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Abstract—The field of speech decoding is rapidly evolving, 

presenting new challenges and new opportunities for people with 

disabilities such as amyotrophic lateral sclerosis (ALS), stroke, or 

paralysis, and for those who support them. However, speech 

decoding is complex: it requires analysing brain waves, across 

spatial and temporal dimensions, before translating them into 

speech. Recent work attempts to recreate speech that is never 

physically spoken by analysing the brain Artificial-intelligence 

methods offer a breakthrough because they can analyse complex 

data, including EEG signals. This paper aims to decode imagined 

speech through training CNN, RNN, and XGBoost models on a 

suitable dataset consisting of recorded EEG signals. EEG from 23 

individuals is acquired from a public online dataset. These data 

are preprocessed, and the features are extracted using five 

different methods. After data acquisition, preprocessing is 

performed to ensure its readability to the proposed models. After 

that, five different feature extraction methods have been used and 

evaluated. Training and testing the proposed models are done 

after pre-processing and feature extraction to produce 

classification results. The proposed model involves CNN, LSTM, 

and XGBoost as classifiers to achieve an effective and robust 

speech decoding process. The ultimate result reflects on the 

accuracy with which the algorithms can regenerate speech from 

EEG signal analysis. The findings will advance speech-decoding 

research by showing the potential of hybrid deep-learning 

architectures for precise decoding of imagined speech from EEG 

signals. These advances have promising potential for creating non-

invasive communication systems to assist people with severe 

speech and motor disorders, thereby improving their quality of life 

and increasing the application scope of brain-computer interfaces. 
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I. INTRODUCTION 

Speech decoding is a recent field of investigation that aims 
to interpret neural activity into spoken or written words through 
the externalization of mental processes. It holds the potential for 
creating assistive communications devices for individuals with 
severe speech disorders. In neuro-rehabilitation, the recording of 
real-time brain activity during speech tasks can be used to 
facilitate improved recovery of individuals with speech 
disorders like ALS or stroke. Furthermore, it can contribute to 
the field of neuropsychology through a better understanding of 
how the brain interacts with language and communication [1]. 
Recent studies have been directed towards synthesizing speech 
directly from neural signals. Scientists have demonstrated 
encouraging outcomes in animal models and human subjects by 
decoding brain activity into speech at the phonemic or lexical 
levels. For instance, in a study [2], cortical recordings were 
taken from within the scalp, and speech was synthesized using 
neural networks. This method bypasses cranial invasions with 
the possibility of generating speech with audibility. Although in 

the early stages, this technology is a significant step towards 
creating real-time communication systems that may ultimately 
allow direct brain-to-brain speech communication. 

Electroencephalography (EEG) is a non-surgical technique 
of recording brain electrical activity and is frequently utilized in 
speech decoding research because of its better temporal 
resolution. EEG enables researchers to monitor neural activity 
in the course of tasks relating to speech and gives immediate 
information regarding brain activity. Nevertheless, EEG is 
confronted with certain drawbacks, including poor spatial 
resolution and potential interference caused by the movement of 
muscles when speaking [2]. A significant challenge to speech 
decoding involves the differences among subjects for neural 
coding of speech, resulting in substantial inter-subject variation. 
Moreover, the quality of EEG recordings often deteriorates due 
to high levels of noise, thus limiting their usefulness. To 
overcome these issues, research studies have focused on 
methods like data augmentation, improved preprocessing 
strategies, and combining EEG with more accurate 
neuroimaging modalities, such as magnetoencephalography 
(MEG) and electrocorticography (ECoG) [3]. 

While there has been significant advancement in EEG-based 
BCIs, the ability to synthesize continuous speech from brain 
signals is still in its very early stages. The majority of EEG 
studies focus on simpler tasks, i.e., phoneme, character, or object 
recognition, and not speech synthesis. Deep learning methods, 
specifically artificial neural networks (ANNs), have transformed 
speech processing through the introduction of the capability to 
automatically learn features from electroencephalogram (EEG) 
signals, thereby improving decoding accuracy [3]. 
Convolutional neural networks (CNNs) are utilized in 
identifying spatial features pertinent to speech processing in the 
brain, whereas recurrent neural networks (RNNs) [4] [5], 
specifically Long Short-Term Memory (LSTM) networks, are 
utilized in modeling the temporal dynamics of cerebral activity 
of speech [6]. RNNs help in decoding imagined and real speech 
by understanding the sequence of brain activity related to speech 
sounds, pauses, and transitions [7] [8]. Hybrid approaches that 
combine CNNs and RNNs have been developed to improve 
decoding by removing noise and handling both spatial and 
temporal speech features more effectively [9] [10]. 

Despite recent progress in EEG-based speech decoding, 
current research still faces challenges that limit practical 
application. These include small datasets, limited subject 
diversity, and inconsistent preprocessing techniques, which 
affect model reliability and generalizability. Moreover, many 
studies focus solely on spatial or temporal features, overlooking 
the full complexity of neural activity during imagined speech. 
To address these gaps, this study proposes a hybrid CNN-LSTM 
model combined with advanced preprocessing and feature 
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extraction methods. This approach aims to improve 
classification accuracy and enable the development of less 
invasive, real-time brain-computer interfaces (BCIs) that 
support effective communication for individuals with severe 
speech and motor disabilities. 

The remainder of this paper is organized as follows: Section 
II presents a review of related literature and highlights the 
existing research gaps. Section III details the research 
methodology, including data acquisition, preprocessing 
techniques, feature extraction, and model design. Section IV 
presents and analyzes the experimental results. Section V 
provides the conclusion of the study, and Section VI outlines 
potential directions for future work. 

II. LITERATURE REVIEW 

Translating speech from EEG patterns has not been widely 
explored; only a handful of studies have pursued the idea 
successfully [11]. However, there is an increasing interest in this 
area owing to its possible uses in brain-computer interfaces, 
speech generation for mute patients with conditions like ALS, 
stroke, or paralysis, as well as in the domain of neurolinguistics. 

As speech decoding and the involvement of deep learning 
technologies such as CNN and LSTM algorithms had provided 
a valuable field for research, several studies were published to 
investigate the potential of these algorithms in extracting 
meaningful speech from EEG signals. These studies also 
allowed the exploration of limitations in using CNNs and other 
technologies, such as signal quality and data availability. After 
the discussion of these studies, a table is presented showing a 
sum of the important takeaways from each study. 

Haresh M. V. et al. [12] wanted to facilitate the way patients 
with neuropathies communicate by proposing a brain computer 
interface based on EEG in order to classify brain states in the 
form of listening, speaking, imagined speech, and resting. The 
study used four different ML algorithms to analyze EEG data 
from 15 patients undergoing the previously mentioned states. 
EEG data preprocessing and segmentation took place before 
applying spatio-temporal and spectral analysis. In addition, five 
features from frequency and time-frequency domain were 
selected for classifying the four states. The experimental results 
showed that the algorithms vary in their performance when it 
comes to pair-wise and multi-class classifications. Random 
Forest algorithm achieved the highest results in pair-wise 
classification (94.6% accuracy), while Artificial Neural 
Networks (ANN) achieved the best performance in multi-class 
classifications (66.92%). 

Mokhles M. Abdulghani et al. [13] aimed to use EEG and 
deep learning technologies, specifically Long Short-Term 
Memory LSTM for interpreting brain activity during imagined 
speech. For this purpose, four adult patients were subjected to 
EEG data collection using an 8-channel headset. The data from 
these headsets was preprocessed where noise and artifacts were 
removed. After that, feature extraction took place. LSTM was 
trained and tested on this data and was able to classify the data 
with 92.5% accuracy, 92.7% precision, 92.5% recall, and an F1-
score of 92.62%. The proposed model was able to avoid 

misclassifications, where only six instances were misclassified 
out of a total 80 instances. Despite promising results, the study 
involved only four participants, limiting its generalizability. 

Kumar et al. [14] introduced a framework to recognize 
imagined speech at rest to predict digits, images, and other 
characters by EEG. The authors proposed a two-level 
framework, where initially a coarse-level classification takes 
place identifying the category of speech (text or non-text), while 
another fine-level classification identifies the class within the 
category (such as a character or a digit within the text category). 
The dataset involved data collected from 23 adult university 
students, where EEG was recorded using Emotiv EPOC+ 
wireless sensor. Then, removing noise and artifacts from the 
collected data took place using a Moving Average (MA) filter. 
Standard Deviation (SD), Root Mean Square (RMS), Sum of 
Values (SUM), and Energy (E) were used to extract relevant 
features in order to train and test the Random Forest model (RF). 
RF was able to perform the coarse-level classification with 
85.2% average accuracy (varying between images, characters, 
and digits and between brain lobes), while performing the fine-
level classification with 67.03% average accuracy. 

Yasser F. Alharbi et al. [15] proposed a hybrid DL model 
combining 3D-CNNs and Recurrent Neural Networks (RNN) in 
order to classify unspoken English words based on 
spatiotemporal features. A publicly available dataset was used, 
where EEG data was collected from 15 individuals using Brain 
AMP device. After acquiring the EEG data, the signals were 
transformed into topographic brain maps which were 
normalized to ensure a consistent input. 80% of the data was 
used for training the model whereas 20% was used for testing tis 
performance. Specifically, the proposed method involved the 
following models: 3DCNN-LSTM, 3DCNN-StackLSTM, and 
3DCNN-BiLSTM. These three models were evaluated based on 
their classification on three experimental set-ups (word-pair 
classification, 3-class classification, and 5-class classifications). 
The results showed that, both 3DCNN-BiLSTM and 3DCNN-
LSTM took turns in surpassing each other in terms of accuracy. 
All in all, 3DCNN-BiLSTM achieved the highest accuracy in 
word-pair classification (77.8%), whereas 3DCNN-StackLSTM 
had the best results in multi-class classifications. 

A summary of the above-mentioned works, is represented in 
Table I, where the type of models, the dataset and the achieved 
results are shown for each work. 

A. Gaps in Literature Review 

Decoding speech from EEG signals has come a long way but 
still encounters several challenges posing as obstacles toward 
successful speech regeneration. 

EEG signals are contaminated and therefore extracting 
information on specific speech is complex and requires 
advanced filtering, modeling, and feature extraction 
mechanisms. In addition, datasets that are useful in these types 
of studies are limited, which in turn limits the generalizability of 
the model. One of the challenges also presents itself as the need 
for a considerable amount of time intervals, which might be 
resolved by the involvement of special hardware. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 4, 2025 

851 | P a g e  

www.ijacsa.thesai.org 

TABLE I.  SUMMARY OF RELATED WORK 

Authors Title Year Model Dataset Accuracy 

Haresh M. V. et al. [12] 
“Towards imagined speech: Identification of brain states from 

EEG signals for BCI-based communication systems” 
2025 RF, ANN 15 individuals 

RF:94.6% 

ANN:66.92% 

Mokhles M. Abdulghani 

et al. [13] 
“Imagined Speech Classification Using EEG and Deep Learning” 2023 LSTM 4 individuals 92.5% 

Kumar et al. [14] “Envisioned speech recognition using EEG sensors” 2018 RF 23 individuals 
Coarse level: 85.2% 

Fine level: 67.03% 

Yasser F. Alharbi et al. 

[15] 

“Decoding Imagined Speech from EEG Data: A Hybrid Deep 

Learning Approach to Capturing Spatial and Temporal Features” 
2024 

3DCNN-

LSTM 
15 individuals 77.8% 

 

After the careful reviewing of several studies in the 
literature, the following gaps emerge: 

1) Generalizability: By relying on limited datasets, most of 

the studies achieve low accuracies, and those who achieve high 

accuracies fail in the generalizability test as a result of limited 

subject pools. 

2) Exploration of hybrid architecture: The involvement of 

hybrid architectures in decoding speech from EEG is not a very-

well explored field, where the studies that did explore some 

options for hybrid models failed to explore the true potential by 

applying it to diverse datasets. 

To address these gaps, our study will leverage a CNN-LSTM 
hybrid architecture, with a comparative analysis of multiple 
EEG dataset preprocessing techniques to identify optimal 
approaches for improving imagined speech recognition. The 
difference between the current work and previous works is not 
only in the algorithms used, but also in relying on a larger dataset 
that would reflect positively on the generalizability of this study, 
and would offer a better insight into the general task of speech 
decoding by extracting features from more individuals and 
performing a more thorough training process. 

In contrast, our work addresses these challenges directly by 
introducing a delta-band preprocessing strategy that 
significantly enhances noise robustness—one of the most 
pressing issues in EEG signal decoding. Furthermore, our hybrid 
CNN-LSTM architecture processes raw EEG data without 
relying on handcrafted features, enabling the model to 
automatically learn rich spatial and temporal patterns. This not 
only improves classification performance across imagined 
speech classes but also makes our system lightweight and 
adaptable to affordable EEG headsets like the Emotiv EPOC+. 
Consequently, our proposed method offers a more practical, 
efficient, and robust solution compared to existing approaches 
in the field. 

The current study excels previous research by employing 
optimized CNN-LSTM architectures, advanced preprocessing, 
and real-time operation. Unlike previous research that 
experienced poor signal quality issues, scarcity of data, and 
computational incompetence, our model enhances 
generalization through Transfer Learning and data 
enhancement. By employing advanced denoising and feature 
extraction, we enhance classification accuracy without 
compromising on preprocessing simplicity. Our system is also 
real-world deployable, offering a valuable Brain-Computer 
Interface (BCI) that is superior on parameters of accuracy, 
resilience, and usability compared to previous research. 

III. RESEARCH METHODOLOGY 

The methodology that we propose in this study follows the 
same hierarchy as other studies. Our main objective is to 
evaluate the performance of ML models, namely XGBoost and 
a combination of CNN with LSTM algorithms in their capacity 
of decoding speech based only on recorded EEG signals. A 
visual representation of the steps undergone to achieve this 
objective is demonstrated in Fig. 1. 

 
Fig. 1. Workflow of the proposed methodology. 

The methodology kicks off with the acquisition of a dataset 
suitable for the purpose, where EEG signals have already been 
recorded to be used publicly. After acquiring the dataset, 
preprocessing is a necessary step to enhance the quality of data 
and make it ready for feature extraction and use by the proposed 
algorithms. After feature extraction, the data is used to train 
XGBoost and CNN-LSTM classifiers to decode speech, based 
on which their performance will be evaluated taking into 
consideration several evaluation metrics. 

A. Dataset 

A public “envisioned speech” dataset was acquired online, 
where it consists of recordings for 23 individuals between 15 
and 40 years old [16]. The EEG recordings were acquired 
through Emotiv EPOC+ wireless neuro headset consisting of 14 
channels where the recording frequency was at 2048 Hz before 
it was reduced to 128 Hz. The 14 channels are named AF3, AF4, 
F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1 and O2. 

The procedure by which these data were recorded started by 
placing a screen in front of the participant and presenting an 
object on the screen. After that, the participant closes his eyes 
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and is asked to imagine this presented object without looking at 
it for 10 seconds. A break of 20 seconds is then given. This break 
ensures that the participant is rested between the displayed 
objects and is ready to receive a new object. This process is 
continued for three prompts from which the EEG data are 
collected. The three categories involve different types of objects. 
For instance, category 1 is made up of digits from 0 to 9, 
category 2 is made up of 10 uppercase English alphabets 
particularly A, C, F, H, J, M, P, S, T, Y, and finally category 3 
consists of daily-life objects such as apple, mobile, dog, rose, 
tiger, wallet, gold, watch, car, and scooter. These categories 
make up for a recording of total 230 recording (23*10) in each 
category. Hence, three categories were used, comprising10 
classes each. 

Table II provides a detailed overview of the public 
"Envisioned Speech" dataset. 

TABLE II.  DATASET’S STRUCTURE AND COMPOSITION 

Attribute Details 

Source Public “Envisioned Speech” Dataset 

Participants 23 individuals (aged 15–40) 

EEG Device 
Emotiv EPOC+ Wireless Neuro 
Headset 

Channels 
14 (AF3, AF4, F3, F4, F7, F8, FC5, 

FC6, T7, T8, P7, P8, O1, O2) 

Sampling Rate 2048 Hz (downsampled to 128 Hz) 

Recording Procedure 
Participants imagine an object after 
viewing it on a screen for 10 seconds, 

followed by a 20-second break 

Total Categories 3 

Categories & Classes  

- Category 1: Digits (0–9) 230 recordings (23×10) 

- Category 2: Uppercase Letters 

(A, C, F, H, J, M, P, S, T, Y) 
230 recordings (23×10) 

- Category 3: Objects (apple, 
mobile, dog, rose, tiger, wallet, 

gold, watch, car, scooter) 

230 recordings (23×10) 

Total Recordings 690 (3 categories × 230 recordings) 

B. Data Preprocessing 

The recorded EEG files were read in the form of (.edf) as 
they are usually stored in this form. The channels 2 till 15 were 
specifically selected for extraction and scaling. Furthermore, in 
order to make the data uniform in terms of input size, each 
sample was resized to 1280 data points. 

C. Feature Extraction 

In this study, five different feature extraction methods were 
used for evaluation, these methods are namely Sliding Window, 
Theta Band Processing, Delta Band Processing, Beta Band 
Processing, and Alpha Band Processing. 

To elaborate, the sliding window method with a window size 
32 data points and 8 strides was applied resulting in small 
segments that overlap between the samples. On the other hand, 
the band processing methods were used to filter the EEG signals 
based on their frequency. For instance, the Alpha band 

processing filtered EEG signals to extract the frequency between 
7 and 15Hz, whereas Beta band processing filtered the 15 to 
31Hz band frequency, Theta band processing filtered the signals 
between 4 and 7Hz frequency, and finally the Delta band 
processing filtered the bands with less than 4Hz frequency. 

D. Models 

As for the models that were used for capturing the deep EEG 
features, this study proposes CNN and LSTM algorithms. 

Deep learning DL is one of the greatest advancements in the 
technological era as it poses as a solution to many modern 
problems. The unique qualities of deep learning have made it a 
significant topic for research. The emergence of this 
advancement started by the publication of a study by Hinton and 
Salakhutdinov [17] back in 2006 demonstrating the capabilities 
of Artificial Neural Networks ANN and their “depth” among the 
ML technologies. That study highlighted the ability of ANNs to 
learn with the help of its numerous hidden layers, and how this 
ability can be enhanced by the incorporation of additional 
hidden layers, thus increasing its “depth”. The term deep 
learning basically stems from this explanation of the depth of the 
network, where it allows the network to execute more complex 
tasks and perform significantly better in large datasets. 

In the following section, the focus will be on CNNs and their 
specific features and structure. We will discuss the most popular 
CNN architectures as a background before introducing 1D-
CNNs which are one of the latest advancements in DL, focusing 
on 1D signal and data repositories. The choice fell on 1D-CNNs 
as opposed to 2D-CNNs since they are compact and more 
adaptive, thus offering more advantages than 2D-CNNs. 

1) CNN: One of the most popular models among modern 

deep learning models is the Convolutional Neural Network 

CNN. CNN is an artificial neural network made up of several 

layers and can run a specialized mathematical linear operation 

called convolution, hence the name convolutional neural 

network. Therefore, instead of a general matrix multiplication, 

CNN involves convolution in at least one of its layers [18]. In 

fact, the general architecture of CNN involves a convolutional 

layer, pooling layers, and a fully connected layer. The CNN is 

characterized by learning to extract complex attributes 

automatically, where the convolutional layer represents the 

attribute [19]. 

The Convolutional Neural Network (CNN) model processes 
EEG signals by prioritizing the extraction of spatial features 
from brain activity data. The EEG signals, after preprocessing, 
are structured as time-series data before being fed into the CNN. 

Key Processing Steps: 

Feature Extraction: The CNN uses convolutional layers to 
detect spatial features within the EEG signals. 

Dimensionality Reduction: Pooling layers are employed to 
reduce data complexity while preserving essential features. 

Significance of Spatial Features: These extracted features 
help identify crucial brain activity regions linked to imagined 
speech. 
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Classification: The processed features are passed through 
fully connected layers, which ultimately label the EEG signals 
into distinct speech categories. 

2) 1D-CNN: 1DCNNs differ from 2DCNNs which only 

deal with 2D images and videos in its flexibility with handling 

data. In fact, 1DCNN or 1Dimensional Convolutional Neural 

Network is a modified version of the original 2DCNN [20][21]. 

Some studies described 1DCNN to be more advantageous than 

2DCNN for the following reasons: 

a) FP and BP in 1D CNNs need simple array operations 

for functioning rather than complex ones. This results in less 

computation complexity in 1DCNN than 2DCNN. 

b) 1DCNN has a simpler structure comprising less 

hidden layers and neurons that 2DCNN, and they are capable 

of processing 1D signals with ease. This also makes 1DCNN 

much easier to train. 

c) 1DCNN does not require special hardware setups, a 

simple CPU implementation over a standard computer is 

enough to ensure an effective and fast training of the 1DCNN 

structure, especially with few layers and neurons. 

d) 1D-CNNs enable real-time, low-cost applications and 

can even run on mobile devices. 

e) 1DCNNs also can function on limited labeled data and 

high signal variations. 

In the 1DCNN structure, there exist two types of layers, 
namely the “CNN layers” and the “MLP layers”. The CNN 
layers consist of 1D convolutions and pooling layers, whereas 
the MLP layers consist of typical fully-connected layers. 

3) RNN: Recurrent Neural Networks RNNs are structures 

that can process sequential data by capturing information about 

previous input data through hidden layers. Three different 

layers form the basis of RNN and these layers are the input 

layer, the hidden layer, and the output layer. RNNs are not 

feedforward networks, instead, the information can cycle 

between the layers in a recurrent form. The way RNNs function 

is by obtaining an input vector “𝐱𝑡” at a specific time step “𝑡”, 

then the hidden state is update using the following formula: 

 h𝑡 = 𝜎ℎ(W𝑥ℎx𝑡 +Wℎℎh𝑡−1 + bℎ) (1) 

In this equation, the weight matrix between the first (input) 
and second (hidden) layer is represented by W𝑥ℎ, whereas Wℎℎ 
represents the weight matrix among the recurrent connection. bℎ 
represents the bias vector, and 𝜎ℎ  represents the activation 
function which can either be the hyperbolic tangent function 
(tanh) or the rectified linear unit (ReLu).  

On the other hand, the output resulting in each time step can 
be computed with the following formula: 

 y𝑡 = 𝜎𝑦(Wℎ𝑦h𝑡 + b𝑦) 

In this case, Wℎ𝑦  represents the weight matrix between the 

second (hidden) and the third (output) layer, b𝑦 represents the 

bias vector, and 𝜎𝑦 represents the activation function relative to 

the output layer. 

The basic architecture of an RNN structure can be depicted 
in Fig. 2, demonstrating input layer, hidden layers, and output 
layer where predictions take place. 

 
Fig. 2. General Architecture of RNN [22]. 

4) LSTM: One of the RNN models that are capable of 

processing sequential data of temporal order is the LSTM [23]. 

In fact, LSTM is highly effective in processing textual data as 

well as relational data. In this study, LSTM was specifically 

integrated with CNN model in order to achieve an enhanced 

classification performance by using the EEG temporal 

dependencies to complement the spatial features from CNN. 

When previous convolutions and time distributions 
operations are performed, the resulting input “𝑌” is split into N 
LSTM time steps denoted as “t”, where N provides the best 
results. Whenever a time step is due, two inputs are taken by the 
LSTM layer. One of the inputs is “𝑥(𝑡)” which denotes the 
current input vector, and the other is “𝛼(𝑡 − 1)” which denotes 
the previously hidden state. Both these inputs are used to 
compute 3 gates, namely the forget gate, the update gate, and the 
candidate memory. 

EEG signals are inherently temporal, meaning the data 
sequential nature and time dependencies are critical for 
understanding brain activity. LSTMs excel at capturing these 
long-term dependencies, which makes them ideal for this 
application. 

By combining LSTM with CNN, our model leverages both 
spatial and temporal features of the EEG data. 

The unidirectional LSTM layer which is applicable in our 
model is described in the Eq. (8) [24]: 

      𝑓𝑟(𝑡) = 𝜎(𝑊𝑓[𝛼(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑓)             (3) 

      𝑢𝑟(𝑡) = 𝜎(𝑊𝑢[𝛼(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑢)             (4) 

     �̃�(𝑡) = tanh(𝑊𝑐[𝛼(𝑡−1),𝑥(𝑡)] + 𝑏𝑐)              (5) 

    𝑐(𝑡) = 𝑓𝑟(𝑡) ⊙ 𝑐(𝑡 − 1) + 𝑢𝑟(𝑡) ⊙ �̃�(𝑡)        (6) 

      𝑜𝑟(𝑡) = 𝜎(𝑊𝑜[𝛼(𝑡−1),𝑥(𝑡)] + 𝑏𝑜)             (7) 
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       𝛼(𝑡) = 𝑜𝑟(𝑡) ⊙ tanh(𝑐(𝑡))                (8) 

In this equation, the forget gate is represented by 𝑓𝑟(𝑡), the 

update gate is represented by 𝑢𝑟(𝑡), and the candidate memory is 

represented by 𝑐(𝑡)˜ . In addition, the new memory is denoted by 
𝑐(𝑡), the output gate is denoted by 𝑜𝑟(𝑡), and the hidden state is 

denoted by 𝛼(𝑡). Finally, the weight matrix is represented by 
𝑊i, whereas the bias vector is represented by 𝑏i. 

The architecture of the LSTM network applied in this study 
is depicted in Fig. 3. 

 

Fig. 3. Architecture of applied LSTM [25]. 

The Long Short-Term Memory (LSTM) model is developed 
to learn temporal relationships within EEG signals. Due to the 
sequential nature of EEG, LSTM is provided with sequence-
arranged brain activity, either natively or after extraction using 
CNN layers. The sequence is analyzed by the LSTM framework 
along with memory cells that retain meaningful patterns but 
forget meaningless noises. By modeling temporal evolution of 
activity within the brain, LSTM helps improve decodable timing 
and evolution of imagination of speech. The result is structured 
classification of neural activity that corresponds to discrete 
portions of speech that can enhance decodable outcomes. 

In order to be able to perform multi-class classifications, the 
resultant LSTM layer is integrated into the previous CNN-1D 
architecture and is then passed through a dense neural network 
before a SoftMax function is applied, as shown in Fig. 4. 

 
Fig. 4. General architecture of the proposed CNN-LSTM network. 

Merging the two architectures, CNN-LSTM Hybrid Model 
benefits from spatial feature extraction and temporal feature 
extraction capabilities of each of its component architectures to 
yield better performance. The input EEG is pre-processed by the 
CNN, which extracts spatial features by finding key activation 
patterns throughout diverse areas of the brain. The features that 
have been spatially enriched are passed on to the LSTM, where 
sequential relationships between diverse time steps of brain 
activity are learned. The process of hybridizing makes 
classification of imagined speech better by considering spatial 
distribution along with temporal evolution. The result is an 
optimized classification that is better compared to standalone 
CNN or LSTM architectures. 

The CNN-LSTM Hybrid Model improves EEG-based 
speech decoding by leveraging CNNs for spatial feature 
extraction and LSTMs for temporal pattern learning. CNNs 
detect key activation patterns in different brain regions, making 
them effective in identifying spatial features of imagined speech 
[26], [27]. However, since EEG signals also have sequential 
dependencies, LSTMs enhance performance by capturing the 
time-evolving nature of neural activity [13]. Studies confirm that 
CNN-LSTM models consistently outperform standalone 
architectures, achieving higher classification accuracy, 
sometimes exceeding 90% [28]. This hybrid approach 
strengthens non-invasive BCI applications, improving precision 
in decoding imagined speech. 

5) XGBoost: XGBoost is a machine-learning algorithm 

known for its strong performance on complex classification 

tasks [29]. What provides XGBoost with good qualities is its 

ability to handle outliers in the dataset as well as noise that 

might be found in datasets, particularly EEG signals datasets. 

In addition, XGBoost is highly capable of analyzing 

unbalanced datasets with the use of functions such as weighted 

loss and subsampling techniques. 

XGBoost is a machine learning algorithm that takes feature-
processed EEG input and makes use of gradient-boosted 
decision trees to predict the classification of the signals. 
Contrasting with deep learning-based models that learn temporal 
and spatial features of raw input, XGBoost makes use of pre-
determined statistical and frequency-based features of EEG 
signals. The algorithm iteratively assigns weights to features to 
improve classification performance by minimizing errors stage 
by stage. The result is a class label of imagined speech category 
that is an alternative, computationally effective approach to 
speech decoding [29]. The graphical scheme of XGBoost model 
is represented in Fig. 5. 

 

Fig. 5. Graphical scheme of XGBoost model [30]. 
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IV. RESULTS 

Electroencephalography (EEG) is one of the core methods in 
brain activity studies, especially in imagined speech tasks with 
cognitive processes. The system was designed to classify EEG 
signals from 23 subjects into three classes: digits, English 
alphabets in uppercase, and objects in everyday life. It involved 
EEG signal preprocessing, feature extraction, and the 
application of a number of models, including a CNN-LSTM 
model and an XGBoost classifier. The models' performance, by 
implementing a few preprocessing techniques (Sliding 
Windows, Delta, Theta, Alpha, Beta), is verified in this work. 
The results confirm that the CNN-LSTM model performs better 
than the XGBoost classifier on all classes and that the optimal 
performance is attained by preprocessing through delta band. 
These results emphasize the effect of signal processing on 
classification accuracy and the necessity of choosing proper 
frequency bands for EEG data analysis. 

Fig. 6 demonstrates the EEG signals for a single sample from 
the "digits" dataset. The data consists of signals recorded from 
14 EEG channels, which are displayed as individual subplots in 
the figure. The x-axis represents the time in samples, while the 
y-axis shows the signal amplitude in microvolts (μV). This 
visualization provides insight into the temporal dynamics and 
amplitude variations of brain activity while the participant 
imagines speech corresponding to numerical digits. Each 
subplot is labeled by the EEG channel index, and the overall 
label for the sample is displayed in the figure title. 

These techniques were applied to process the EEG files: 
Sliding Window, Delta, Theta, Alpha, and Beta, as a result of 
the pre-processing stage. Each technique we used is allocated a 
data set and is divided into training and testing. That is, we 
copied the dataset several times and applied the processing 
techniques each one to a copy of the data set. At each time, it 
was divided into testing and training. We then compared each 
method and see which method is the best for the processing of 
EEG files. 

A. Overall Performance Comparison 

Table III shows the overall performance of two classifiers 
(XGBoost and CNN-LSTM) on three categories: Digits, Chars, 
and Images. In all three categories, the CNN-LSTM model 
outperforms the XGBoost classifier consistently in precision, 
recall, F1-score, and accuracy. In particular, CNN-LSTM 
performs extremely well with sliding windows and delta band 
preprocessing, achieving an F1-score of 0.92 for Digits, 0.93 for 
Chars, and 0.94 for Images. These findings demonstrate the 
ability of the CNN-LSTM model in capturing spatial and 
temporal features in EEG signals. 

In contrast, the performance of the XGBoost model is far 
worse, particularly for the high-frequency band preprocessing 
scenarios (Theta, Alpha, and Beta), in which the F1-scores drop 
to as low as 0.14 for Digits and Chars, and 0.16 for Images. 
While delta band preprocessing improves XGBoost's 
performance, lifting the F1-score to 0.77 for Digits and Chars, 
and 0.76 for Images, it still lags behind the CNN-LSTM model, 
which has a high and consistent performance across all classes. 

In general, the results point to the significance of both 
preprocessing methods and model architecture, wherein CNN-

LSTM with sliding windows and delta band processing provides 
the optimal performance in EEG signal classification. 

 

Fig. 6. EEG signal visualization for digits. 

TABLE III.  OVERALL PERFORMANCE COMPARISON 

Algorithm 
Data 

Folder 
Preprocessing Method 

F1-Score 

(Macro Avg) 

XGBoost Digits Sliding Windows 0.52 

XGBoost Digits Sliding Windows + Delta 0.77 

XGBoost Digits Sliding Windows + Theta 0.14 
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XGBoost Digits Sliding Windows + Alpha 0.18 

XGBoost Digits Sliding Windows + Beta 0.19 

XGBoost Chars Sliding Windows 0.19 

XGBoost Chars Sliding Windows + Delta 0.76 

XGBoost Chars Sliding Windows + Theta 0.15 

XGBoost Chars Sliding Windows + Alpha 0.16 

XGBoost Chars Sliding Windows + Beta 0.19 

XGBoost Images Sliding Windows 0.49 

XGBoost Images Sliding Windows + Delta 0.76 

XGBoost Images Sliding Windows + Theta 0.16 

XGBoost Images Sliding Windows + Alpha 0.19 

XGBoost Images Sliding Windows + Beta 0.20 
    

CNN-LSTM Digits Sliding Windows 0.92 

CNN-LSTM Digits Sliding Windows + Delta 0.92 

CNN-LSTM Digits Sliding Windows + Theta 0.40 

CNN-LSTM Digits Sliding Windows + Alpha 0.44 

CNN-LSTM Digits Sliding Windows + Beta 0.72 

CNN-LSTM Chars Sliding Windows 0.92 

CNN-LSTM Chars Sliding Windows + Delta 0.93 

CNN-LSTM Chars Sliding Windows + Theta 0.48 

CNN-LSTM Chars Sliding Windows + Alpha 0.48 

CNN-LSTM Chars Sliding Windows + Beta 0.72 

CNN-LSTM Images Sliding Windows 0.93 

CNN-LSTM Images Sliding Windows + Delta 0.94 

CNN-LSTM Images Sliding Windows + Theta 0.44 

CNN-LSTM Images Sliding Windows + Alpha 0.56 

CNN-LSTM Images Sliding Windows + Beta 0.63 

B. Top Performance in EEG Digits Classification 

Fig. 7 illustrates the model's performance in terms of 
accuracy and loss over 150 epochs. 

 The Model Accuracy graph shows a steady increase in 
both training and validation accuracy, which is a sign of 
effective learning by the CNN-LSTM model. Initially, 
the model's accuracy is quite low, but it progressively 
improves, stabilizing at a high value around 90% by the 
100th epoch. 

 The Model Loss graph demonstrates a corresponding 
decrease in loss for both training and validation, which 
further indicates that the model is converging towards an 
optimal solution. 

 The train accuracy (blue line) outperforms the validation 
accuracy (orange line) slightly, which is typical of well-
trained models, but there is no significant overfitting as 
both curves tend to follow similar trends. 

 The loss for both training and validation data decreases 
steadily, showing the model is learning to minimize the 
error. 

 
Fig. 7. Model accuracy and Model loss of CNN-LSTM model with sliding 

windows and delta band preprocessing for EEG digits classification. 

Fig. 8 presents the confusion matrix for the CNN-LSTM 
model with sliding windows and delta band preprocessing 
applied to EEG Digits Classification. The matrix shows how 
well the model classifies each digit (0–9), with the true labels 
displayed on the vertical axis and the predicted labels on the 
horizontal axis. Each cell in the matrix indicates the number of 
instances where a digit was predicted as a particular label. The 
majority of values lie along the diagonal, which is expected, 
indicating that the model correctly predicted most of the digits. 
For example, 689 instances of the digit 0 were correctly 
classified as 0, and similarly, 646 instances of the digit 9 were 
correctly predicted. There are a few off-diagonal values, such as 
13, where digit 0 was misclassified as digit 1, or 22, where digit 
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9 was misclassified as digit 7, suggesting occasional 
misclassifications but generally high accuracy. The presence of 
mostly dark blue colors along the diagonal signifies that the 
model performs exceptionally well in distinguishing between 
digits, with relatively few errors overall. 

 
Fig. 8. Confusion matrix of CNN-LSTM model with sliding windows and 

delta band preprocessing for EEG digits classification. 

C. Top Performance in EEG Chars Classification 

Fig. 9 illustrates the Model Accuracy and Model Loss over 
150 epochs for the CNN-LSTM model with sliding windows 
and delta band preprocessing applied to EEG Chars 
Classification. 

 The Model Accuracy graph demonstrates a steady 
increase in both training and validation accuracy, with 
the training accuracy (blue line) consistently 
outperforming the validation accuracy (orange line). 
This indicates that the model is effectively learning, 
achieving an accuracy of around 92% by the end of 
training. 

 In the Model Loss graph, both training and validation 
losses decrease significantly, which is a sign of the 
model's ability to reduce errors over time. The loss 
stabilizes at a lower value, suggesting that the model is 
fitting well to the data. There is a slight gap between 
training and validation loss curves, with validation loss 
(orange) being slightly higher, indicating minor 
overfitting, though it does not significantly affect the 
model's overall performance. 

Fig. 10 presents the confusion matrix for the CNN-LSTM 
model with sliding windows and delta band preprocessing 
applied to EEG Chars Classification. The matrix shows the 
performance of the model in classifying the ten uppercase 
English characters (A, C, F, H, J, M, P, S, T, Y). The true labels 
are on the vertical axis, while the predicted labels are on the 
horizontal axis. Most of the values are concentrated along the 
diagonal, indicating that the model correctly predicted most of 
the characters. For example, the model accurately classified 673 
instances of 'A' as 'A', 680 instances of 'H' as 'H', and 658 
instances of 'Y' as 'Y'. 

 
Fig. 9. Model accuracy and model loss of CNN-LSTM model with sliding 

windows and delta band preprocessing for EEG chars classification. 

However, there are a few off-diagonal values, such as 13 
instances where 'C' was misclassified as 'H', or 8 instances where 
'S' was misclassified as 'P'. These off-diagonal misclassifications 
are relatively small compared to the correctly classified 
instances, showing that the model is highly accurate in 
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classifying the characters. The dark blue colors along the 
diagonal suggest strong performance, with relatively few errors 
across the categories. This confirms the model's ability to 
distinguish between different characters with high accuracy, 
aided by the delta band preprocessing technique. 

 
Fig. 10. Confusion Matrix of CNN-LSTM model with sliding windows and 

delta band preprocessing for EEG Chars Classification. 

D. Top Performance in EEG Images Classification 

Fig. 11 illustrates the Model Accuracy and Model Loss over 
150 epochs for the CNN-LSTM model with sliding windows 
and delta band preprocessing applied to EEG Images 
Classification. 

 The Model Accuracy graph shows a clear upward trend 
for both training (blue line) and validation (orange line) 
accuracy, with the training accuracy remaining slightly 
higher than the validation accuracy. By the end of 
training, the model achieves an impressive accuracy of 
around 97%, reflecting its ability to learn effectively 
from the EEG image data. 

 In the Model Loss graph, both training and validation 
losses decrease steadily, which is indicative of the model 
successfully reducing the error as it progresses through 
the epochs. However, there is a slight gap between the 
training and validation loss curves, with the validation 
loss being slightly higher, suggesting a minor degree of 
overfitting. Despite this, the model still performs well, as 
evidenced by the low final loss values. 

Fig. 12 shows the confusion matrix for the CNN-LSTM 
model with sliding windows and delta band preprocessing 
applied to EEG Images Classification, where the model 
classifies various objects, including apple, car, dog, gold, 
mobile, rose, scooter, tiger, wallet, and watch. The matrix 
reveals a high degree of accuracy in the model’s predictions, as 
evidenced by the dark blue color along the diagonal, which 
represents correct classifications. For example, the model 
correctly classified 690 instances of "apple," 680 instances of 
"dog," and 700 instances of "tiger." 

 
Fig. 11. Model accuracy and model loss of CNN-LSTM model with sliding 

windows and delta band preprocessing for EEG images classification. 

There are only a few off-diagonal entries, i.e., "apple" 
classified as "car" or "wallet" classified as "tiger." These are 
minor compared to the correct classifications, showing the 
model's high performance in distinguishing between the 
different object classes. The overall pattern is that the model 
generalizes well, with minimal confusion between the classes, 
confirming the value of the preprocessing step for improving 
classification accuracy. 
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Fig. 12. Confusion matrix of CNN-LSTM model with sliding windows and 

delta band preprocessing for EEG images classification. 

E. Impact of Preprocessing Methods 

Selection of preprocessing techniques significantly 
influences the effectiveness of classification in EEG. Filter 
operations, artifact removal, and frequency band extraction each 
have particular effects on the quality of input data and, therefore, 
the model's ability to learn discriminative patterns. For instance, 
delta band preprocessing (0–4 Hz) tends to yield better 
performance as it possesses a high signal-to-noise ratio (SNR) 
and is less sensitive to noise, which is more appropriate to 
capture stable and fundamental brain activity. In contrast, 
preprocessing methods for higher-frequency bands (e.g., theta, 
alpha, beta) are prone to higher noise and variability and 
therefore lead to inferior classification performance. 
Additionally, advanced preprocessing techniques like sliding 
windows and delta-based feature extraction enhance temporal 
resolution and feature salience, again increasing model 
performance. 

F. Results and Discussion 

Comparing our results on the EEG classification work to 
Kumar et al.'s paper, our method is superior to their method. 
Kumar et al. have obtained 67.03% fine-level accuracy with an 
RF classifier on EEG data for 23 subjects with 30 classes as 
digits, characters, and object images. Although their approach 
showed some promise, the use of the RF classifier restricted the 
model from effectively capturing the intricate temporal 
relationships within EEG signals, which are important for fine-
level classification. 

On the other hand, we employed a CNN-LSTM model with 
delta band preprocessing and sliding windows, which is most 
appropriate to process sequential EEG data and learn complex 
patterns along the time dimension. CNN-LSTM models are 
expected to perform well in such tasks since they learn 
hierarchical features directly from raw EEG and this provides a 
major edge over conventional machine learning models like RF. 
Our method is far more able to generalize and generate correct 
classification, and our model is thus not just better but certain to 
perform better than Kumar et al.'s 67.03%. 

A major drawback of the present study is that all trials used 
highly controlled data in which participants kept completely still 
during EEG acquisition. Future research should therefore assess 
these models on more realistic recordings that include ordinary 
head motion and ambient noise. Although our sample of 23 
volunteers is larger than those in many earlier studies, evaluating 
the approach on a broader and more varied cohort (50 + 
participants) would clarify how well the system generalizes 
across ages, neurological profiles, and cultural or language 
backgrounds. It would also be valuable to gather recordings 
under different everyday conditions, such as varied lighting or 
background-noise levels, to measure the model’s resilience in 
real-world settings. 

V. CONCLUSION 

The paper deals with the issue of decoding speech from EEG 
signals using hybrid deep learning models, including CNNs and 
LSTMs. Based on a number of EEG datasets related to imagined 
digits, characters, and objects, the study revealed the efficacy of 
the combination of spatial features extracted by CNN and the 
temporal modeling by LSTM in neural signals decoding. The 
CNN-LSTM model achieved high F1-scores across all 
categories: 0.92 for digits, 0.93 for characters, and 0.94 for 
objects, particularly when delta band preprocessing and sliding 
window segmentation were applied. In contrast, the XGBoost 
classifier showed considerably lower performance, with F1-
scores peaking at 0.77 under the same preprocessing. 

Moreover, some patterns of brain activity related to 
imagined speech were at least given as an indication through the 
visualizations for an appropriate classification. With rigorous 
preprocessing and feature extraction techniques, the hybrid 
CNN-LSTM model outperformed state-of-the-art standalone 
classifiers such as XGBoost. Despite inter-individual variability 
and noisy nature, this study was able to demonstrate the 
feasibility of decoding imagined speech in a non-invasive way 
and thereby took a further step toward the development of 
assistive technologies and brain-computer interfaces. 

The findings of this paper hold transformative potential for 
real-world applications, particularly in assistive technologies for 
individuals with speech impairments. This work bridges 
neuroscience and artificial intelligence in the development of 
innovative communication systems that translate neural activity 
into speech, furthering the field of neuro-rehabilitation and 
brain-computer interfaces. 

VI. FUTURE WORK 

In the future work of this study, we would like to enhance 
the work by refining and extending the codebase to improve the 
accuracy and robustness of the decoding models. The practical 
implementation of the paper will be done in the upcoming 
semester, in which the developed CNN-LSTM hybrid model 
will be integrated into a real-world application framework. This 
would allow us to test and validate the system with regard to 
practical scenarios involving various challenges such as real-
time processing and usability. We will go on to explore some 
high-end techniques for improving accuracy in classification, 
optimizing feature extraction, and enhancing model 
generalizability across datasets. These efforts are needed in 
bringing the paper near to its ultimate goal, that of coming up 
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with an effective and reliable EEG-based speech decoding 
system. 
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