK 

Road defect detecting has garnered considerable attention in 
recent years due to its significance in maintaining infrastructure 
safety and functionality. A variety of approaches, ranging from 
traditional image processing methods to cutting-edge deep 
learning techniques, have been proposed to address the 
challenges posed by road defect identification in real-world 
scenarios. 

A. Maintaining the Integrity of Specifications 

Traditional computer vision techniques, such as edge 
detection algorithms, have been widely used for identifying 
structural discontinuities in road surfaces [10]. Methods like 
Sobel [11], Canny [12], and Laplacian filters [13] efficiently 
highlight features such as cracks and potholes by emphasizing 
abrupt changes in pixel intensity. While computationally 
efficient, these techniques often lack robustness in noisy 

environments or under varying lighting conditions. Nonetheless, 
edge detection remains a valuable preprocessing tool, as it helps 
reduce noise and isolate defect-prone regions, providing a 
foundation for more advanced classification models. 

B. Deep Learning in Road Defect Detection 

With the advent of deep learning, researchers have shifted 
focus toward convolutional neural networks (CNNs) for 
automated defect detection. For instance, the YOLO family of 
object detection models has shown remarkable capabilities in 
real-time applications. The RDD-YOLOv5 model integrates a 
self-attention mechanism to enhance the precision of crack 
detection, achieving a high mAP of 91.48% [14]. Similarly, BL-
YOLOv8, which incorporates BiFPN and LSK-attention, 
optimizes both accuracy and computational efficiency. By 
reducing model size and parameter volume, it becomes suitable 
for deployment in resource-constrained settings [15]. 

C. Attention Mechanisms 

Attention mechanisms have emerged as a powerful 
enhancement in deep learning models, enabling them to focus 
on the most relevant regions of an image. Studies combining 
attention mechanisms with ensemble learning methods have 
demonstrated significant improvements in road defect detection. 
For example, a multi-depth attention mechanism has been 
successfully employed to prioritize defect-specific features, 
achieving superior performance across diverse datasets [16]. 

These mechanisms are particularly effective when integrated 
into light-weight architectures, such as MobileNet, to improve 
performance without compromising efficiency. 

D. Transfer Learning and Lightweight Models 

Transfer learning has proven to be indispensable for road 
defect detection, especially in scenarios with limited annotated 
data. By fine-tuning pre-trained models like MobileNet, 
researchers can leverage knowledge learned from large-scale 
datasets to improve defect detection accuracy [17]. 
MobileNetV3, in particular, has gained attention for its 
lightweight architecture, making it ideal for real-time 
applications on mobile and edge devices[18]. Incorporating 
attention mechanisms into MobileNetV3 further enhances its 
ability to classify defects, even in challenging conditions with 
shadows or occlusions. 

E. Hybrid Approaches 

Hybrid methodologies that combine traditional image 
processing with deep learning represent a promising direction in 
road defect detection. For instance, edge detection can 
preprocess images to isolate potential defect regions, reducing 
noise and computational complexity before feeding the images 
into a CNN [19]. When coupled with attention-augmented 
architectures, these hybrid approaches strike a balance between 
efficiency and accuracy. This synergy allows the system to 
handle subtle defects, such as fine cracks, and more pronounced 
issues, like large potholes [20]. 

F. Recent Surveys and Challenges 

Comprehensive surveys have highlighted the current trends 
and challenges in road defect detection using deep learning. Key 
issues include the scarcity of large, labeled datasets, variations 
in environmental conditions, and the trade-off between accuracy 
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and computational efficiency [21]. To address these, researchers 
are exploring novel architectures, multi-task learning, and 
adaptive methods that enhance generalization across diverse 
road conditions. 

III. METHODOLOGY 

This section outlines the research methodology used in this 
study, focusing on data collection and preprocessing, the hybrid 
approach involving edge detection and an attention-augmented 
MobileNetV3 model, training procedures, and evaluation 
metrics. 

A. Data Description 

A diverse dataset of road surface images was compiled to 
include various defect types, such as cracks, potholes, and 
surface irregularities, captured under different environmental 
conditions, including variations in lighting, weather, and road 
textures. The images were sourced from high-resolution open-
access datasets like CRACK500 [22], supplemented with 
publicly available road damage datasets to enhance the 
collection. Efforts were made to ensure diversity by accounting 
for geographical and environmental variations, enabling the 
model to generalize effectively across different regions and 
conditions. The dataset was split into training (70%), validation 
(15%), and testing (15%) subsets to facilitate robust model 
training and evaluation. 

B. Preprocessing with Edge Detection 

Edge detection was applied to preprocess the road surface 
images, emphasizing defect-related features while reducing 
irrelevant noise. Popular edge detection algorithms, such as the 
Canny and Sobel methods, were employed to identify structural 
discontinuities. Among these, the Canny edge detection 
algorithm was chosen for its robustness in detecting edges across 
a wide range of conditions [23], particularly its ability to 
efficiently handle noise and preserve fine structural details (see 
Fig. 2). 

The Canny algorithm involves several steps, including: 

 Gaussian Smoothing: To reduce noise, the image is 
convolved with a Gaussian filter: 

G(x,y)= 
1

2πσ2
e

-
x2+y2

2σ2  

where σ is the standard deviation of the Gaussian kernel. 

 Gradient Magnitude and Direction: The intensity 
gradients are computed using partial derivatives in the x 
and y directions (often approximated using Sobel filters): 

M(x,y)=√(Gx
2+Gy

2) 

θ(x,y)=arctan(Gx/Gy) 

Where G𝑥 and G𝑦 are the gradients in the x and y directions, 

respectively. 

 Non-Maximum Suppression: Thin out edges by 
suppressing non-maximum gradient values in the 
direction of the gradient. 

 Double Thresholding and Edge Tracking: Apply two 
threshold values (σ ,T low and T high) to classify pixels 
as strong edges, weak edges, or non-edges. Weak edges 
connected to strong edges are retained. 

The edge-detected images served as additional input 
channels or as standalone images for training the deep learning 
model, depending on the experimental configuration. 

 
Fig. 2. Image processing workflow: original to grayscale via filter, then edge 

detectation with the canny algorithm. 

C. Model Architecture 

The hybrid approach integrated edge detection with a deep 
learning architecture based on MobileNetV3 enhanced with an 
attention mechanism, as shown in Fig. 3. 

 
Fig. 3. Summary of the proposed architecture. 

MobileNetV3: Selected for its lightweight architecture and 
efficiency, MobileNetV3 serves as the backbone for defect 
classification. 

Attention Mechanism: An attention module, such as SE-
blocks (Squeeze-and-Excitation) or CBAM (Convolutional 
Block Attention Module), was integrated into the network to 
dynamically weight critical features, enhancing the model's 
focus on defect-prone regions. 

Input Pipeline: The preprocessed (edge-detected) images 
were input into the MobileNetV3 model, with the attention 
mechanism applied at intermediate layers to improve feature 
representation shown in Fig. 4. 

The provided architecture integrates lightweight and 
efficient design with advanced attention mechanisms to enhance 
feature learning for crack detection. It employs SE (Squeeze-
and-Excitation) blocks [24] to improve channel-level attention 
by learning channel weights and CBAM (Convolutional Block 
Attention Module) [25], to refine spatial feature distribution. 
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The depthwise separable convolutions maintain computational 
efficiency while expanding the capacity for complex feature 
learning. Application-specific modifications ensure the 
receptive field captures both large and small cracks, with 
attention mechanisms suppressing irrelevant noise and 
amplifying crack-specific features. This robust pipeline achieves 
effective classification across four output classes. 

 
Fig. 4. The main layer architecture proposed for the hybrid MobileNet V3. 

D. Evaluation Metrics 

To evaluate the performance of the proposed approach, 
several metrics were employed, accompanied by their respective 
mathematical formulations. Accuracy (A) was used to measure 
the overall correctness of defect classification and is calculated 
as: 

A = 
TP + TN

TP + TN + FP + FN
 

where TP, TN, FP, and FN represent true positives, true 
negatives, false positives, and false negatives, respectively. 
Precision (P) and Recall (R) were utilized to assess the model's 
ability to accurately identify specific defect types. Their 
formulas are given by: 

P = 
TP

TP +FP
 ,       R = 

TP

TP +FN
 

The F1-Score (F1) was calculated to provide a harmonic 
mean of precision and recall, expressed as: 

F1 = 2 . 
P .  R

P + R
 

Finally, Inference Time (Ti) was measured to evaluate the 
computational efficiency and suitability for real-time 
applications, defined as the average time taken by the model to 
process a single input. These metrics collectively offer a 
comprehensive evaluation of the model's performance. 

E. Comparative Analysis 

The proposed hybrid model was benchmarked against a 
diverse set of approaches to comprehensively evaluate its 
effectiveness in defect detection. Among the baseline models, 
standalone MobileNetV3 and traditional edge detection-based 
techniques were used to establish a fundamental performance 
comparison. Additionally, the model was evaluated against 
state-of-the-art approaches, including advanced YOLO-based 
architectures and other attention-enhanced frameworks that are 
widely recognized for their robust performance in object 
detection tasks. The comparative analysis revealed that the 
integration of edge detection and attention mechanisms provided 
significant advantages, especially in scenarios where defects 
were subtle or obscured by complex environmental conditions, 
such as varying lighting, background clutter, or noise. This 
underscores the hybrid model's ability to deliver precise and 
reliable defect detection under challenging real-world 
conditions. 

F. Experimental Setup 

1) Hardware: The training and evaluation processes were 

conducted on a high-performance GPU-accelerated system 

equipped with an NVIDIA RTX 3080 GPU, ensuring efficient 

handling of computationally intensive tasks. For additional 

benchmarking, experiments were also validated on an NVIDIA 

Tesla V100 to assess scalability and performance consistency 

across different hardware. 

2) Frameworks: The hybrid model was implemented and 

trained using TensorFlow and PyTorch frameworks, chosen for 

their versatility and compatibility with GPU acceleration. 

TensorFlow facilitated efficient deployment pipelines, while 

PyTorch offered dynamic computation graph capabilities, 

enhancing model prototyping and debugging. 

3) Software tools: Data preprocessing was carried out using 

OpenCV for image manipulation tasks, such as resizing, 

filtering, and edge detection, and NumPy for efficient 

numerical operations. Visualization of training metrics and 

results was accomplished with Matplotlib and Seaborn 

libraries, ensuring clear and interpretable performance analysis. 

4) Dataset configuration: The dataset was split into 

training, validation, and test sets in a ratio of 70:20:10. Data 

augmentation techniques, including random rotation, flipping, 

and noise injection, were applied to enhance model robustness 

and mitigate overfitting. 

5) Hyperparameters: Key hyperparameters were carefully 

tuned to optimize model performance. The learning rate was set 

at 0.001 with a decay schedule to ensure gradual convergence. 

A batch size of 32 was used, balancing memory constraints and 

training efficiency. The Adam optimizer was employed for 

gradient updates due to its adaptability and convergence 

properties. 
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IV. RESULTS AND DISCUSSION 

In Fig. 5. The graphs demonstrate the strong performance of 
the hybrid model, with both training and validation accuracy 
rapidly improving to ~96% and stabilizing, while training and 
validation loss decrease significantly and plateau at low values 
(~0.2-0.3) by the end of 70 epochs. The minimal gap between 
training and validation metrics indicates excellent generalization 

and low overfitting, validating the model's robustness. These 
trends align with the quantitative results, showcasing high 
accuracy (96.2%), precision, and recall, as well as efficient 
inference time (18ms). The integration of edge detection and 
attention mechanisms clearly enhances feature extraction and 
model stability, making it well-suited for real-time crack 
detection tasks. 

 

Fig. 5. Training and validation accuracy and loss curve showing 90% accuracy, rapid convergence, trained over 70 epochs. 

The results in Table I, clearly highlight the superiority of the 
proposed hybrid model, which combines edge detection with 
MobileNetV3 enhanced by an attention mechanism. Achieving 
an outstanding accuracy of 96.2%, the hybrid model 
significantly outperforms the standalone MobileNetV3 (90.5%) 
and YOLOv5-based model (91.48%), demonstrating its ability 
to classify road defects with a high degree of reliability across 
various environmental and road conditions. This improved 
accuracy indicates the hybrid approach’s ability to better capture 
subtle and complex defect features, such as fine cracks and 
irregular textures, which are often missed by simpler models. 

TABLE I.  COMPARISON OF HYBRID MODEL, MOBILENETV3, AND 

YOLOV5 ON ACCURACY, PRECISION, RECALL, F1-SCORE, AND INFERENCE 

TIME 

Metric 
Proposed Model 

(Hybrid) 

Standalone 

MobileNetV3 

YOLOv5-

Based Model 

Accuracy (%) 96.2 90.5 91.48 

Precision (%) 94.8 88.9 92.1 

Recall (%) 95.6 89.2 91.3 

F1-Score (%) 95.2 89.0 91.7 

Inference Time 

(ms) 
18 15 22 

In addition to accuracy, the hybrid model excels in other key 
metrics. Its precision of 94.8% outshines both the MobileNetV3 
(88.9%) and YOLOv5-based (92.1%) models, indicating its 
ability to correctly identify road defects while minimizing false 
positives. Similarly, the hybrid model's recall of 95.6% 
demonstrates its effectiveness in detecting the majority of 
defects in the dataset, outperforming the MobileNetV3 (89.2%) 
and YOLOv5-based (91.3%) models in reducing false 
negatives. This balance between precision and recall is further 
reflected in its F1-score of 95.2%, a critical metric that 

consolidates both aspects, confirming the model’s ability to 
consistently and effectively detect road defects. 

Another important factor in real-time applications like road 
defect detection is computational efficiency. The hybrid model 
achieves an inference time of 18ms, slightly higher than 
MobileNetV3’s 15ms, but still well within the range required for 
real-time deployment and faster than the YOLOv5-based 
model’s 22ms. This result demonstrates the hybrid model's 
ability to maintain a strong balance between high detection 
performance and computational efficiency, making it suitable 
for practical, on-the-fly detection scenarios. 

The integration of edge detection and the attention 
mechanism is central to the hybrid model’s success. Edge 
detection improves feature extraction by focusing on boundaries 
and structures within images, helping the model better localize 
and identify defects like cracks and potholes. The attention 
mechanism, on the other hand, enhances the model's ability to 
prioritize relevant features in the input data while ignoring 
irrelevant or noisy information, leading to more robust 
predictions. Together, these components enhance the overall 
performance of MobileNetV3, making it significantly more 
effective compared to the standalone version. 

In summary, the hybrid model surpasses both MobileNetV3 
and YOLOv5-based models in accuracy, precision, recall, and 
F1-score, while maintaining competitive inference time suitable 
for real-time deployment. These results strongly validate the 
advantages of integrating edge detection and attention 
mechanisms into the MobileNetV3 architecture, enabling it to 
handle the diverse and challenging requirements of road defect 
detection with high reliability and efficiency. This combination 
of accuracy, generalizability, and computational efficiency 
positions the hybrid model as a superior solution for practical 
road defect detection applications. 
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V. CONCLUSION 

This study presented a hybrid approach combining edge 
detection with a MobileNetV3 architecture enhanced by an 
attention mechanism to address the challenge of road defect 
detection. The proposed model demonstrated superior 
performance compared to standalone MobileNetV3 and 
YOLOv5-based methods across key metrics, achieving an 
impressive accuracy of 96.2%, precision of 94.8%, recall of 
95.6%, and an F1-score of 95.2%. The integration of edge 
detection enabled the model to effectively capture fine-grained 
features such as cracks and boundaries, while the attention 
mechanism improved feature prioritization, resulting in 
enhanced robustness and generalizability. Additionally, the 
model maintained a competitive inference time of 18ms, making 
it highly suitable for real-time applications in road monitoring 
and maintenance. 

The results clearly validate the efficacy of the hybrid model 
in detecting various road defects under diverse environmental 
and surface conditions. Furthermore, the minimal gap between 
training and validation metrics demonstrated excellent 
generalization, with low overfitting, even in the presence of 
diverse datasets. This makes the model a practical and scalable 
solution for deployment in real-world scenarios. 

Future work could explore optimizing the model further by 
incorporating additional environmental scenarios, testing on 
larger datasets, or integrating more advanced preprocessing 
techniques. Overall, this study establishes the hybrid model as a 
robust, efficient, and accurate solution for road defect detection, 
contributing valuable insights for advancing automated road 
monitoring systems. 
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