
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

889 | P a g e

www.ijacsa.thesai.org

Ontology-Based Business Processes Gap Analysis

Abdelgaffar Hamed Ahmed Ali

Department of Computer Information Systems, King Faisal University, Al-hasa, Saudi Arabia

Abstract—Business processes are subject to change for quality

reasons (i.e., efficiency). However, the gap analysis process is a

preliminary and essential step in discovering the gap between the

to-be and as-is business processes. It usually resorts to a

nonstandard and manual analysis process, making it

unpredictable and complex. This paper proposes a standard

method based on ontology principles and the business process

design methodology (DEMO). The ontology unifies the shared

vocabulary among worlds of source and target business process to

enable this sort of interoperability. Building an essential model is

a core concept behind DEMO that provides an ontological view

independent of realization and implementation issues and enables

understanding of the enterprises' behavior. Moreover, this paper

provides heuristics for detecting gaps, based on the premise that

producing similar institutional facts reflects similar behavior

between the to-be and as-is business processes. Since the domains

of the source and target are the same, it is also possible to compare

the inputs of corresponding actions. The paper proposes a UML

activity model for modeling business processes, enriched with

DEMO concepts, to provide a foundational and informative

ontology for reasoning about gaps. The expected outcome is a

contribution to the broader community of business process

management, ERP, and strategic planning, enabling more

informed decision-making.

Keywords—Business process; gap analysis; ontology for

business processes

I. INTRODUCTION

Enterprises use business processes to produce products and
services for their stakeholders. These business processes are
subject to change due to quality reasons such as adding
efficiency or general business change requirements. Therefore,
changing these business processes is a critical success factor for
enterprises. There are hundreds or even thousands of business
processes (BPs) within small and medium-sized enterprises
(SMEs) and large organizations, ranging from simple tasks such
as enrolling students in courses to complex ones like
procurement and recruitment. These processes evolve over time
to meet quality demands—becoming more cost-effective,
responsive, and standardized. Introducing ERP to an
organization is an example of this major change usually required
to achieve some quality, such as effectiveness and efficiency,
reducing costs by removing waste and redundancy. Therefore, it
replaces legacy systems and business processes with standard,
best practices, and new value-added business processes. The
documentation of these business processes became of great
value for enterprises to understand, analyze, monitor (i.e.,
bottleneck), re-engineer these processes, and generally seek high
quality by proper management.

However, there is typically a gap between the legacy process
(as-is process) and the new ERP processes (to-be process) that
must be identified as a critical step before transformation occurs.

This is because developers and strategists need to make
informed decisions. Moreover, the issue becomes more
pronounced when integrating at least two systems.

The main challenge lies in ensuring that the to-be process
aligns with the organization's goals. Current practices are
inefficient because they rely on manual inspections of
specifications, models (dependent on experts’ experience and
knowledge), or artifacts to identify discrepancies. Additionally,
there is no standardized process to serve as a baseline for
evaluating differences and determining whether to replace or
integrate a system.

On the other hand, existing literature has primarily focused
on analyzing business processes in repositories for reuse
purposes, identifying redundancies and variations [1] . More
importantly, prior studies [2] address compliance between
business processes, where one serves as an ideal reference
model and the other represents current practices. While this is a
prominent research area, it assumes the existence of business
process instances in event logs. These efforts have led to various
metrics and methods. However, the core question—whether
process A (to-be) should replace process B (as-is) and why—
remains unaddressed (gap analysis).

This paper tackles this question from a semantic-based
perspective. Although some existing methods propose behavior-
based or semi-semantic-based approaches, their focus has been
either partial or limited to manipulating business process models
at the implementation level.

This work introduces DEMO, a methodology that applies
ontological discipline to enterprise engineering and design,
independent of implementation and realization. DEMO enables
a semantic and formal understanding of what enterprises
actually do when performing business activities.

Ontology, as a discipline, addresses interoperability issues
among information systems and agents. It establishes principles
for enabling interoperability, such as explicit specifications of
shared concepts in a common vocabulary. This ensures a unified
understanding among agents, facilitating communication both
within and outside organizations—for example, in e-commerce
systems, supply chain exchanges, and other domains.

This work argues that integrating DEMO concepts into a
business process model will enable reasoning about gaps in
business processes, making automated semantic gap analysis
possible. Furthermore, this research aims to provide a
framework for automating business process gap analysis and
related evaluations using ontological principles. The expected
value lies in reducing the costs associated with manual
alternatives—methods that are inefficient and do not scale well,
particularly when dealing with large volumes of business
processes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

890 | P a g e

www.ijacsa.thesai.org

 The paper is organized as follows: Section I provides an
introduction and background. Section II discusses the context of
this work and explains the business process. Section III presents
the ontology principles. Section IV explains DEMO concepts
and its philosophy for designing business processes, while
Section V reviews related literature. Section VI outlines the
proposed methodology, which is evaluated using a case study
discussed in Section VII. Finally, Section VIII offers
interpretations and comments, and Section IX concludes the
article.

II. BUSINESS PROCESS DESIGN AND REENGINEERING

Business processes are the heart of organizations because it's
the machinery providing the services or products. It is
meaningful work performed end-to-end to create customer value
across an enterprise [3]. They are usually tasks performed in
order, either due to space or time to produce a specific outcome.
Procurement, Recruitment, processing of purchase orders,
Making visa approval, Getting a new passport, replenishing
stock, product development etc., are all concrete examples of
business processes. Practically it is observed that it is subject to
change or redesign or generally re-engineering for several
reasons, such as business, organizational, and technical, as well
as the major aim to add some quality attributes (i.e., speed,
economy, better service). For instance, a business can merge or
acquire other business (s), leading to business and organizational
structure change. For a few decades, the government had
witnessed major changes to their citizen-provided services that
necessarily involved reengineering business processes to add
some quality attributes. Therefore, we can basically classify it
into two reasons: functional (merge case) and non-functional
aspects (government case). However, it turns out that, changing
business processes is a critical, costed task and has a high failure
rate. On the other hand, Business Process Management (BPM)
is a discipline concerned with documenting, designing and
redesigning, monitoring, and instrumenting business processes.
Deming and Hammer have established the principles of BPM
[3].

Business processes have been studied for about decades ago,
and a famous key redesign attempt was proposed by Hammer
[4]. The key concept Hammer came up with was the result; it is
a primary or intrinsic element where business processes are
secondary, which tries to achieve it even when changed or
reformed to add some qualities. However, big organizations
with hierarchy management layers have many people doing
different tasks that usually involve activities across departments
or units as well as organizational boundaries. Understanding and
making sense of what is going on is where the concept of the
business process comes in. It is worth bringing in Searle's theory
[5] here which builds on speech act theory, to understand in
some depth what the business process is actually doing. Seral
argues that businesses are changing social reality by performing
speech acts that have a memory (records), called institutional
facts, which have meaning only under some context, i.e.,
background and framing rules. For example, the acceptance or
rejection of this article is an institutional fact that is a result of a
set of speech acts (actions) performed under some framing rules;
authors follow the regulations of academic publishing as well as
reviewers and editor. Therefore, Searle distinguishes between
brute facts that exist independent of humans and institutional

facts that depend on human society. For example, this article can
be seen by students (primary or probably high secondary
schools) as any essay, so from Searle's perspective is a brute fact,
while only under the background of research as well adhering to
framing rules like scientific methods, publishing, etc., will be
considered institutional facts. Further, a single speech act might
be a result of performing several business processes.

The modeling of business processes is a key engineering
activity required before making any sort of analysis, process
redesign, and general management. In literature, there are
different schools or methods for modeling business processes:
BPMN [6], Petri net [7], Object role, and Event-driven [8]; but
among the common and familiar ones are a UML activity model
and DEMO, which are the interest of this work. DEMO has a
breakthrough approach for designing and modeling business
processes where it supports richer concepts for business
processes that adopts ontology principles. On the other hand,
although the UML Activity model is not like DEMO originating
from the technological world (software developers), it attracts
business process modelers and becomes familiar to modelers
and business analysts.

III. ONTOLOGY PRINCIPLES

An ontology in philosophy studies the existence, reality, and
being. The commonly cited definition is the specification of
conceptualization [9]. The main concern of ontology in the
computing discipline is the interoperability problem where at
least two different agents or systems; for example, two different
information systems, want to interoperate. In this case, the
heterogeneity of these two agents makes queries or assertions
between them impossible. It is because there is no shared and
standard meaning for the vocabulary used in the
communications. For instance, the types of messages, the
content, and what it means. Therefore, the need for standard
semantics of the messages communicated, their content, and
schemas is obvious to enable interoperability; it is the concern
of ontology. For example, a big interoperability case can be
observed in the medical field, such as in SNOMD .Healthcare
systems use SNOMD to record medical treatment incidents that
enable information about patients to follow between hospitals,
practitioners, and funding agencies [10]. Another example can
be observed in tax systems where tens of thousands of taxpayers
interoperate with government agencies using an ontology
specified using ontology language for e-businesses [11].

Ontology is a sort of conceptual model that needs to be
developed using ontology representation language [10].
Although there are standard languages developed initially to
support ontology representation that stemmed from knowledge-
based systems like Common Logic, and OWL FULL/Lite [12],
which is standardized by W3C, the use of software engineering
languages such as UML [13] and MOF [14] as well as
information systems modeling languages (i.e. ER) have attracted
the ontology community because of its visualization feature and
definitive engineering object they can specify. Therefore, we
have different competing languages with different capabilities
but share the principle of being originated from set theory and
predicate calculus. However, a conceptual model will represent
the individuals, relationships, and messages with their different
classes and define and unify schemas. This description is like an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

891 | P a g e

www.ijacsa.thesai.org

agreement about the semantics and interpretation of things in
some world of interoperability [10]. On the other hand, a
reasoner is an important element of the architecture of ontology
management tools or Ontology Server that enables drawing
conclusions from premises using mathematical logic and
theorem prover disciplines.

Gruber in his famous paper [9] come up with the main
principles of ontology, and the one that best fits the problem of
this research is Ontological commitment which is about
plausible re-using of ontology. It refers to how far we must alter
the application's world to commit to the ontology [10]. For
instance, it is well known that businesses implementing
enterprise computing solutions like SAP, Peoplesoft, or Oracle
Financials must significantly alter their business processes in
order to get the most out of the software [10]. However, Colomb
argues that ontological commitment would be high if the
ontology supporting conceptualization of a world is used outside
the scope. Therefore, the problem of ontology comes in here
because an organization has its particular set of institutional
facts (conceptualization) created by different speech acts
(Searle’s institutional facts theory) that mostly is different from
the ones canned in software packages such as ERP or the
implemented platform.

IV. DEMO

DEMO is a business process design methodology that
focuses on enterprise ontology theory which has studied and
formalized what actually business is doing independent of
realization and implementation issues. The enterprise ontology
builds on a set of principles. This work only considers the
ontological model, operation axiom, and transaction axiom,
which Dietz [15] explores the big picture of it.

Dietz argues that to understand the current and future
enterprises with the given complexity, an ontological model
(white box approach) is needed as a conceptual model.
However, it focuses on the essential model that uncovers the
hidden essence of an enterprise from its actual appearance. The
operation axiom is a fundamental theory behind DEMO builds
on that goal by abstracting the organization operations into two
kinds: production acts (P-acts) and coordination acts (C-acts),
where both are performed by the subjects representing actor
roles. It defines Actors as an elementary set of authority and
responsibility. While the transaction axiom groups a set of
elementary c-acts into a transaction concept, it also defines three
main phases that each transaction should follow: the Order
phase, the Execution phase, and the Result phase.

Informally, DEMO is a business process design language
that stems from ontology principles and other related disciplines
to allow a compact and deep design of business processes. It has
rich concepts and features. A fundamental feature of DEMO is
its Essential Model concept, which is designed independently of
an enterprise's implementation and realization concerns. First, it
states that actors in an enterprise are roles performing two basic
kinds of acts: production acts and coordination acts. Second,
Actors perform two kinds of acts: production acts and
coordination acts. They contribute to achieving the enterprise's
purpose or mission by performing production acts. While they
enter and comply with mutual commitments about production
acts by performing coordination acts. The second axiom, the

Transaction Axiom, states that production and coordination acts
occur in consistent socioeconomic patterns called transactions.

A. Actors

By playing different critical roles, people of an enterprise are
considered the intrinsic element in DEMO. A subject who plays
some role is called an actor in DEMO. For example, in this
context, the actors are the Authors, Reviewers, and Editors. As
explained in the following subsections, those actors perform
basically two actions: P-acts and C-acts. However, DEMO
identifies an actor cycle where actors as autonomous objects
constantly loop through to perform tasks or agendas. An actor is
performing actions, C-acts, for the reason of C-fact that who
commits to respond to within a limited time. Each type of agenda
has a set of rules called action rules to deal with it.

As a consequence, actors enter into a network of assignments
and commitments where each actor, through response to agenda,
triggers assignments of work to others (agenda) in a chain until
reaching a terminal point. Therefore, an enterprise is a system of
actors who perform two kinds of acts: production acts and
coordination acts to respond to the agenda in the form of C-facts.
Dietz calls this principle the operation axioms.

B. Production Acts

"By performing production acts (P-acts for short), the
subjects contribute to bringing about the goods and/or services
that are delivered to the environment" [15].

This quote by Dietz shows a production act is a primary
action that supports the ontological model. It is a fundamental
action for an enterprise that stems from a fact called production
fact (P-fact) that is considered a definitive result. For example,
the facts resulting from the judgment of accepting paper,
shipping an order to a specific customer address, and deciding
to admit postgraduate students are the results of mainly
production acts. Production acts are of two types: martial (i.e.,
storing, transporting physically) and immaterial. For example,
the delivery of goods of order is material, while acceptance of a
paper is immaterial. However, this corresponds to Searle's
theory concept of changing the social state. So, production acts
not like other actions; it makes a social change of state; in our
example: a paper is accepted, a student is admitted, and an order
is received that is a different state than the previous ones and
with new consequences.

C. Coordination Acts

"By performing coordination acts (C-acts for short) subjects
enter into and comply with commitments towards each other
regarding the performance of production acts," [15] . Also, Dietz
says in this quote, P-acts occur because some P-fact usually
triggers a coordination act that a performer actor does and is
directed to another actor called the addressee. Searle's theory [5]
interprets this as reporting social attitude, for example, request,
promise, assertion, etc. For instance, the request made by this
author to the journal is a coordination act, as well as the request
from the editor for reviewers to review a paper. Facts created by
C-acts are called C-facts, such as in our example, Reference No.
of a paper, time of assigning a paper to reviewers, response or
feedback item from reviewers etc. On the other hand, a set of C-
acts with their C-facts are needed for the existence of a P-act; for
example, the C-acts shown are for publishing an article, the P-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

892 | P a g e

www.ijacsa.thesai.org

act in this case. Therefore, C-acts usually do not exist as an
independent entity but are related to a production act more
accurately production facts. This view of this can be seen in
Fig. 1, which shows two worlds: C-word and P-world, where
actors change the state of both. This state is incremental, so at a
given time, a set of C-facts and P-facts have been created,
representing the state of that time. Therefore, the accumulative
state represents the history of an enterprise. Searle's theory has
more elaboration concept for this point, which calls them both
institutional facts, the record and memory of speech acts that
occurred.

Fig. 1. Graphical representation of the operation axiom from (Dietz, 2006).

D. Transaction

The set of related C-acts contributing to one P-act constitutes
a transaction. A business process might have one or more
transactions. As shown in Fig. 2, DEMO recognizes universal
patterns consisting of request, promise, state, and accept, which
also define a transaction. Each transaction, in this case, has two
actor roles: consumer and producer, aiming to achieve a specific
result. For example, in Fig. 2, this pattern states that the cause of
producing a new or original thing, the production result,
ontological, is because a consumer starts requesting it from a
producer. In this case, and for any C-acts, there is a commitment.
Therefore, performing actions through a transaction entails
taking turns in entering into and complying with commitments.
For instance, the state "result requested" is created because of a
customer making a request, more importantly, commits to that
to demonstrate responsibility. A producer promises the result
requested through the state "result promised".

As Dietz argues, often, it is the case that promised C-acts are
performed tacitly in practice. After this, the request undergoes
processing by a producer to produce the result (ontological
action), which creates the state "result produced" as well as
stating the result (hand over in material kind or communicate in
immaterial kind) to be checked by a consumer, therefore,
creating the two states respectively: "result stated" and "result
accepted." Similarly, the acceptance of C-acts is usually
performed tacitly. For example, my request as an
author(consumer) to the Journal Editorial Board (producer)
creates the state "result requested" while getting a notification
from the journal system as a representative of the main Editorial
board a claim of promising to process the request and so will
create the state "result promised." After this, the journal makes
a notification that states the result (result stated), which will be
checked by the author (result accepted). It is easy to observe that
the promise and acceptance actions are performed tacitly, which
means there is an assumption that the Journal Body is complying
with the promised result since no assertion came for them,
saying the opposite[15]. Furthermore, DEMO identifies three
phases that usually a transaction is subject to it: The order phase

(O-phase), the execution phase (E-phase), and the result phase
(R-phase). It typically entails a conversation in which a set of
coordination acts communicated between two actor roles to
produce a clearly defined outcome regarding a P-act/fact.
However, in the O- phase, the initiator and the executor try to
come to terms with the transaction's desired outcome: the
production fact that the executor will produce and the intended
time of creation. Then, the executor creates this production fact
during the execution phase.

During the result phase, the initiator and the executor try to
agree on the actual production fact that has been produced and
the moment of its delivery (both of which may differ from what
was initially requested). During these phases, instances of
transaction type will be created that correspond to the type of
production fact, which is the result.

Fig. 2. Transaction pattern (Dietz, 2006).

V. RELATED LITERATURE

The literature related to this work is Business Process
Management (BPM). On the one hand, the Process mining
approach is a growing field in BPM that extract the business
process model by starting from event logs; mostly business
processes have footprints (the performance of actions or events
with information like timestamp and owner or customer and
etc.) recorded in simple form like spreadsheets to complex one
like ERP and databases or workflows repository. This fact
enables discovery of a model, where we can perform an
enhancement or conformance checking for these models [2].
However, this work is in line with this conformance-checking
goal of Process mining approach. But the model proposed in this
work is not sensitive to semantic heterogeneity problems, which
enables comparing diverse process models. Also, the proposed
approach does not assume existence of a repository of instances
or the events log for business processes (footprint) to function,
although it is possible to base the legacy model on the events
log, which will add some accuracy as well as can solve the
problem of lack of documentation for the Business process (a
BPM principle). However, this work supports the situation of
analyzing the business processes before operationalization.

On the other hand, there is a school of research [16] that
addresses this problem based on the similarity of model nodes
using approaches such as NLP Antunes et al. [17] and edit
distance [18] .These approaches perform analysis on a
repository of models; that act as knowledge-based for BPM to
serve different purposes such as reusing part of existing models

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

893 | P a g e

www.ijacsa.thesai.org

in the modeling process, merging models (i.e. company
acquisition), and conformance checking [16]. This school of
research, although share some features with the proposed
approach (using the metamodel for matching), it represents a
different direction to the problem under the general umbrella of
Business process analytics.

Moreover, other approaches under this school consider the
grammar of the label that calls for part of speech tagging and
parsing, which is not part of the proposed approach [16]. These
are more information retrieval methods. This diversity can be
better described as the difference between the qualitative
approach (the proposed one) and the quantitative approach.

VI. GAP ANALYSIS METHODOLOGY

This section has been organized as a set of principles that
constitutes the main constructs of the method. They are:
1) Modeling business process using Activity model injected
with DEMO concepts (Principle A), 2) Building the Domain
ontology of BPs (Principle B), 3) Gaps reasoning process
(Principle C).

It is clear now that using business process design languages
such as UML activity model or BPMN is the first step towards
the goal of this work. The author chooses the UML activity
diagram for its commonality and for reducing the learning curve
for modeling business processes. However, many studies in the
literature have shown a synergistic relationship between BPMN
and UML activity [19]. It turns out clearly that, from the
discussion in section 4, DEMO as a design language for business
processes is more elaborative than the activity model, so
integrating DEMO concepts into UML enables describing the
essential model of an organization. It helps in understanding the
behavior of an enterprise independent of the context and
implementation, and technology issues. Therefore, this will be
called principle A, which aims to develop a DEMO profile for
annotating the UML Activity model with DEMO concepts
discussed in section 4. In principle B, a domain ontology for the
organization is needed to unify and standardize the vocabulary
used because we have two worlds: newly implemented and
legacy business processes. Finally, principle C develops on that
by providing new semantic-based methods for the gap analysis.
Before discussing these principles, an interpretation of what we
have obtained from the literature so far paved the way for
understanding the model of solution in this section.

The gap analysis is defined by Monk & Wagner [20] and
Kendall & Kendall [21] as the process of identifying the
differences between the current system and the desired future
state or the functionalities covered by new business processes.

A. How is P-Fact Created, and What makes it Different?

A couple of C-acts contribute to creating a P-act, which
naturally involves a decision or judgment (called ontological
action) using or applying the enterprise's rules to produce a P-
fact. For example, visa approval (a P-act) comes into existence
through a series of coordinated C-acts; these are like verifying
eligibility, validating documents, assigning an employee, etc.,
along with their corresponding C-facts such as passport and
return flight tickets. Based on DEMO methodology, these C-acts
originally belong to the O-phase in a transaction that precedes
the E-phase. As explained, the order phase concerns requests

and promises between communicators. Therefore, O-phase
starts with the "request" act and ends with the state "promised".
The E-phase starts with the P-act and ends with the state that the
P-fact is created [15].

Obviously, the behavior of producing certain P-fact can be
expressed necessarily by a set of related C-acts and C-Facts that
are part of the O-phase. Conversely, a set of related C-acts
should necessarily exist for a P-act to exist. They are
preconditions for the corresponding P-Act. Identifying these C-
acts enables observing the differences or comparing any
arbitrary two P-acts. Therefore, there are three scenarios:
matched, similar to some extent, and not matched or related.
However, according to the context of this work, the assumption
is that the comparisons will be between processes from the same
domain. The basic assumption of ERP is to standardize a domain
of business processes. It is the case that an enterprise is
interested in queries like whether a new process B, for example,
credit control, can replace existing or legacy process A. Of
course, A and B here belong to the same domain. Therefore, the
fundamental question, which is the mainstream interest for
enterprises, is how much A differs from B and What changes are
required in this case. One of the major failures reported in the
literature is the change needed to comply with the standard best-
practiced processes. The sort of difference B will make appears
on the set of c-acts. They are going to produce either simialr c-
facts or different based on certain improvements have been
adopted, for example, following new standards, protocols, and
technology.

B. How are Two Business Processes Different?

To identify differences between business processes, we must
first understand their fundamental operations. For generalization
across organizations - independent of implementation details
and technological layers - an ontological perspective offers
standardized, context-independent interpretations. This
approach enables consistent comparison and difference
identification through a unified conceptual vocabulary. DEMO
is a rich design language that provides this view. According to
DEMO, a business process consists of one or more transactions,
and so do transaction types. Each transaction centers on a result
called a P-fact that must have instances of its type when the
transaction executes. In this E-phase which comes after O-
Phase, a request is submitted, and P-facts will only exist if one
or more C-acts have been performed that might also produce C-
facts.

The stable result in a business process from a DEMO
perspective is the P-act [22]. For example, let's look at the visa
approval process. The visa document with a unique visa number,
in essence, is about the P-fact resulting from P-act -visa approval
process. Also, let's think about the process of getting this article
published. An approved article is the main stable action that
ultimately results in an approval letter with a DOI or unique
reference number for publication. In both cases, there are a
couple of intermediate C-acts that have been performed, such as
eligibility check and send-to- reviewer respectively. On the
other hand, in this context, Searle's institutional facts theory [5]
provides an elaborate interpretation that is P-fact is considered a
kind of institutional fact. Seral shows that speech acts under
some context count as an institutional fact, which has some
social reality impacts. Informally, speech acts theory argues that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

894 | P a g e

www.ijacsa.thesai.org

speech can be expressed as rules of an organization in a formal
context. Therefore, P-acts are examples of speech acts under
some context that change social reality and produce institutional
facts. For example, the visa approval document, MSc certificate,
and Check finical document are all examples of institutional
facts resulting after a set of speech acts have been performed
under some context. The context is framing rules or constraints;
for example, what makes a blank paper with some figures in US
dollars written, is not a formal cheque document or financial
claim [1]. The change in social reality is observing what happens
to the situation before and after getting, for example, a MSc.
certificate or visa approval which is different. Hence, what
enterprises are actually doing is performing different sorts of
speech acts (building blocks of BPs) that create institutional
facts. DEMO calls these institutional facts, P-facts that have a
subordinate the set of C-facts of its realization. Therefore, P-act
is a stable result in business activities that concerns the creation
of institutional facts that are necessarily realized by C-acts
involving speech acts.

In principle, two P-acts can be different because they have a
different set of c-facts. However, they might agree on P-fact
itself but have the same set of c-facts with varying sequences of
execution. This situation provides an interpretation of what
added quality means for a business process or generally the sort
of change happening between two processes where there are
different scenarios of semi-matching between them with a
reality that their P-acts agree only on a subset of c-facts. This
analysis provides insights independent of implementation and
realization.

This background is enough now to realize the principles of
the proposed approach to the problem.

C. DEMO Profile for Activity Model (Principle A)

A profile is a system of subclasses that provides a powerful
extension mechanism to some metamodel (in this case UML). It
allows the original metamodel to acquire new syntax or
semantics and other features that are explained in OMG [14].
The profile is needed for the reason of lacking corresponding
DEMO concepts in the UML activity model.

Using the UML Activity Diagram modeler can specify
workflow steps, such as in Fig. 3, a simple example of the Visa
Approval process. It consists of several activities needed to add
value to visa applicants. These are, ApplyForVisa,
Assign_To_EMP, and Verify Documents, as well as one
structured activity called Visa Processing that involves the
nested activities: Eligibility Check, Approve, and Issue_Visa. In
a workflow, execution progresses sequentially. Upon receiving
a token and all required inputs, an activity immediately triggers
the next activity in the chain. This control transfer continues
along the sequence until an exit point or the final flow node is
reached. Object nodes, such as 'AppForm' and 'Visa', represent
data or objects that are produced or consumed by activities and
also participate in the flow of execution. An activity can
comprise multiple nodes and edges, as illustrated in Fig. 4,
where each node signifies a distinct step in the execution.

This profile aims to enrich UML activity diagrams with
DEMO concepts, which are not natively supported by standard
UML activities. The initial step in developing this profile

involves pinpointing the core elements within the activity model
that require extension to incorporate DEMO's linguistic
constructs. DEMO, as explained, adds standard ontological
concepts that lead to a better understanding of what a business
is doing. The central concept is the P-act (result) that produces
P-fact(s) but with the support and coordination of a couple of C-
acts that subjects have initiated. Activity in the UML Activity
model is a central concept that represents one way of modeling
behavior which is a description of potential events that could
happen in real-time OMG [13]. It involves one or more actions
and can be orchestrated using forks, joins, decisions, merges,
conditions, and loop nodes. An action can call an activity as
well. Therefore, an activity can be used to model business
activities and computation procedures.

Fig. 4 shows the metaclass Activity has been extended to
model P-act as well as Action (an activity can have one or more
actions) that is extended to model C-act, so C-act and P-act are
stereotypes (a kind of change needed for the metamodel).On the
other hand, both P-fact and C-fact are kinds of classes, so an
extension of the metaclass class of UML is needed, as shown in
Fig. 3; a metaclass class is extended to add both concepts.
Further, ObjectNode is extended to model C_facts, which is an
abstract activity node that usually represents an output of an
activity that participates in the workflow. To be modeled is
necessary for the context of this work, although it is optional in
the convenience of using a UML activity diagram. In addition,
P_act and C_act need identity, so an attribute is added to the
stereotype to allow to specify the uniqueness (this concept is not
included in the original DEMO but is necessary for this work).

On the other hand, since StructuredActivity is associated
with an Activity class as a whole-part relationship (aggregate
association) in the original UML metamodel [13], it can inherit
the same property of its parent. StrcuturedActivity is an activity
group that involves nodes and edges as subordinate objects. It
allows nesting actions to form a hierarchy. It could be an
alternative structure that models P_fact/P_act, but in this work,
we only considered the first option (class extension) because it
is simple and more convenient.

Furthermore, a UML Package concept can be used to model
a business process. In contrast, the transaction concept can be
mapped to ActivityPartiton(swimlane), which groups a set of
ActivityNode and edges. A swimlane represents some role or
corresponds to a business unit, showing a separate view and
responsibility boundary. This is because the UML activity
diagram does not have a transaction concept. Activities may
describe procedural computation, forming hierarchies of
activities invoking other activities corresponding to a business
process.

D. Building the Domain Ontology for Business Processes

(Principle B)

This principle is to develop an ontology for the domain of
business processes. This kind of ontology is known as Endurant
ontology DOLCE [24,10], the ontology of data objects that are
independent of time. A potential interoperability issue arises
from the variations in meaning and interpretation of data and
messages (schemas) used in business process communication, a
phenomenon termed semantic heterogeneity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

895 | P a g e

www.ijacsa.thesai.org

Fig. 3. Example of visa approval process using activity diagram.

Fig. 4. DEMO profile for activity model.

In our physical world, this problem is evident; for example,
the same word in the language has two different meanings in two
communities or the same subject refers to it by two different
words. Also, in electric power systems, a refrigerator works in
one country but not in another because it is designed to use a US
system of 110 volts and 60 cycles per second for current. In
contrast, the other country uses 240 volts and 50 cps. The
problem appears when the new business process wants to
replace a legacy business process. Therefore, we do expect a
semantic heterogeneity problem between the two business
processes. In this context, it is the meaning and interpretation of
the P-facts, C-facts, and their corresponding speech acts. For
example, suppose there is a service to check the format of a
submitted journal that is based on the Harvard standard of
citation. In that case, it is unlikely to replace a service in another
journal that uses IEEE or APA standards as well as the system
of journal citation. Also, if an application uses the ISI standard
of ranking journals, the JCR, it will unlikely replace Scopus
standard SJR.

Similarly, a service purchasing items from Amazon is
unlikely to be able to replace the purchased items on eBay.
However, it is obvious that standardization is needed in all these
cases before a hand, and this is where an ontology concept
comes in. Therefore, a language is needed to describe the
ontology according to ontology principles. The UML design

language as one candidate has been chosen for its familiarity and
visualization feature mentioned because OWL, for example,
does not have a graphical representation. Therefore, the business
process needs to unify the meaning of words or vocabulary used
for interactions or communications using a design language like
a class diagram, OWL, DL and others. This specification also
explicitly includes the structure of complex objects usually
hidden in a single system’s conceptual model [10]. Colomb
argues that ontology is a kind of conceptual model but exists
outside the domain. It is, therefore, a standardizing of the
meaning of P-facts/C-facts which is necessary to perform the
gap analysis task. As a consequence of this principle, the
business process designer needs to specify an ontology using
like UML class diagram or OWL. This class model should
specify the institutional facts of the domain of some business
application. However, many CASE tools are available that
support modeling and transformation between modeling
languages.

OWL, standardized by the W3C, is a rich ontology
representation language that allows us to specify individuals in
a triple store format (Subject-Predicate-Object). An RDF triple,
which consists of a predicate connecting a subject to an object,
forms the basis of this representation. An individual can possess
properties, which define direct relations from a domain class to
a range class. By default, instances of properties have the most
general domain and range, owl:Thing. OWL defines two
primary property types: object properties, which describe
relationships between individuals (e.g., participatesIn,
enrollsIn), and data properties, which describe attributes of
individuals (e.g., age, weight). The domain of a property can be
restricted using cardinality constraints, such as
owl:FunctionalProperty, which asserts that a property has at
most one value for each instance. For example, the following
OWL syntax declares hasFather (an object property) as
functional:

<owl:ObjectProperty rdf:ID="hasfather">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Son" />

 <rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty>

Similarly, OWL allows us to restrict the range of a property
using the concept of surjectivity (i.e., every instance of the range
must participate). For example, in a postal system, if we want to
express that a postal code belongs to a city, and each city has
one single postal code, we can model this using such constraints.

Moreover, we can use SPARQL [25] to query an ontology
represented in OWL, which has also been standardized by the
W3C and is supported by tools such as Protégé (cite). For
instance, we can query whether a property is functional:

SELECT ?property

WHERE { ?property rdf:type owl:FunctionalProperty .

FILTER (? ?domain = sc:Son)) }

A property in this example is a variable that will be bound to
specific values based on pattern matching. This allows reasoning

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

896 | P a g e

www.ijacsa.thesai.org

about the ontology which is abbreviated by namespace sc
(schema of some ontology). We specify conditions in the
WHERE clause to be satisfied, in this case specifies whether an
RDF graph explicitly defines a property as functional. The
FILTER clause adds further restrictions, such as requiring that a
property must have the domain son. For instance, the property
has Father specified in the OWL ontology above will be
returned.

Additionally, NOT EXISTS can be used with FILTER to
assert certain constraints. Moreover, a query can be specified for
each part of RDF instances using rich built-in predicates and
operations, such as intersection, union, and others.

In the following, a demonstration of a case used throughout
the paper is presented as part of a postal system ontology. Fig. 5
describes the structure of some institutional facts created by a
set of corresponding c-acts, which will be specified later in the
section. The main production fact is manifest (see Fig. 5), which
consists of a set of properties and c-facts required to fulfill the
postal system's primary activity: sending a mailpiece from a
sender with a specific address to a receiver with a specific
address. Addresses, in this case, belong to a superclass named
NAaddress, which has the properties city (range: Clist), postal
code (range: Pcodelist), district (range: string), and street name
(range: string). The mailpiece, referred to as mailRequest on the
left side, has properties including ID, city, postal code, and ship
type, which ranges over a specific list called ShipMethod. A
customer who initiates this request pays an amount (ranging
over RateSchedule) and obtains a stamp by referencing postage.
The payment is declared through a postage invoice, which
contains a set of properties identifying the date, amount paid,
and shipping type.

1) Sample of Mailpieces (invoice)

a) Address Information

 Sender's Address: Name, street address, city, state, ZIP
code

 Recipient's Address: Name, street address, city, state,
ZIP code

b) Postage

 Stamp (Metered Info): Evidence of payment for postage

 Postage Amount: Value of postage paid

2) Sample of Manifest

 Container Details:

o Container type (sack, tray, pallet, etc.)

o Container number or identifier

o Weight of the container

 Mailpiece Details:

o Total number of mailpieces

o mailpiece type (letters, flats, parcels, etc.)

o Total weight of the mailpieces

 Origin and Destination:

o Originating postal facility

o Destination postal facility

 Date and Time:

o Manifest creation date and time

o Departure time (if applicable)

 Personnel Information:

o Name and signature of the postal worker preparing

the manifest

Fig. 5. Postal system endurant domain ontology.

VII. GAPS DETECTION

The gap analysis aims to discover the alignment of new
business processes with business objectives and how far the
current practiced business process is from this newly adopted
one (which involves some change). The software packages, with
their new embedded business processes, define new practices
and standards (stemming from research and long experience of
Gaint enterprises) for a given domain of business, such as
accounting, purchasing, recruitment, etc. It turns out that the
identification of noncompliance and its processing is a complete
process following the principles of quality management [26].

This section aims to build on the principles established so far
to standardize and formalize the gap analysis process that
establishes the base for automation.

It is obvious that now we need to focus on P-act/ c-facts; that
would be the starting point in observing the differences even
between two BPs from different domains. ERP or other
Enterprise packages is to replace a business process from the
same business domain. For instance, an accounting business
process is expected to replace another accounting business
process but not purchasing, for example. However, how do we
know if two P-acts have identical matches or semi-matching?

Colomb [22] argues that P-act is the stable result which
means the c-acts are variable part. Therefore, the difference
arises in the set of C-acts with their C-facts that realize the stable
result P-act. The assumption supported by principle B; says two
c-facts are identical because they belong to the same class or
type based on a unified ontology that specifies the vocabulary
being used and provides standard meaning. However, the kinds
of P-facts and C- facts and how their creation is performed will

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

897 | P a g e

www.ijacsa.thesai.org

ultimately make the fundamental difference. This suggests that
we need to do a deep analysis of C-acts. So, the fundamental
question becomes when and how two corresponding C-acts are
different. The domain ontology reduces this problem into a
matching function that asserts where an individual (c-fact)
belongs to some existing class. Furthermore, this mechanism
can be extended to implement like the Substitution principle that
makes whenever an instance of the superclass is valid, the
instance of the subclass is valid [27]. Therefore, a superclass
with a stronger postcondition can substitute a subclass with a
weaker precondition.

This work argues that the practical consequence of this
approach is that the production of the same facts signifies the
same behavior assuming the same domain.

However, given two similar P-facts, there might be some
functional or non-functional (the fundamental assumption of
change, such as adding efficiency or economy to business
process) differences, but that must be reflected in the C-acts with
their C-facts in some way, such as extra inputs or/and different
sequence of performance of c-acts. Based on DEMO view when
two processes or P-acts have identical production facts, they
have already make a response to the same first request in O-
phase but probably with some different executions commitment
, eventually they will be having an exact result stated in R-phase.
In principle, these reports a similar behavior, although they may
have different scenarios of execution in E-Phase.

A. Mapping UML Activity into Ontology Individuals

The UML activity model [23] represents the business
process at a high business level. We need to map it into ontology
representation using one ontology representation language in
order to make the reasoning. UML activity diagrams represent
both static structures, such as action inputs and outputs, and
dynamic processes. From an ontological perspective, for each
endurant entity, represented by a class model, there exists a
perdurant entity that brings it into existence. This implies that
data and processes should be consistent, with each data element
resulting from a specific action. We utilize activity models to
represent these perdurant entities. Crucially, the domain
ontology metamodel (Principle B) serves as the primary source
of these facts. They are the set of related P-facts and C-facts of
the organization worlds: P-World and C-world. We can do this
mapping as definitive statements in OWL(or any other ontology
languages), such as asserting that there is an individual P-fact,
visa reference number in Fig. 3 process : P-act(visa- No, date)
or asserting fact such as an invoice: C-fact(invoice-No, date,
amount). These facts are usually augmented with the
specification of transactions in the process model, getting a visa,
for example.

The output of this mapping process is a set of facts (as will
be shown in the case study) of metamodel level 1 because it
models objects that are instances of metamodel level 2 [14].
From OWL prospective, a c-fact is an individual that does not
belong to any class but has a set of properties. The properties of
the individual are kind of Datatype property. Concrete objects,
or specific instances, such as a visa application for Mr. David,
are considered level zero individuals. A concept fact (c-fact) can
be defined by a combination of properties with literal ranges. For
example, in the case study presented in Fig. 6, a mailpiece,

produced during the E-phase of the postal system's main mail
delivery process, is a c-fact. This mailpiece represents an
essential communication document (c-act) for delivering
packages, letters, and other items. Properties of this individual
c-fact, such as the sender's address, have a domain of 'Customer'
and a range of a literal (e.g., string). Similarly, properties like
city, state, and zipcode are also literals. Other properties, such as
stamp and postage amount, have numeric ranges. Conversely,
meter info is likely an object property with a range that is a class
with a defined structure. The container type property of the
Manifest follows a similar pattern. Because OWL allows the
representation of meta-levels [23] within a single model, unlike
UML, OWL and RDFS are commonly used for ontology
representations.

The problem of converting UML models into OWL has been
explored extensively, yielding results across various methods:
MDA (Model-Driven Architecture), ontology profile-based
approaches, and hybrid techniques. The choice is about cost-
benefit analysis approach which has been elaborated with
concrete examples by a fruitful OMG ODM project [28], for
sake of simplicity will not be considered here.

The view of processes is needed because it consumes the
Endurant facts which is a sequence of c-acts corresponding to a
specific P-fact. Because OWL does not directly recognize P-acts
and their related c-acts, the workaround is to add a meta
property, called 'type,' for each act to classify it into one of a set
that can be constrainted to c-act,p-act,c-fact,and p-fact . In fact,
all c-acts and P-acts can be modeled as OWL classes that can
have a set of OWL or RDF properties. Alternatively, OWL-S
can be used since it supports service modeling, such as atomic
and composite services. OWL-S has a rich structure capable of
modeling inputs and outputs. However, we use OWL for its
simplicity and comonality.

Fig. 6 illustrates a business process involving concept acts
(c-acts). To produce the manifest (main perdurant fact, or p-fact)
through the ontological action 'generate manifest,' a mail item is
received by the action 'receive mail.' Note that some actions,
such as the first two in process A, are manual steps.
Consequently, a sequence of concept acts (c-acts) must be
executed.A mail package will be gauged,, then a formal request
will be created, create request, a service fee will be calculated
by calc service fee, and sorting of packages will be thorough
Sorting action. These c-acts have a sequence (incoming edge
and outgoing edge), input(s) and output sometimes. However,
process B in the right side of Fig. 6 is similar to that but involves
some differences (discussed later in details) which represent the
to-be system or target.

To specify a general method of mapping acts in Activity
model to OWL, we can make some abstraction. We do model a
property called next for keeping track of the sequence in c-act
individual.

B. Mapping Target Ontology Into Source Institutional Facts

(Principle C)

The domain ontology is all about intuitional facts. These
institutional facts as discussed are created by speech acts under
some context which represents framing rule. However, the
situation now is we have got two different worlds of institutions:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

898 | P a g e

www.ijacsa.thesai.org

to-be system and as-system so the question how do we know the
institutional facts of to-be system is similar or matching the as-
system's institutional facts which as argued in this research as
fundamental principle. This distills down into finding a base
where the automation machinery going to present later can use
it to decide such as on the gap between source and target.
Consequently, this step is essential for the following stages,
which is about mapping and comparing processes. This aim to
establish correspondences between the c-facts from the two
different worlds; will refer to them to-be system as the target
world, based on intuition that we need to move towards the new
system and as-is system will be called the source world, based
on the perspective of the main production act.

Fig. 6. Postal system main business process (Perdurant ontology.)

How far or near the target from source is the principle of
ontological commitment (re-use) which can be low or high as
dicussed. The commitment will be low when an ontology used
in its usual scope. However, the inputs to the mapping process
consist of the two ontology worlds, along with the
documentation of the target world (e.g., data dictionaries and
BPMN models) .The output is a specification of alignments,
mapping target institutional facts to source institutional facts,
which depends on the level of ontological commitment. In
extreme cases, this may result in extending the ontology with
new concepts or creating specializations (subclasses).

More importantly, as demonstrated in the case study,
generating the manifest—the main production act—requires a
set of C-acts to be performed. These acts lead to the fulfillment
of a commitment or promise to create a mailpiece. A mailpiece
consists of several attributes: sender, recipient, stamp, and
postage amount. This perspective provides a conceptual link that
helps track or connect these elements.

A domain expert may observe a similar structure for the
mailpiece, though with some variations—for example,
differences in naming (e.g., "service amount" instead of
"postage," or "meter info" instead of "stamp") or the presence of
new concepts not originally defined in the system (e.g., "date,"

"log info," etc.). These variations are often captured in a data
dictionary, which defines the business vocabulary. While
precise terminology is ideal, a degree of flexibility is acceptable
at this stage, with a greater focus placed on identifying key roles
and entities.

Business analysts typically consult both the data dictionary
and documentation of the business process—such as BPMN
diagrams or activity models—when performing alignment
activities. This approach is a common and effective practice
within enterprises, as it allows experts to focus on the primary
roles and major institutional facts, which serve as abstractions
for complex systems. In principle, this alignment process can be
automated or semi-automated as in the literature.

It is common for business analysts or ontology engineers to
identify relationships or mappings between concepts, whether at
the schema level or instance level. This challenge is well-known
in the literature and is often referred to as semantic matching,
semantic mapping, or ontology merging [29]. Several
approaches have been developed to identify relationships such
as equivalence, subsumption, and others. Tools like LogMap
[30] and the Alignment API [31] are widely used for this
purpose. According to this activity untimely will end up with a
table similar to Table I (based on the case study) in which the
target concepts mapped into their corresponding source c-facts
P-facts. The ontology can be built either based on source world
or target world since mapping has been performed.

TABLE I. MAPPING TARGET INSTITUTIONAL FACTS INTO SOURCE

INSTITUTIONAL FACTS

Source Target Comments

Mail request Mailpiece Similar

manifest Mail list
Some differences more attributes

added

Invoice Invoice Similar

Guagement weights Different scales

C. Generating Implication Rules Based on Corresponding

Actions(D)

We have now a unified ontology has been annotated with the
target concepts after mapping as explained in the previous
section. This section will deal with the base for matching and
discovering the gap between two business processes.

As Colomb [22] argued, the stable result is the production
act, meaning that all different c-acts and their associated c-facts
will not change the reality of p-fact. Additionally, an
institutional fact can be understood as a record of a speech act.
Furthermore, as stated in the quote, “the state of the P-world at
a specific point in time is defined by the set of P-facts created up
to that moment, while the state of the C-world at a specific point
in time is defined by the set of C-facts created up to that
moment.” In simpler terms, the creation of a fact of a particular
type represents a state transition within one .of these two worlds.

This implies that we can trace the primary production acts
by examining the pre-c-facts generated during the E-phase and
the post-c-facts generated during the R-phase. Consequently,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

899 | P a g e

www.ijacsa.thesai.org

when two distinct c-acts result in the same c-fact instances, it
indicates that they exhibit similar behavior.

Therefore one can observe that dependencies usually exist in
the creation of c-facts, which often follow a logical sequence.
Fig. 7 illustrates that the main production fact, the Manifest,
requires the creation of two necessary c-facts: Mailpiece (c-
fact1) and Invoice (c-fact2). Additionally, each c-fact can be
associated with a set of c-acts that were performed prior to its
creation (referred to as the c-world state), which contribute to its
existence. This observation suggests that we can use these facts
as a basis for tracing and matching subordinate elements
between two worlds.

For instance, both Mailpiece and Manifest have sets of c-acts
that contribute to their existence. Let us refer to these sets as Set
M (for Mailpiece) and Set F (for Manifest). In this context, Set
F is a proper set, while Set M is a subset because the Manifest
encompasses multiple Mailpieces. This implies that the
Manifest represents the whole, while the Mailpiece is a part of
that whole. Consequently, there may be many parts (Mailpieces)
that belong to the same whole (Manifest). Therefore, in this case,
we need to identify the corresponding whole in the to-be world
and construct similar sets of c-acts.

Since institutional facts from the to-be world are already
mapped to corresponding institutional facts in the as-is world
(principle c), it is possible to define a mapping function or make
a relationship between them (i.e., they contribute to the creation
of the same fact). Once these sets are constructed, a more
specific matching between corresponding sets of c-acts can be
established. For example, in Fig. 7, the Mailpiece has its
corresponding MailRequest, and actions such as Gauge Mail
and Weigh Mail are also corresponding actions.

Fig. 7. Example of dependences among c-acts that contribute to the

Production fact Mainfest.

More importantly, I argue that, based on this perspective, we
can conceptualize an implication rule where the left side (a set
of c-acts from Process A) implies the right side (a set of c-acts
from Process B), provided that the major institutional facts (i.e.,
c-facts) are similar.

Furthermore, we can closely examine the direct relationship
between the left-side and right-side sets by analyzing the inputs
to c-acts and matching them with the standard domain ontology
through querying or assertion. This process ensures that all
inputs originate from the same ontology. In this context, we will

have a set of properties derived from different classes. These
classes belong to the left-side and right-side sets, which are
either similar or represent different versions of the same entity—
the institutional fact.

Now our ultimate goal is to determine when a BPs fail to be
replaced by other BPs. The failure is because of different reasons
but we argue that it can be commonly studied under
incompatible classes or individuals in which properties are
conflicting. Therefore, we need to look at the specific problem
of when two classes are incompatible because at least one
property in first class conflicts with the corresponding class’s
property. Hence a reporting of mapping failure with evidences.
However, identifying these discrepancies is essential where a
business can leverage them to adopt potential and necessary
change (gap analysis principles).

Now let us take concrete feedback from our case study,
Fig. 7 models part of a main business process in postal system
that have the original BPs or as-is system, call it Process A and
the to-be system, call it process B.

Process A:

1) Recive a mail

2) Check mail

3) Decide Acceptance - input – mailpiece info

4) If accepted then

5) Guage mail - input : mailpiece output : weight

6) Create mail request : output mailpiece request

7) Calcuate service fee

8) Make invoice : output invoice

9) Sort mailpieces

10) Generate manifest : output manifest

Process B:

It is similar to A but it has additional subprocess premium
service that is not considered by A. Assume for simplicity the
following differences.

1) Recive a mail

2) Check mail

3) Decide Acceptance - input – mailpiece info

4) If accepted then

5) Guage mail - input : mailpiece output : weight

6) Create mail request : output mailpiece request

7) Calcuate service fee

8) Make invoice : output invoice

9) Sort mailpieces

10) Generate manifest : output manifest

From step 2, for example we have a subprocess running in
parallel to deal with premium service:

1) If premium service then

2) Check constraints

3) Calculate service fee

4) Confirm payment : output receipt

5) Generate shipping label : Output new label

6) Priortize handling : output special manifest

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

900 | P a g e

www.ijacsa.thesai.org

Let us imagine also three major differences in institutional
facts between A and B described by Fig. 6, blue classes at right
side): National address (NAaddress) that is introduced as a new
government regulation in Process B. It follows a different
format, including fields such as landmark, city, and
neighborhood, postage amount is specified in the local currency,
measurement units (guagment): There is a difference in
measurement systems; Process B uses local weight standards
with a different scale.

These cases can be summarized in the following
(Process A):

1) In mailpiece the type of postage amount is Rayal

currency.

2) Also in mailpiece as well as mainfest the addresses are

formed from the structure of { a-building No (4-digits),b-street

name (15-character), c-district(limited set of values : all local

district for a city),city (limited set of values: all local country

cities), etc}.

3) Guagement is a set of 50 kg, 100kg, 150kg, etc.

A prior knowledge is that the to-be system or process B has
US dollar currency in any financial transaction also does not
support the national address’s structure and 15kg, 30 kg weights
scale (i.e. large volume of business is in this scale) because the
to-be system has only Mutiple of 50kg.The data dictionary of
these systems could be a good source for investing such
requirements or information.

It is required now to generate the implication according to
the principle of finding the corresponding of institutional facts.
Since we already have the specification for business processes
as part of ontology in an ontology language like OWL (as
described in …), this step is going to extend that to incorporate
this implication generation step. The mapping of institutional
facts in the source to target institutional facts will act as an input
to this process (i.e. Table I). It can start with finding the main
production fact and their subordinates or c-facts. Then mapping
this main production fact to its corresponding fact from source.

In the case study the main manifest and manifest are similar
concepts and represent the same real-world entity. Having
different names or synonyms for the same concept can be
automated as in the literature using corpus or wordnet and
dictionaries methods [32]. It can classify concepts into the same
class when they are belonging to these relationships: is-kind-of
or is-a (always hold) and part- of a whole.

1) Main production fact rule

1. Mainfest postage invoice, mail request

 2. Main Maninfest inovice, mailpiece, label

Based on Table I and the principle of left side implies right
side then it follows that:

postage invoice, mail request novice, mailpiece,
label

Also from Table I:

2) Branching

1.1 Post invoice invoice

1.2 Mail request mailpiece

1.3 Since label has no corresponding concept in table 1 it
means new entity needs to be added to the ontology of new
business process world. There are two interpretations in this case
a) new requirement does not exist in the source so far b)or more
refinement for existing concept(s).

Then we need to find out what are the speech acts (c-acts)
have contributed to the production of these c-facts from both
side of implication which will inherit this implication also.

3) Based on B will get the following implication of acts as

consequence :

 For 1.1:

 calc service fee calc service fee

Also,

For 1.2: create request mailpiece request

Therefore, we conclude that the inputs to these c-acts are also
equivalent

Weight, rate schedule scale, rate

By querying or asserting the developed ontology in principle
B) above we will discover that they are not different concepts.

Make a request Create a request

Sender, Receiver source, destination

We need now to identify their corresponding classes in order
to discover their incompatibility and properties in conflict. Since
OWL and SPRQL has standard ontology to represent properties
with its different rich characteristic functions, we can develop
standard methods.

To identify incompatible classes, we can approximate the
problem using the concept of subsumption. In mathematics, we
say that class A subsumes class B if every element of B is also
an element of A. In other words, B is contained within A, and
we can say that A represents B. One can think of the relationship
between the to-be system and the as-is system using the
substitution principle: if A is a superclass of subclass B, then an
instance of A can substitute an instance of B. However, we need
to investigate the conditions under which this substitution is
valid or invalid. If we can determine that business process A (the
to-be process) subsumes business process B (the as-is process),
then we might conclude that A can replace B. To reach such a
conclusion, a set of operations—such as intersection, set
difference, and others—must be applied.

But how do we know when substitution is not possible? For
example, in the case of a more constrained subclass, substitution
may break. According to set theory, if two sets differ in their
elements—either by having disjoint elements or partial overlap

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

901 | P a g e

www.ijacsa.thesai.org

with at least one exclusive element—then they are not
equivalent.

However, in this context, we need more precision. We
require a rigorous definition of what it means for an element to
be "different." One way to realize this is by examining
conflicting properties. These conflicts help determine

incompatibility. Therefore, we address this question in the
following section.

There are of course many reasons for discrepancies that are
difficult to count but it can be generalized under common
classification theme such as in Table II, then for each class we
provide a treatment.

TABLE II. AN EXAMPLE OF DISCREPANCIES AMONG PROPERTIES BASED ON THE CASE STUDY

S Concept in A Type Is_essential? Concept in B Type Difference

1 amount Property No Postage amount property naming

2 NA address Set of Properties for a class Yes address

class with different set of

properties but it has some

common items

Structure

3 gaugement Set of individuals for a property Yes wight properties Range – different scale

4 tracking class NO
New class with
properties

Does not exist
Not esists (to Model

new class object)

Table II demonstrates the concept in process A (source) and
the corresponding concept in process B (target), type of concept
from ontology prospective (class, property, etc.) with their
differences stated. Moreover, a column is added to adopt
metaproperty is_essential that discriminates or defines the
essential properties for each class. An essential property is one
that must exist in each instance. This can be based on the theory
of BWW (Bob). The purpose of proposing it here is that the final
decision of dissimilarity can rely on it which allows this task to
be automated.

D. Building Standard Queries and Assertions (Principle E)

In order to reason about discrepancies, we need to
standardize and formalize testing of a gap in the form of
assertions and quires. The basic assumption is to use SPRQL
since we ended up with ontology specified using RDF-based
language (OWL). An alternative is use the built-in machinery of
consistency check [33] but there is no more control especially if
customised quires or assertion are required.

Referring to Table II, one can infer that some properties have
been converted into class types, such as the NA address in the
new process (No 2). Additionally, the range of one property has
changed, resulting in a subsumption relationship, as seen with
'gaugement' and whight; the initial range is a subset of the new
range, indicating a change in the property range’s scale.
Furthermore, a new property has been introduced in the new
system, which was absent in the legacy system, as illustrated in
case 4(tracking).Therefore, the following queries demonstrate
how to reason about these cases based on the source and target
ontologies given.

1) Range discrepancy query: This is typically for like case

3 in Table II. The first obvious case occurs when the value of a

property in target class does not belong to the range class of the

source(i.e. range of source is mailpiece while the range class of

target is manifest).Second, the range of the source property is

more specific than the target property(target range for instance

is a set of red and yellow while source is bule only).

The discovery of the first case is straightforward because we
can use the SPRQL not exist in the filter clause to assert that an
individual has property’s range of the source (i.e. postage

amount is not riyal). The second case can be obtained by
different ways; one way is to use OneOf OWL construct that
allows to specify, for example, a property having specific range
(enumeration data type).Therefore, we can use SPRQL to
disprove that the range set of the source is not either subset or
proper set of the target. For instance, the base to discover the
incompatibility in case 3 in the Table II:

Check subset condition, A ⊆ B: every member of Set A is
also in Set B

Select? x

FILTER NOT EXISTS {

?x rdf:type :RangeOfClassA.

FILTER NOT EXISTS {?x rdf:type :RangeOFClassB }

}

The Not-exists clause will return false always except when
one tuple appears in the result showing that one member of set
A is not part of set B.

Check proper subset condition, B ⊇ A: there exists a
member in Set B not in Set A

FILTER EXISTS {

?x rdf:type : RangeClassB .

FILTER NOT EXISTS {?x rdf:type : RangeClassB }

}

}

Notice that this is the inverse of the first query so the Not-
exists clause returns true only when there is a member in B does
not belong to A.

2) Structure discrepancies query: It is typically like case

No 2 in the table where a property needs to be replaced by a

class(NA address) which is a recurring problem. Since based

on DEMO their corresponding classes are from the same P-act

then some overlapping of properties might occurs. However,

there are different types of structure differences that might

happen. Mostly these will recur in the whole ontology and the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

902 | P a g e

www.ijacsa.thesai.org

advantage of this is that a bench of quires will be re-used,

therefore reducing the cost of the development. In the following

these different types of structure discrepancies will be sketched.

Type1: Class range vs. property range

The following query will return instances of properties that
at most one of its range is a class. The postage amount in target
could ranges over specific class (standard list) while the source
amount has range integer.

SELECT ?Property1 ? Property2

WHERE {

 ?property1 rdfs:range ?range1 .

 ? Prpoerty2 rdfs:range ? range2

 FILTER NOT EXISTS ((range1? Owl:datatype ?) And
(range2 owl:Class })

 }

}

Type 2: Ranges are classes but one subsumes the other

Using proper set and subset check as discussed above allows
us to make a test for which is a subset of another, but before that
an initial test is required to map corresponding properties instead
of comparing a source property with all target properties. For
example, Address and NA Address, in such a situation
Hamming distance can be used which computes distance
between two strings. Properties can be encoded using bitmaps
such as 4bits for each character (we need determine the size
based on the dynamic range of characters exist). The Hamming
distance function computes how many number of characters are
in differences. In this case, it will result in less distance between
NA address and Address than among other properties. Also, the
case could be two different names of properties used but with
the same semantic meaning. For example dispatch list and
manifest .A well-established method of Wordnet [32] can
classify these concepts into the same class which is an is-kind
relationship. Wordnet-based methods can also detect is and part-
of relationships.

Type 3: Cardinality discrepancies

More restriction could be specified on ontology of source
and target where properties have specific cardinalities (min,
max) therefore must present in testing. For example:

 A Manifest must include at least one Mailpiece (a
manifest cannot be empty).

 A Mailpiece can be included in at most one Manifest (a
mailpiece cannot be listed on multiple manifests).

Min/Max cardinality test: Remember this test on TBox or the
terminoglical level of the ontology but not instance
level.Therefore we need to teat ComposeOf property if it
specifies max or min cardinality .Usually OWL allows one to
make these constrains by defining a subclass of the restriction
class (OWL built in).In the following a query ComposeOf for
this case will be checked for if it has min cardinality constraint.
Constraint and card value are variables will be instintiated when

the where condition satisfied. The where condition binds a
restriction variable with instance if it finds rdf type
owl:Resitirction class which has property ComposeOf.

SELECT ?constraint ?cardValue

WHERE {

 ?restriction rfd:type owl:Restriction ;

 owl:onProperty : ComposeOf;

 ?constraint ? cardValue .

 FILTER (?constraint =minCardinality)

}

Based on that queries and assertions we will be able to verify
if any major differences exist for essential properties of the
source ontology and accordingly, we can reach to the final
decision of compatibility or not because of the exitance or not
existence of conflicting essential properties.

We could combine or package these quires to be executed in
a sequence using Nested substructure where select ... is going to
be nested or chained. Therefore, we can get one final and single
answer for a couple of quires and assertions. Moreover, the
implication rule principle can be automated and linked with this
these queries using XSLT which can transform the implication
rule into a direct call to APIs that will perform the necessary tests
as explained above.

TABLE III. COMPASSION AMONG THE METHODS USED FOR GAP ANALYSIS

Criteria
Manual

inspection

Process

Mining

Proposed

method

Automation support No Yes Yes

Semantic heterogeneity Yes Yes No

BP Instances required No Yes No

Error rate High low low

Reliability Low High High

Performance Low High High

Scalability No Yes Yes

VIII. DISCUSSION AND INTERPRETATIONS

Enterprises often adopt new and innovative business
processes under the assumption that they will lead to
breakthrough results. However, if such changes are
implemented without sufficient preliminary analysis, the risk of
failure significantly increases. For example, a recently
established company in the region specializing in paper
manufacturing and recycling—with a capital exceeding one
million dollars—faced failure during an attempt to upgrade its
systems and reengineer its business processes.

Traditional approaches in such cases are typically ad hoc,
suffer from semantic heterogeneity, and lack scalability due to
inherent complexity. Table III shows a theoretical comparison
based on expert reasoning of manual inspection, process mining,
and the proposed method across several key criteria: semantic
heterogeneity, instances requirement, automation support,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

903 | P a g e

www.ijacsa.thesai.org

errors, reliability and scalability. As demonstrated, manual
inspection is unreliable, has a high error rate, and lacks
automated support. Although process mining increases
automation and reliability, it does not address semantic
heterogeneity and is still dependent on the availability of process
instances. By removing semantic heterogeneity and lowering
reliance on process execution logs, the suggested approach
outperforms both process mining and other methods while
maintaining high reliability and performance. This comparison
serves to highlight the anticipated benefits of the suggested
approach, even though empirical validation is still a future
objective.

Since business processes (BPs) are fundamentally about
institutional facts (i.e., production facts), the model proposed in
this article offers a way to mitigate such risks. It does so by
unifying the institutional vocabulary used by businesses to
describe their expected services and products.

This unified vocabulary enables standardized gap analysis,
supported by DEMO, which provides a formal language for
expressing the essential elements of a business process—
abstracted from implementation and realization details. Such
abstraction is a powerful tool for managing complexity.

Furthermore, comparing the ontologies of to-be and as-is
business processes is feasible because both originate from the
same business domain. Various scenarios can arise, such as one
process being more constrained than the other. These
discrepancies can often be grouped under common classes,
allowing the development of a general method for systematic
analysis and resolution.

One related outcome of this work is that it facilitates
documenting gaps so they can be understood at a high level, as
argued by Jeston [34]. This is the fact that models are
transformed into a knowledge-based system; therefore, it not
only supports reasoning about gap but also acts as an informative
repository that can be reused for different analysis goals, which
is a principle aligned with the BPM objectives. For example, top
managers, executives, and strategist are interested in answering
inquiries about different business processes for various reasons,
such as benchmarks to determine enhancements for as-is
processes that can justify the investment [35].

The major cost is developing an ontology manually for a
domain of business processes or institutional facts. Also
annotating the model with DEMO concepts and mapping target
institutional facts into source institutional facts. However, some
capabilities of the ontology toolset can be utilized to some
extent, such as ontology learning, consistency check and the
model’s mappings facility of QVT to reduce this cost. Moreover,
conducting large-scale evaluations in different domains with
different scenarios will highlight more classes of discrepancies.
These are elements of future work.

Regarding the reengineering process itself, standardization
enabled by DEMO helps to define the kind and type of change
required as usual practices of adopting new ERP (commits to
ERP ontology). Therefore, the problem would shift to focusing
on which institutional facts (C-fact and P-fact) need to be
changed as well as its set of actions (C-act and P-acts).

Moreover, DEMO provides an ontology to talk about processes
gap and their classification.

IX. CONCLUSION

This study examines the challenges of gap analysis problem
when replacing legacy business process (as-is) with new
business process (to-be). Business processes evolve to
incorporate qualities such as economy, productivity, and
efficiency, necessitating a thorough analysis to ensure alignment
with organizational objectives and strategy. Gap analysis plays
a critical role in answering key questions, such as whether a new
process can replace an existing one and, if not, identifying the
reasons. This work proposed a structured method to identify
gaps among business processes. It consists of Four principles:
1) Developing DEMO profile (principle A) 2) Building domain
ontology for BPs (principle B) 3) Mapping target institutional
facts into source ontology (principle c) 4) Generating
Implication rules based on corresponding actions 5) Reasoning
using standard discrepancy quires(principle E). Because
business processes are about the production of institutional facts,
semantic heterogeneity prohibits comparing and analyzing two
different processes (main source of failure); building domain
ontology(consists of both endurant and perdurant) that unifies
terms, concepts, messages and interpretation is an essential
process in the proposed approach (principle B). This suggests
mapping the to-be system's institutional facts into their
corresponding source's institutional facts (principle c). Also,
DEMO has richer concepts for designing business processes that
focus on the Essential model of an enterprise. It handles the
complexity through the identification of the main production act,
p-act, which is the stable result. Therefore, a set of c-acts could
be identified and compared that is required for the existence of
the P-fact (i.e. manifest) b; business activities independent of
realization and implementation issues. Therefore, a UML
Activity as a famous design language has been profiled to
support DEMO concepts (profile A). Integrating DEMO
concepts into UML activity Diagram puts forwards and
facilitates the analytics of business processes. This suggests that
we reason about gaps using such as SPRQL (Principle E).
However, this study contributes to the state-of-the-art of BPM
and ERP community by providing a facility to compare different
business processes semantically, either as legacy or new
processes, providing a great opportunity for business analysts,
architects, and strategists to make critical (multi-million dollars)

decisions.

REFERENCES

[1] A. Koschmider, M. Fellmann, A. Schoknecht, and A. Oberweis,
“Analysis of process model reuse: Where are we now, where should we
go from here?,” Decis. Support Syst., vol. 66, pp. 9–19, 2014.

[2] W. M. P. van der Aalst, Process Mining: Data Science in Action, 2nd ed.
Springer, 2016.

[3] M. Hammer, “What is business process management?,” in Handbook on
Business Process Management 1: Introduction, Methods, and Information
Systems, Springer, 2015, pp. 3–16. doi: 10.1007/978-3-642-45100-3_1.

[4] M. Hammer, “Reengineering work: Don’t automate, obliterate,” Harvard
Business Review, vol. 68, no. 4, 1990.

[5] J. R. Searle, The Construction of Social Reality. New York: The Free
Press, 1995.

[6] OMG, Business Process Modeling Notation, Version 1.2, 2009, OMG
Document Number: formal/2009-01-03

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 4, 2025

904 | P a g e

www.ijacsa.thesai.org

[7] G. Rozenberg, J. E. Models, and P. N. I. B., “Elementary net systems,”
Springer, 1998. [Online]. Available:
https://link.springer.com/content/pdf/10.1007/3-540-65306-6_14.pdf.

[8] A.-W. Scheer, Business Process Engineering: Reference Models for
Industrial Enterprises. Springer, 2012. [Online]. Available:
https://books.google.com.

[9] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” Int. J. Hum.-Comput. Stud., vol. 43, no. 5–6, 1995.
doi: 10.1006/ijhc.1995.1081.

[10] R. M. Colomb, Ontology and the Semantic Web, vol. 156. IOS Press,
2007.

[11] Universal Business Language Version 2.1. [Online]. Available:
http://docs.oasis-open.org/ubl/UBL-2.1.html

[12] W3C, OWL Web Ontology Language Reference, W3C
Recommendation, Feb. 10, 2004. [Online]. Available:
http://www.w3.org/TR/owl-ref/.

[13] OMG, An OMG Unified Modeling Language (OMG UML) Publication,
2009. [Online]. Available:
https://www.omg.org/spec/UML/20161101/PrimitiveTypes.xmi.

[14] OMG, Meta Object Facility (MOF) Core Specification, Version 2.0,
OMG Document Number: formal/2006-01-01, Jan. 2006. [Online].
Available: https://www.omg.org/spec/MOF/2.0/.

[15] J. L. G. Dietz, Enterprise Ontology: Theory and Methodology. Springer,
2006. doi: 10.1007/3-540-33149-2.

[16] A. Schoknecht, T. Thaler, P. Fettke, A. Oberweis, and R. Laue,
“Similarity of business process models - A state-of-the-art analysis,”
ACM Comput. Surv., vol. 50, no. 4, 2017. doi: 10.1145/3092694.

[17] G. Antunes, C. Pereira, L. F. Pires, and M. van Sinderen, “Using
ontologies for enterprise architecture model analysis,” Inf. Softw.
Technol., vol. 54, no. 1, pp. 4–14, Jan. 2015. [Online]. Available:
https://doi.org/10.1016/j.infsof.2011.06.005.

[18] R. Dijkman, M. Dumas, and L. García-Bañuelos, “Graph matching
algorithms for business process model similarity search,” Data Knowl.
Eng., vol. 70, no. 6, pp. 597–625, Jun. 2011. [Online]. Available:
https://doi.org/10.1016/j.datak.2011.02.003.

[19] M. A. Cibrán, “Translating BPMN models into UML activities,” Lecture
Notes in Business Information Processing, vol. 17, pp. 236–247, 2009.
doi: 10.1007/978-3-642-00328-8_23.

[20] E. Monk and B. Wagner, Concepts in Enterprise Resource Planning, 4th
ed. Boston, MA, USA: Cengage Learning, 2013.

[21] K. E. Kendall and J. E. Kendall, Systems Analysis and Design, 10th ed.
Boston, MA, USA: Pearson, 2019.

[22] R. Colomb, Module 09: Business Process Modeling, lecture notes,
Enterprise Information Systems MCM2623, University of Technology
Malaysia, Feb. 20, 2008.

[23] OMG, OMG UML Superstructure, Version 2.1.2, 2007, OMG Document
Number: formal/2007-11-02.

[24] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari,
“WonderWeb Deliverable D18: Ontology Library (Final),” IST Project
2001-33052 WonderWeb, 2003. [Online]. Available:
https://www.loa.istc.cnr.it/old/DOLCE.html.

[25] E. Prud'hommeaux and A. Seaborne, “SPARQL Query Language for
RDF,” W3C Recommendation, Jan. 2008. [Online]. Available:
https://www.w3.org/TR/rdf-sparql-query/.

[26] M. J. Epstein, J.-F. Manzoni, and A. Davila, Performance Measurement
and Management Control: Behavioral Implications and Human Actions.
Bingley, U.K.: Emerald Group Publishing, 2014.

[27] B. Liskov and J. Wing, “A behavioral notion of subtyping,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 6, pp. 1811–1841, Nov. 1994. doi:
10.1145/197320.197383.

[28] R. Colomb et al., “The object management group ontology definition
metamodel,” in Ontologies for Software Engineering and Software
Technology. Springer, 2006. doi: 10.1007/3-540-34518-3_8.

[29] A. Thiéblin, M. Chekol, and M. Giese, "Ontology Alignment with Deep
Learning: A Survey," *Semantic Web*, vol. 11, no. 6, pp. 1011-1044,
2020.

[30] J. Jiménez-Ruiz, B. Parsia, and U. Sattler, "LogMap: Logic-based
ontology alignment," in *Proc. 10th Int. Semantic Web Conf. (ISWC)*,
2011, pp. 274-289.

[31] J. David, H. Laforest, and J. Euzenat, "The Alignment API 4.0," in *Proc.
8th Int. Semantic Web Conf. (ISWC)*, 2011, pp. 182-197.

[32] G. A. Miller, "WordNet: a lexical database for English,"
Communications of the ACM, vol. 38, no. 11, pp. 39-41, 1995.

[33] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen, “From SHIQ and
RDF to OWL: The making of a web ontology language,” J. Web
Semantics, vol. 1, no. 1, pp. 7–26, Jan. 2003. [Online]. Available:
https://doi.org/10.1016/j.websem.2003.04.001

[34] J. Jeston, Business Process Management: Practical Guidelines to
Successful Implementations. New York, NY, USA: Routledge, 2018.

[35] P. Harmon, Business Process Change: A Business Process Management
Guide for Managers and Process Professionals. 4th ed. United States:
Elsevier, 2019.

https://link.springer.com/content/pdf/10.1007/3-540-65306-6_14.pdf
https://books.google.com/
http://docs.oasis-open.org/ubl/UBL-2.1.html
http://www.w3.org/TR/owl-ref/
https://www.omg.org/spec/UML/20161101/PrimitiveTypes.xmi

